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We present a thermodynamically consistent method by which equations of state based on
nonrelativistic potential models can be modified so that they respect causality at high densities,
both at zero and finite temperature (entropy). We illustrate the application of the method using
the high density phase parametrization of the well known APR model in its pure neutron matter
configuration as an example. We also show that, for models with only contact interactions, the
adiabatic speed of sound is independent of the temperature in the limit of very large temperature.
This feature is approximately valid for models with finite-range interactions as well, insofar as the
temperature dependence they introduce to the Landau effective mass is weak. In addition, our
study reveals that in first principle nonrelativistic models of hot and dense matter, contributions
from higher than two-body interactions must be screened at high density to preserve causality.
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I. INTRODUCTION

The precise determination of neutron star masses close
to 2M� [1, 2], prospects of observing gravitational waves
(GW’s) from mergers involving binary neutron stars as
in the recent detection of GW’s from mergers of bi-
nary black holes [3, 4], and the hope of observing a
nearby core-collapse supernova (SN) with the several
neutrino observatories currently in place have greatly
strengthened the study of dense matter physics. Cen-
tral to this study is the equation of state (EOS) of dense
matter at both zero and finite temperature. Depend-
ing on the values of the baryon densities, n, and tem-
peratures, T , reached in core-collapse supernovae, neu-
tron stars from their birth to old age, and mergers of
compact binary stars, several phases of matter may be
encountered. At high densities and/or temperatures,
these phases may consist of strangeness-bearing hadrons
and/or quark matter [5].

Large-scale computer simulations [6–17] of the astro-
physical phenomena mentioned above employing the mi-
croscopic physics input of model EOS’s from both non-
relativistic and relativistic approaches have indicated the
ranges of n/ns, where ns ' 0.16 fm−3 is the nuclear satu-
ration density, T , and the net electron fraction Ye = ne/n
encountered. To enable simulations, EOS’s that range
over n/ns up to 10, T up to 200 MeV, and Ye up to
0.6 are required. These conditions imply an entropy per
baryon S (in units of Boltzmann’s constant kB) of up to
200. In varying amounts the entropy is shared between
the hadrons, leptons, and photons. For EOS’s with only
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nucleonic components, Snuc of up to 4-5 is not uncom-
mon. In the homogeneous phase (n ≥ 0.1 fm−3) and
using the EOS of APR [18], S ≤ 30 with nucleons con-
tributing about 5, leptons 15, and photons 10. The high-
est density at which S ∼ 200 is about 0.01 fm−3 (at
T=200 MeV) with 95% of the contributions coming from
leptons and photons. The dependence of these numbers
on the charge/lepton fraction is, generally, very weak.

The focus of this paper is on the adiabatic speed of
sound cs in matter at high density and temperature.
In hydrodynamical simulations, cs represents a physical
scale which controls the macroscopic evolution of mat-
ter. Thus, a quantitative knowledge of how cs varies
with n and T (or S) in models of hot, dense matter can
shed light on the time development of involved hydro-
dynamical simulations. In physical systems, cs cannot
exceed the speed of light c. Nevertheless, many of the
EOS’s used to describe nucleonic matter have nonrela-
tivistic underpinnings and therefore are inherently inca-
pable of conforming to the requirement of causality owing
to the lack of Lorentz/Poincaré invariance. (Relativistic
field-theoretical approaches to dense matter automati-
cally respect causality, and will not be addressed further
in this work.) For some nonrelativistic EOS’s, typically
the softer ones, which struggle to support neutron star
(NS) masses ∼ 2M�, the central densities of maximum
mass stars occur at nc > (8 − 10)ns (see, e.g. [19]).
Consequently, the causality requirement is only violated
for densities beyond the validity of a nonrelativistic treat-
ment which must be eschewed. The stiffer EOSs however,
can lead to acausal behavior at densities and tempera-
tures for which hadronic matter is expected to persist
within a star. In some fortuitous cases, the matter may
not become superluminal prior to nc. However, a large
and steady steady rise in the adiabatic speed of sound
should suffice to cast doubt on a nonrelativistic treat-
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ment as finite temperature effects may lead to acausality
as will be shown later in the paper.

Repulsive contributions to the energy per particle
E(u = n/ns) that vary faster than linear in u give rise
to acausal behavior at high densities. Thus, higher than
two-body forces found necessary to achieve saturation
at the empirical ns with the empirical binding energy of
symmetric nuclear matter (SNM) must screen themselves
with progressively increasing density to ensure causal be-
havior. Following the suggestion in Ref. [20], causality
was maintained through the use of Buσ/(1 + B′uσ−1),
where σ > 1, B is a constant of dimension energy and B′

is a dimensionless constant appropriately chosen to have
cs approach c from below, in the explorative study of Ref.
[19]. This implied self-screening of repulsive interactions
at high density, while desirable, is not always guaran-
teed in nonrelativistic potential-model calculations. The
simple approach adopted in the above works to maintain
causality also highlights the need to identify the origin of
the needed self-screening mechanism in dense matter.

At the two-body level in the mean field approximation,
contributions to E(u) arising from exchange interactions
in dense matter can either be positive or negative de-
pending on the nature of the exchanged meson [21]. For
interactions between nucleons mediated by pseudo-scalar
π and scalar σ mesons, the exchange (Fock) terms provide
positive contributions to the energy, whereas the corre-
sponding direct (Hartree) terms are negative. Vector me-
son (ω and ρ) exchanges lead to negative contributions
from the Fock terms (except in relativistic treatments at
high densities for which positive contributions ensue ow-
ing to relativistic effects). In all cases, however, the Fock
contributions are subdominant to the Hartree terms. In
addition, the asymptotic high-density behavior of the en-
ergy per particle from the Fock terms is u1/3 much weaker
than u of the Hartree terms. For a comparison of the
individual contributions to the total exchange energy in
relativistic and non-relativistic treatments, see, for exam-
ple, Ref. [22]. In models with contact interactions which
subsume the exchange interaction in a density-dependent
effective mass, the kinetic energy per particle varies as
u5/3, which invariably leads to acausality at some high
density.

Beyond the mean field approximation (as for example
in Brueckner-Hartree-Fock (BHF) treatments [23–27]),
even two-body forces can give rise to contributions that
grow with powers of u larger than 1 owing to the class
of diagrams summed, and short-range (Jastrow) corre-
lations in the wave functions. Higher-power attractive
terms may result in such calculations that can help to de-
lay the onset of acausality to densities larger than those
found in the cores of neutron stars, but at the expense
of making the EOS too soft to support a 2M� star. In
the case of higher-power repulsive terms, causality will
be at stake likely at a density within the star. A detailed
analysis of causality in such treatments with and without
three-body forces, including that at finite temperature,
is warranted but outside the scope of this work.

The issue of self-screening is particularly relevant to
modern microscopic calculations of the EOS of SNM and
pure neutron matter (PNM), such as the quantum Monte
Carlo [28–30] and chiral effective field theory approaches
[31–38] in which the role of three-body forces at T = 0
have been examined. Owing to inherent technical diffi-
culties, calculations have been limited up to about 2ns
in both of these approaches. To calculate the structural
properties of NS’s, the EOS’s have been extrapolated be-
yond ∼ 2ns through the use of piece-wise polytropes that
respect causality (thus screening the influence of 3-body
forces present at n < 2ns, possibly prematurely for higher
densities) [39]. This polytropic extrapolation, while sat-
isfactory at T = 0 on a practical level, cannot however
be extended to finite temperature unless the effects of
temperature on the EOS are known a priori. Examples
of EOSs in which the role of three-body interactions at
finite temperature have been investigated can be found
in Refs. [40–42]. To our knowledge, tests of the causal
behavior of these EOSs at high density and finite tem-
perature have not been performed to date.

Here, we present a thermodynamically consistent
method to maintain causality for EOS’s that become
acausal at both zero and finite temperature. While such
a method is available in the literature for zero tempera-
ture [18, 43, 44], a method to encompass the influence of
temperature on cs has not received much attention (the
method presented in Appendix E of our earlier work in
Ref. [18] contained an inadvertent error, which is cor-
rected in this work). We illustrate the application of the
method using a few chosen models [45–47] that become
acausal at high density and temperature. These models
have distinctly different behaviors in their nucleon effec-
tive masses as functions of density. For simplicity, results
for PNM are shown in all cases with the generalization
to a multi-component system indicated in the text. We
stress, however, that the applicability of the method pro-
posed is not limited to the class of models chosen for illus-
tration. As long as the relevant thermodynamic variables
such as the energy, pressure, and chemical potential for
any model are available for all densities and temperatures
of interest, the method can be used to render the EOS
causal and to satisfy the thermodynamic identity.

The paper is organized as follows. In Sec. II, the
adiabatic speed of sound cs is defined in terms of ther-
modynamic quantities characteristic of an EOS at both
zero and finite temperature. This section also contains a
discussion of the behavior of cs in the limiting cases of
degenerate and nondegenerate bulk matter. The method
devised to implement causality for EOS’s that become
acausal at high densities and temperatures is described
in Sec. III. In Sec. IV, the numerical procedure to en-
force causality for models with contact interactions is de-
tailed. Results in the case of PNM for these models are
presented in Sec. V both at zero and finite temperature.
Additionally, results for a model in which contributions
from higher than two-body interactions are screened to
prevent an acausal behavior are presented. Section VI
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presents a summary and conclusions.

II. GENERAL CONSIDERATIONS

For small-amplitude perturbations, the velocity v of
fluid particles obeys the wave equation [48]

∂2v

∂t2
− c2s

∂2v

∂x2
= 0 (1)

whose solution f(x − cst) represents longitudinal sound
wave propagation with speed cs under the condition of
adiabatic motion for which ∂S/∂t = 0, where S is the en-
tropy. Thus small density fluctuations in a compressible
fluid propagate at the speed of sound given by [49–51](cs

c

)2
=
∂P

∂ε

∣∣∣∣
S

=
∂P/∂n|S
∂ε/∂n|S

(2)

=
1

TS + µ+m

∂P

∂n

∣∣∣∣
S

=
Ks

9(TS + µ+m)
=

ΓSP

h+mn
, (3)

where P is the pressure, ε is the energy density, n is the
number density, h = nE + P is the enthalpy density, µ
is the chemical potential, KS = 9 ∂P/∂n|S the adiabatic
incompressibility, and ΓS = ∂ lnP/∂ lnn|S the adiabatic
index. In the variables (n, T ), we can also express cs as
[50, 52] (cs

c

)2
=
CP
CV

n

h+mn

∂P

∂n

∣∣∣∣
T

, (4)

where CP and CV are the specific heats at constant pres-
sure and volume, respectively.

We will begin our analysis with nonrelativistic models
that are described by the generic Hamiltonican density

H =
~2

2

τ(n, S)

m∗(n)
+ V (n) , (5)

where the first term is the kinetic energy density and the
second is the potential energy density. The quantity m∗

is the Landau effective mass defined at the Fermi surface
by m∗(n) = pF (∂εp/∂p)|pF , where εp is the single par-
ticle spectrum and pF is the Fermi momentum. Models
that employ contact interactions such as Skyrme models,
the APR model, and other microscopic models that em-
ploy the effective mass approximation as indicated above
are examples of the representation in Eq. (5). As our
discussion proceeds, we will consider other cases, e.g.,
models in which finite-range interactions at various levels
of sophistication are considered and in which additional
complications are encountered. Some physical insight is
gained by examining the behavior of cs in the limiting
situations of degenerate and nondegenerate bulk matter
to which we turn below.

Degenerate case

For conditions such that T/TF � 1 (or, equivalently
S ≤ 1), where TF = p2F /(2m

∗) is the Fermi temperature
in nonrelativistic models, degenerate conditions prevail.
In this case, the leading-order Fermi liquid theory (FLT)
expressions for the thermal components of the pressure
and energy density are given by [53, 54]

Pth(n, T ) =
2

3
naT 2Q and εth(n, T ) = naT 2 (6)

with Q = 1− 3

2

n

m∗
dm∗

dn
, (7)

where a = π2/(4TF ) is the level density parameter. Uti-
lizing the leading-order FLT result S = 2aT , we get

Pth(n, S) =
S2

6

nQ

a
=

2S2

3π2
nTFQ and (8)

εth(n, S) =
S2

4

n

a
=
S2

π2
nTF , (9)

from which the density derivatives at constant S

dPth
dn

∣∣∣∣
S

=
Pth
n

(
1 +

2

3
Q+

n

Q

dQ

dn

)
,

dεth
dn

∣∣∣∣
S

=
εth
n

(
1 +

2

3
Q

)
and ,

dT

dn

∣∣∣∣
S

=
2

3

TQ

n
(10)

are easily obtained. Putting together the other compo-
nents in the total P and ε, we arrive at

dP

dn

∣∣∣∣
S

=
2

5
TF

(
1 +

2

3
Q

)
+ n

d2V

dn2
+
dPth
dn

∣∣∣∣
S

dε

dn

∣∣∣∣
S

= m+
3

5
TF

(
1 +

2

3
Q

)
+
dV

dn
+
dεth
dn

∣∣∣∣
S

, (11)

where the first term in the first equation above and the
second term in the second represent the T = 0 results of
the kinetic parts. These results allow us to appreciate
how c2s is governed by physical quantities in special
circumstances.

(i) The case when V = 0: When the thermal contribu-
tions can be regarded as small (S ≤ 1) compared to their
zero temperature counterparts,

c2s '
2

5

TF
m

(
1 +

2

3
Q

)
(12)

=
1

5

( pF
m∗

)2 m∗
m

(
1 +

2

3
Q

)
. (13)

The physical scale of cs here is the velocity at the
Fermi surface vF = pF /m

∗ modified by m∗/m and
its logarithmic derivative with respect to density con-
tained in Q. For m∗(n) = m, the ideal gas value of
c2s = (1/3)(pF /m)2 is recovered from Eq. (13).
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(ii) Density-dependent V (n): In order to achieve equi-
librium at the empirical nuclear density n0 ' 0.16 fm−3

with the empirical energy per particle of' −16 MeV, and
to support the precisely determined neutron star masses
of 2M�’s, models of dense nuclear matter have employed
contributions from beyond 2-body forces in V (n) that
vary as n2+ε. If these contributions persist at densities
n � n0, and dominate over the other contributions in-
cluding the thermal parts (S ≤ 1), causality is bound to
be violated. Consider, for example, V (n) ∝ nσ for which(cs

c

)2
' n d2V/dn2

dV/dn
= σ − 1 , (14)

which for σ ≥ 2 renders (cs/c)
2 ≥ 1. Notice that the sign

of V (n), i.e., attractive or repulsive, drops out in this
result. A combination of attractive and repulsive terms
with different magnitudes and power-law behaviors in
n serves only to delay the onset of superluminal behavior.

(iii) Additional contributions to the density-dependent
V (n): As apparent from Eq. (11), both the S = 0 and
S 6= 0 terms contribute in determining the magnitude
of (cs/c)

2. The interplay between these terms is also
determined by m∗(n) and its density derivatives as well
as by Q(n) and its derivatives. In Skyrme-like models
in which m∗/m = (1 + βn)−1 with β a constant, the
kinetic energy density, εkin ∝ n5/3(1 + βn), so that at
some high n the n8/3 term dominates causing the EOS
to become acausal. In some cases, acausality can set in at
lower densities for S 6= 0 than for S = 0. A quantitative
discussion of results from models with different behaviors
of m∗/m vs n will be deferred to Sec. V.

Nondegenerate case

At zero temperature (entropy), cs is a function of just
the density n. As we show below, the same is true for
nonrelativistic models with only contact interactions in
the limit of very large entropy/temperature, i.e., the ex-
treme nondegenerate limit. Here, the entropy is given by
the Sackur-Tetrode relation

S =
5

2
− ln

[(
2π~2

m∗T

)3/2
n

2

]
, (15)

where m∗ is the density-dependent Landau effective
mass. Solving Eq. (15) for the temperature, we get

T =
2π~2

m∗

(n
2

)2/3
exp

(
2

3
S − 5

3

)
,

∂T

∂n

∣∣∣∣
S

=
2

3

TQ

n
,

(16)

with Q given by Eq. (7). In this case, thermal effects
dominate over cold matter contributions (exclusive of
rest-mass) to thermodynamic properties. Consequently,(cs

c

)2 S�1−→
∂Pth/∂n|S

m+ ∂εth/∂n|S
. (17)

For nonrelativistic contact-interaction models in the non-
degenerate limit,

Pth = nTQ ,
∂Pth
dn

∣∣∣∣
S

= TQ

(
1 +

2

3
Q+

n

Q

dQ

dn

)
(18)

εth =
3

2
nT ,

∂εth
dn

∣∣∣∣
S

=
3

2
T

(
1 +

2

3
Q

)
. (19)

When the mass term dominates over the thermal part in
the denominator of Eq. (17), and Q ' 1 as is the case
when the effects of interactions are small,(cs

c

)2 S�1−→ 5

3

T

m
(20)

which is the result for one-component classical gases. The
physical scale of cs here is the thermal velocity of par-
ticles. In the case that the thermal component of the
denominator in Eq. (17) dominates over the mass,

(cs
c

)2 S�1−→ 2

3

Q
(

1 + 2
3Q+ n

Q
dQ
dn

)
1 + 2

3Q
, (21)

that is, the temperature/entropy dependence drops out
with the result (cs/c)

2 ' 2/3 for Q ' 1. It must be
emphasized that this result is obtained only at very high
temperatures for which the use of nonrelativistic consid-
erations becomes questionable.

Models with finite-range forces

Finite-range forces introduce momentum dependences
(other than p2) to the single-particle potential which in
turn cause it to acquire a temperature dependence [52].
The effects of these interactions can still be collected in
a density- and temperature-dependent function m∗(n, T )
which, however, can no longer be identified with the Lan-
dau effective mass. Nevertheless, if this T -dependence is
weak, then

m∗(n, T ) ' m∗(n, 0) + T
∂m∗(n, T )

∂T

∣∣∣∣
T=0

+ . . . (22)

≡ m∗(1 + bT ) (23)

where m∗ = m∗(n, 0) is the Landau mass and b(n) ≡
(1/m∗) ∂m∗(n, T )/∂T |T=0 such that bT � 1. Combin-
ing Eq. (15) with m∗ → m∗(n, T ) and Eq. (23), and
expanding in a Taylor series for bT � 1, we find

S ' 5

2
− ln

[(
2π~2

m∗T

)3/2
n

2

]
+

3bT

2
. (24)

Perturbative inversion of Eq. (24) yields, in the second
recursion,

T ' 2π~2

m∗

(n
2

)2/3
exp

[
2

3
S − 5

3

− 2π~2

m∗
b
(n

2

)2/3
exp

(
2

3
S − 5

3

)]
. (25)
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We now substitute 2π~2(n/2)2/3 exp(2S/3 − 5/3) by
m∗(n, T ), then replace m∗(n, T ) by m∗(1 + bT ) to get

T ' 2π~2

m∗

(n
2

)2/3
exp

[
2

3
S − 5

3
− bTm∗(n, T )

m∗

]
' 2π~2

m∗

(n
2

)2/3
exp

[
2

3
S − 5

3
− bT (1 + bT )

]
. (26)

Now dropping b2T 2 and expanding the exponential for
small bT ,

T
bT�1
S�1−→ 2π~2

m∗

(n
2

)2/3
exp

(
2

3
S − 5

3

)
. (27)

This result shows that in the extreme nondegenerate
limit, finite-range force models with weak T -dependence
in their m∗’s will behave similarly to zero-range models
and thus they will also obey Eq. (21).

III. IMPLEMENTATION OF CAUSALITY

The general approach described below is more conve-
niently applied in the variables (n, S) that are natural to
the speed of sound as opposed to (n, T ) commonly used
in tabulations of EOS properties. Working with the for-
mer set allows us to carry out all calculations analytically
circumventing the need for numerical integration.

Causality is preserved as long as the speed of sound cs
is less than or equal to the speed of light c:(cs

c

)2
≡ β =

∂P

∂ε

∣∣∣∣
S

=
∂P

∂n

∣∣∣∣
S

(
∂ε

∂n

∣∣∣∣
S

)−1
≤ 1. (28)

Here the total energy density ε is inclusive of the internal
energy density ε and the rest-mass energy density mn:

ε = ε+mn . (29)

By making use of

P = n2
∂(ε/n)

∂n

∣∣∣∣
S,N

= n
∂ε

∂n

∣∣∣∣
S,N

− ε (30)

and

∂P

∂n

∣∣∣∣
S,N

= n
∂2ε

∂n2

∣∣∣∣
S,N

(31)

where N is the number of nucleons in the system, we
write Eq. (28) as a second-order differential equation
(DE)

∂2ε

∂n2

∣∣∣∣
S,N

− β

n

∂ε

∂n

∣∣∣∣
S,N

=
βm

n
. (32)

Thus, in addition to entropy conservation, in our ap-
proach we must impose the condition of baryon number
conservation and, in the case of multicomponent systems,

fixed composition. Equation (32), can be reduced to a
first-order DE

∂ξ

∂n

∣∣∣∣
S,N

− β

n
ξ =

βm

n
(33)

by setting

ξ =
∂ε

∂n

∣∣∣∣
S,N

= µ+ TS . (34)

Note that the combination of Eqs. (30) and (34) yields
the thermodynamic identity ε + P = nµ + Ts. The so-
lution of Eq. (33) requires that β is mapped to some
function βf (n, S) ≤ 1 ∀(n, S). This implies that the
causality-fixing density nf obtained from

β(n, S)− βf (n, S) = 0 (35)

is an entropy-dependent function.
The approach of cs to c depends on the choice of

βf (n, S). For our illustrative calculations below, some
choices of βf (n, S) are considered.

Density-independent βf (n, S)

For such a constant βf , the integrating factor corre-
sponding to Eq. (33) is given by

f(n) = exp

(
−βf

∫
dn

n

)
= n−βf , (36)

and has the property

d

dn
[n−βf ξ] = n−βf

βfm

n
. (37)

Integration of Eq. (37) leads to

ξ =
∂ε

∂n

∣∣∣∣
S,N

= −m+ c1n
βf , (38)

where c1 is a constant of integration. A second integra-
tion results in

ε = −mn+
c1n

βf+1

βf + 1
+ c2 (39)

with another constant of integration c2, and therefore

P = c1
βf

βf + 1
nβf+1 − c2. (40)

The constants c1 and c2 are determined by the boundary
conditions

ε[nf (S), S] = εf (S) (41)

P [nf (S), S] = Pf (S), (42)

where nf is the causality fixing density, defined by Eq.
(35). The functional forms of ε(n, S) and P (n, S) are
those obtained from the original Hamiltonian density.
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From Eqs. (41) and (42), we get

c1 =
εf +mnf + Pf

n
βf+1
a

(43)

c2 =
1

βf + 1
[βf (εf +mnf )− Pf ]. (44)

Thus the energy density and the pressure are given by

ε = −mn+
(εf +mnf + Pf )

βf + 1

(
n

nf

)βf+1

+
βf (εf +mnf )− Pf

βf + 1
(45)

P =
βf

βf + 1
(εf +mnf + Pf )

(
n

nf

)βf+1

− βf (εf +mnf )− Pf
βf + 1

. (46)

The chemical potential µ is straightforwardly obtained
from µ = ξ − TS. Equations (45) and (46) can be used
for n ≥ nf with a fixed βf ≤ 1 so that causality is
never violated and such that the thermodynamic iden-
tity is obeyed thus ensuring thermodynamic consistency.
At this stage, we must reiterate the point that ε and P
as given in Eqs. (45) and (46) are functions of (n, S).
The switch to (n, T ) is easily achieved by setting

ε(n, T ) = ε[n, S(n, T )] (47)

P (n, T ) = P [n, S(n, T )] (48)

β(n, T ) = β[n, S(n, T )]. (49)

Note that the procedure outlined above for T 6= 0
closely mirrors that for T = 0 described in Appendix
E of our earlier work in Ref. [18], but with the use of
appropriate quantities at finite T . The method outlined
in Ref. [18] for T 6= 0 was flawed in that Eq. (E18) there
defining the chemical potential lacked a term involving
TS, that is, µ was taken to be ∂ε/∂n|S,N instead of the
correct ∂ε/∂n|S,V where n = N/V . Equation (34) in
this work corrects that error. Moreover, the assumption
that CP /CV = constant was made, which is only true in
the degenerate limit (S ≤ 1) where CP /CV ' 1.

Density-dependent βf (n, S)

We emphasize that βf need not be a constant. Con-
sider, for the purposes of illustration, the function

βf (n, S) = a1 +
a2n

a3

1 + a4na3
(50)

where the ai are real numbers; a1 and a3 are unitless
while a2 and a4 have units fm3a3 . For this βf to approach
1 from below they must all be positive and a1+a2/a4 = 1;
a1 > 0 also ensures that Eq. (35) always has a solution.
Moreover, if the fraction a2/(a3a4) is an integer, then ξ,
ε, and P are relatively simple functions of the density.

For example, if we choose a1 = 1/2, a2 = 2, a3 = 1,
and a4 = 4 then

βf =
1

2
+

2n

1 + 4n
(51)

ξ = −m+ c1n
1/2(1 + 4n)1/2 (52)

ε = −mn+
c1
16

[
n1/2(1 + 4n)1/2(1 + 8n)

− 1

2
sinh−1(2n1/2)

]
+ c2 (53)

P = − c1
16

[
n1/2(1 + 4n)1/2(1− 8n)

− 1

2
sinh−1(2n1/2)

]
− c2 . (54)

For the choice a1 = 4/5, a2 = 2, a3 = 1/5, and a4 = 10,
we get

βf =
4

5
+

2n1/5

1 + 10n1/5
(55)

ξ = −m+ c1(n4/5 + 10n) (56)

ε = −mn+
5

9
c1(n9/5 + 9n2) + c2 (57)

P = c1

(
4

9
n9/5 + 5n2

)
− c2. (58)

Of course, many other possibilities exist for the ai above,
as well as for the generic functional form of βf .

IV. NUMERICAL NOTES

Here we describe the procedure to calculate (cs/c)
2

for the Hamiltonian density in Eq. (5) for conditions of
arbitrary degeneracy. The analytical results obtained in
Sec. II for the degenerate and nondegenerate cases serve
as a check for the results obtained in this section. To
calculate the finite-entropy properties corresponding to
Eq. (5), we employ the Johns, Ellis and Lattimer (JEL)
[55] scheme in which the Fermi-Dirac integrals

Fα =

∫ ∞
0

xα

ex−ψ + 1
dx (59)

are expressed as algebraic functions of a single parameter
f related to the entropy via

S =
5

3

F3/2(f)

F1/2(f)
− ψ(f) (60)
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where [18]

F3/2(f) =
3f(1 + f)1/4−M

2
√

2

M∑
m=0

pmf
m (61)

F1/2(f) =
f(1 + f)1/4−M√

2(1 + f/a)

M∑
m=0

pmf
m

×
[
1 +m−

(
M − 1

4

)
f

1 + f

]
(62)

ψ(f) =
µ(n, S)− V (n)

T (n, S)

= 2(1 + f/a)1/2 + ln

[
(1 + f/a)1/2 − 1

(1 + f/a)1/2 + 1

]
.(63)

The values of the coefficients appearing in Eqs. (61)-
(63) are a = 0.433, M = 3, p0 = 5.34689, p1 = 16.8441,
p2 = 17.4708, and p3 = 6.07364. We note that the Fα are
connected via their derivatives with respect to ψ accord-
ing to ∂Fα/∂ψ = αF(α−1). The JEL scheme enables a
rapid and an accurate evaluation of the thermodynamic
quantities preserving thermodynamic consistency.

The kinetic energy density τ and the number density
n are related to F3/2 and F1/2, respectively:

τ(n, S) =
γ

2π2

[
2m∗(n)T (n, S)

~2

]5/2
F3/2[f(S)] (64)

n =
γ

2π2

[
2m∗(n)T (n, S)

~2

]3/2
F1/2[f(S)] , (65)

where γ = 1(2) for PNM(SNM) and f(S) is the solution
of Eq. (60). From Eq. (65), it follows that

T (n, S) =

(
π2~3

γ
√

2

)2/3
n2/3

m∗(n)

1

F
2/3
1/2 [f(S)]

(66)

and

∂T (n, S)

∂n

∣∣∣∣
S

=
2Q(n)

3n
T (n, S) (67)

with Q(n) given by Eq. (7). The total energy density is
given by

ε(n, S) = H(n, S) +mn (68)

and thus

∂ε

∂n

∣∣∣∣
S

=
5

3n

~2

2

τ(n, S)

m∗(n)

[
1− 3n

5m∗
dm∗

dn

]
+
dV

dn
+m. (69)

The pressure is obtained from

P (n, S) = n
∂ε

∂n

∣∣∣∣
S

− ε(n, S) (70)

=
2

3

~2

2

Q(n)

m∗(n)
τ(n, S) + n

dV

dn
− V (n) (71)

and therefore

∂P

∂n

∣∣∣∣
S

= n
d2V

dn2
+

10

9n

~2

2

Q(n)

m∗(n)
τ(n, S)

×
[
1− 3n

5m∗(n)

dm∗

dn
+

3n

5Q(n)

dQ

dn

]
. (72)

In the causality-fixing regime [n ≥ nf (S)], Eqs. (45)
and (46) imply

∂ε

∂n

∣∣∣∣
S

=
∂ε

∂n

∣∣∣∣
S

+m =
(εf +mnf + Pf )

nf

(
n

nf

)βf

(73)

∂P

∂n

∣∣∣∣
S

=
βf
nf

(εf +mnf + Pf )

(
n

nf

)βf

. (74)

Correspondingly, (cs/c)
2 = βf as indicated earlier.

For the conversion of ε, P , and cs to the (n, T ) vari-
ables, we must first express the entropy in terms of n and
T . This is accomplished by solving

n =
γ

2π2

[
2m∗(n)T

~2

]3/2
F1/2(f) (75)

for f(n, T ) which is then used as input in the functions
that appear in Eq. (60).

V. RESULTS

In this section, we present results pertaining to the
speed of sound for the PNM models of APR [18, 47],
LS [45], and SLy4 [46] and the alterations our causality-
enforcing scheme causes to the properties of the neutron
stars in their maximum-mass configurations. This config-
uration reaches the largest central density and therefore
it is the setting where the effects of causality implemen-
tation will be most apparent. Our results also illustrate
how various thermodynamic functions are modified by
this approach in the case of PNM for the EOS of APR.

Figure 1 shows the squared speed of sound of the three
models for PNM for different values of the entropy. Re-
sults for APR and LS are qualitatively similar in that
for densities lower than a certain density nX , the higher-
entropy curves lie higher whereas the situation is reversed
for densities n > nX . Consequently, causality for finite
entropies (temperatures) is violated at densities that are
higher than those at zero temperature for these two mod-
els. The intersection point at intermediate densities is
common to all curves (for each model) and thus indepen-
dent of the entropy. Its value is obtained by solving(cs

c

)2
S=0
−
(cs
c

)2
S�1

= 0 , (76)

where the first term refers to the squared speed of sound
in cold matter and the second term is given by Eq. (21).

The speed of sound of SLy4 on the other hand, is
a monotonically increasing function of the entropy and
hence the causality-violating density na decreases with
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FIG. 1. Squared speed of sound vs density in PNM for the models of APR (a), LS (b), and SLy4 (c) at fixed entropy.

increasing entropy. The na for the three models at S=0,
3, and 5 as well as the fixed points nX of APR and LS
are given in Table I.

Property APR LS SLy4
na,0(fm−3) 0.870(0.841) 1.112(1.092) 1.181(1.298)
na,3(fm−3) 0.914(0.849) 1.232(1.165) 0.608(0.814)
na,5(fm−3) 2.710(0.994) 1.774(1.478) 0.307(0.454)
nX(fm−3) 0.809(0.830) 0.671(0.708) N/A

TABLE I. Densities at which causality is violated at S=0, 3,
and 5 for APR, LS, and SLy4 in their PNM(SNM) configura-
tion and intersection density (where applicable).

The differences in the results of c2s for the three models
are related to the behaviors of the effective masses and
their derivatives with respect to density as reflected in the
function Q(n) and its derivative with respect to density.
Figure 2 shows results of m∗/m and Q(n) vs density. For
the LS model here, Q(n) = 1 as m∗(n) = m, the vacuum
nucleon mass. For the APR and SLy4 models, m∗/m
decreases monotonically with density, the variation in the
latter case being substantially more than for the former.
These variations are in turn reflected in the behaviors of
Q(n) with n for these two models. These results clearly
indicate the crucial role of the density dependence of the
effective mass on the speed of sound in hot, dense matter.

The physical reason why the (cs/c)
2 curves for differ-

ent entropies intersect at an apparently unique density
nX for the APR and LS models, but not for the SLy4
model may be understood as follows. As shown in Eq.
(21), the speed of sound of non relativistic models with
only contact interactions is independent of S or T not
only for cold matter (S, T/TF << 1), but also in the ex-
treme nondegenerate case (S, T/TF >> 1). The curves
of (cs/c)

2 corresponding to these two limits establish the
boundaries for the values that (cs/c)

2 can attain as a
function of (n, S) and (n, T ). Thus, if this area is re-
duced to a point (i.e. when cs(n, 0) and cs(n, S >> 1)
intersect) then all other curves must also pass through
this point (no curve of intermediate T or S is allowed to
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FIG. 2. The effective mass ratio m∗/m and the quantity
Q = 1 − (3n/2m∗)dm∗/dn vs density in PNM for the APR,
LS and SLy4 models.

exist above or below the two limits).

Models with finite-range interactions appear to have a
fixed point as well (see our discussion later) but this is
not necessarily the case; it is just the range of intersec-
tion densities is rather narrow, especially in the (n, S)
variables. Nevertheless, such an intersection point does
not have to exist, that is, Eq. (76) does not necessar-
ily admit a solution. Whether or not this is the case is
a question of how the model-specific parametrization af-
fects the density-dependence of m∗/m and Q. If these
quantities decrease relatively slowly as a function of den-
sity, as in the APR and LS models, then a fixed point is
likely to exist. Such is not the case for the SLy4 model
in which a rapid variation of m∗/m and Q occurs.

Tables II-IV list the maximum mass and the corre-
sponding radius and central number density nc, total en-
ergy density εc, and pressure Pc for different values of
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βf at T = 0. The last column in each table displays
these quantities as obtained using the original causality-
violating EOS. As βf is increased toward 1, Mmax, nc, εc,
and Pc approach their pre-implementation values from
below whereas Rmax does so from above. Changes to
these quantities (compared to pre-implementation) are
small; about 10% even for βf = 0.5, with the notable
exception of the central pressure Pc which nearly halves.
For LS, the βf = 0.9 star is identical to the original be-
cause nf (βf = 0.9) exceeds the central density of the
star. A similar consideration applies for SLy4 for which
nf (βf = 0.9) is relatively close to nc.

H
HHHHProp.

βf 0.5 0.7 0.9 Not Fixed

nf (fm−3) 0.547 0.667 0.796 N/A
Mmax(M�) 2.00 2.13 2.18 2.20
Rmax(km) 10.61 10.46 10.31 10.16
nc(fm

−3) 1.107 1.096 1.101 1.111
εc(MeV fm−3) 1398.6 1433.3 1472.0 1507.0
Pc(MeV fm−3) 516.0 691.9 851.1 1005.1

TABLE II. PNM neutron star properties for the APR model
for different values of βf at T = 0.

H
HHHHProp.

βf 0.5 0.7 0.9 Not Fixed

nf (fm−3) 0.515 0.705 0.951 N/A
Mmax(M�) 2.23 2.29 2.30 2.30
Rmax(km) 12.03 11.70 11.58 11.58
nc(fm

−3) 0.875 0.906 0.915 0.915
εc(MeV fm−3) 1101.6 1175.9 1197.7 1197.7
Pc(MeV fm−3) 398.0 534.0 584.1 584.1

TABLE III. Same as Table II, but for the LS model.

HHH
HHProp.
βf 0.5 0.7 0.9 Not Fixed

nf (fm−3) 0.634 0.825 1.048 N/A
Mmax(M�) 1.95 2.03 2.05 2.05
Rmax(km) 10.46 10.20 10.03 10.00
nc(fm

−3) 1.150 1.173 1.195 1.196
εc(MeV fm−3) 1454.2 1534.4 1590.7 1594.0
Pc(MeV fm−3) 530.0 717.1 852.6 872.1

TABLE IV. Same as Table II, but for the SLy4 model.

Figure 3 shows how the squared speed of sound of APR
(PNM) is altered by our method as a function of the den-
sity for fixed entropy (left panel) and for fixed tempera-
ture (right panel) for a fixed βf = 0.9. That the different
curves appear to be causally fixed at the same density
is a consequence of the (accidental) fact that, for APR,
nf (βf = 0.9) ' nX . As a caution we point out that the
problematic implementation of [18] will appear correct if
one chooses βf = βf (nX).

A notable feature of the results in Fig. 3 is that
(cs/c)

2 = 0.9 for all n ≥ na, the density at which acausal-
ity sets in for the APR model. With a density-dependent
βf , a gradual approach of (cs/c)

2 to 1 may be achieved.
Figure 4 shows results with the density-dependent βf
given by Eq. (51). As noted earlier, many other pos-
sibilities also exit as long as one can find a tractable,
preferably analytical, solution to Eq. (33).

The implementation of causality introduces modifica-
tions to the total energy density ε, pressure P , chemical
potential µ, the specific heats CV and CP , and the adia-
batic index ΓS which are exhibited in Figs. 5-10, respec-
tively. All of these results correspond to βf = 0.9. These
modifications occur at high densities and are more pro-
nounced for quantities (P, µ, ΓS and CP ) that involve
density derivatives of the energy. This observation is in
accordance with that made earlier regarding the central
pressure of neutron stars. Results corresponding to Eq.
(51) are nearly identical and are not shown here.
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FIG. 3. Squared speed of sound in PNM for the APR model
with (solid curves) and without (dotted curves) causality en-
forced with βF = 0.9 for fixed entropy (a) and temperature
(b) vs density.

Comparison with finite-range force models

Here we contrast the above results for (cs/c)
2 with

those of a nonrelativistic potential model with finite-
range forces at finite temperature studied in detail in Ref.
[5], where results for (cs/c)

2 were, however, not shown.
For PNM, the energy density in this model is

ε = 2
∫ d3k

(2π)3
~2k2

2m
f +Au2 +

Buσ

1 +B′uσ−1

+ u
∑
i=1,2

Ci 2

∫
d3k

(2π)3
1

[1 + (k/Λi)2]
f , (77)
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density.

where u = n/ns, f is the usual Fermi-Dirac dis-
tribution function at finite T , and the parameters
A, B, σ, Ci, B

′, and Λi are determined from constraints
provided by the empirical properties of nuclear matter at
ns. Referred to as BPAL33 in Ref. [5], their numerical
values are: A = 1.627, B = 8.908, B′ = 0.422, C1 =

−106.7 MeV, C2 = 6.544 MeV, Λ1 = 1.5~k(0)F , and Λ2 =

3.0~k(0)F with k
(0)
F = (3π2ns/2)1/3. Note the redefinition

of parameters here from those in the original reference.
The energy density in Eq. (77) differs from that of zero-
range Skyrme-like models including the APR model in
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FIG. 6. Pressure of PNM for the APR model with (solid
curves) and without (dotted curves) causality enforced with
βf = 0.9 for fixed entropy (a) and temperature (b) vs density.
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FIG. 7. Chemical potential in PNM for the APR model with
(solid curves) and without (dotted curves) causality enforced
with βf = 0.9 for fixed entropy (a) and temperature (b) vs
density.

two respects. First, the term encapsulating the influence
of higher-than two body forces is such that it does not
lead to an acausal behavior at T = 0. Secondly, the
finite-range terms lead to an effective mass

m∗

m
=

1 +
∑
i=1,2

αiu

(
1 +

(2u)2/3

R2
i

)−1 , (78)

where Ri = Λi/(~k(0)F ), that saturates for n >> ns as
shown in Fig. 11. As a result, Q < 1.2 and dQ/dn < 0 for
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n > ns which implies that cs < c in the limit T →∞ [Eq.
(21)]. This means that cs < c for all T being that the
possible paths that cs can traverse in (n, T ) are bounded
by cs(T = 0) and cs(T → ∞). In closing this section
we note that, for BPAL33, the intersection density nX =
0.853 fm−3.

To preserve causality, two lessons, of much value to
first principle microscopic calculations hot and dense
matter, are learned from the results above. First,
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FIG. 10. Adiabatic index in PNM for the APR model with
(solid curves) and without (dotted curves) causality enforced
with βf = 0.9 for fixed entropy (a) and temperature (b) vs
density.
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Q = 1−(3n/2m∗)dm∗/dn vs density in PNM for the BPAL33
model.

contributions from higher than two-body forces must be
screened at high density at the T = 0 level. Secondly,
the nucleon effective mass, which controls thermal
effects, must not rapidly decrease with density as in
some Skyrme-like models that employ only contact
interactions. The use of finite-range forces (as in first
principle calculations of dense matter), which tends
to saturate the nucleon effective mass, mitigates the
influence of thermal effects in making EOS’s acausal.
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VI. SUMMARY AND CONCLUSIONS

Treatments of hot, dense matter starting from a non-
relativistic Hamiltonian or Lagrangian density lead to su-
perluminal behavior at high density as reflected in the
adiabatic speed of sound exceeding that of light. This
behavior will likely persist for applications in astrophys-
ical phenomena even if the many-body problem can be
solved exactly at the nonrelativistic level because Lorentz
or Poincaré invariance is absent in such a treatment.

In this work, we have proposed a method by which non-
relativistic EOS’s that become acausal at high densities
can be modified so that they remain causal at all densities
and entropies/temperatures. This approach is easily im-
plemented and computationally straightforward; its most
important feature is thermodynamic consistency. Illus-
trative calculations are presented both for a fixed value
of the speed of sound cs in the “causality-enforcement”
region as well as for continuous functions of density and
entropy per baryon (n, S) which approach c asymptoti-

cally from below.
As examples, we have explored consequences of enforc-

ing causality to the attributes of maximum-mass neutron
star configurations in pure neutron matter for the APR,
LS, and SLy4 models. The EOS functions of the APR
model are presented for entropies per baryon of relevance
to astrophysical simulations before and after enforcing
causality. Our principal findings are summarized below.

Insofar as our choice for the “new” speed of sound cs is
close to c, we find that both cold and finite-T properties
associated with the energy density, ε, and the specific
heat at constant volume, CV , are relatively weakly af-
fected after enforcing causality. However, properties such
as the pressure, P , the chemical potential, µ, and the spe-
cific heat at constant pressure, CP , which are related to
density derivatives of the energy exhibit larger variations
compared to ε and CV . At T = 0, the basic characteris-
tics of PNM-NS configurations such as their central den-
sity, nc, the maximum mass, Mmax, and the radius of the
maximum configuration, Rmax, are not greatly affected
by enforcing causality. However, for models (such as
SLy4) in which the effective nucleon mass drops rapidly
with density thermal effects cause cs to exceed c at den-
sities significantly lower than at T = 0. An interesting
finding is that in the extreme nondegenerate limit, cs
for models with contact interactions such as those con-
sidered here decouples from entropy/temperature and is
instead determined by the Landau effective mass and its
derivatives with respect to density.

Finally, our study of a schematic potential model illus-
trates that in first principle calculations of hot and dense
matter, repulsive contributions from higher than two-
body interactions must be screened and effective masses
determined by finite-range forces must saturate at high
density to preserve causality.
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