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Using the test-particle method to solve the transport equation derived from the Nambu-Jona-
Lasino (NJL) model, we study how phase separation occurs in an expanding quark matter like
that in a heavy ion collision. To test our method, we first investigate the growth rates of unstable
modes of quark matter in a static cubic box and find them to agree with the analytical results
that were previously obtained using the linear response theory. In this case, we also study the
higher-order scaled density moments in the quark matter, which have values of one for a uniform
density distribution or a distribution where the non-zero density regions all have same value, and
they are found to increase with time and saturate at values significantly larger than one after
the phase separation. The skewness of the quark number event-by-event distribution in a small
sub-volume of the system is also found to increase, but this feature disappears if the sub-volume
is large. For the expanding quark matter, two cases are considered with one using a blast-wave
model for the initial conditions and the other using initial conditions from a mulple-phase transport
(AMPT) model. In both cases, we find the expansion of the quark matter is slowed down by
the presence of a first-order phase transition. Also, density clumps appear in the system and the
momentum distribution of partons becomes anisotropic, which can be characterized by large scaled
density moments and non-vanishing anisotropic elliptic and quadrupolar flows, respectively. The
large density fluctuations further lead to an enhancement in the dilepton yield. In the case with
the AMPT initial conditions, the presence of a first-order phase transition also results in a narrower
distribution of partons in rapidity. These effects of density fluctuations can be regarded as possible
signals for a first-order phase transition that occurs in the baryon-rich quark matter formed in
relativistic heavy ion collisions.

I. INTRODUCTION

Studying the properties of baryon-rich quark-gluon
plasma (QGP) is the main focus of the beam energy scan
(BES) experiments [1–5] at the Relativistic Heavy Ion
Collider (RHIC) as well as at the future Facility for An-
tiproton and Ion Research (FAIR). These experiments
are expected to shed light on whether the phase transi-
tion from the baryon-rich QGP to the hadronic matter
is a first-order one and the location of the critical end
point in the QCD phase diagram if the phase transition
is first-order. To help understand what could happen in
a baryon-rich QGP, we have recently used the Polyakov-
Nambu-Jona-Lasinia (PNJL) model to study its spinodal
instability [6]. We have found via the linear response
theory that the spinodal boundary in the temperature
and density plane of the QCD phase diagram shrinks
with increasing wave number of the unstable mode and
is also reduced in the absence of the Polyakov loop. In
the small wave number or long wavelength limit, the spin-
odal boundary coincides with that determined from the
isothermal spinodal instability in the thermodynamic ap-
proach. We have further found that the quark vector in-
teraction suppresses unstable modes of all wave numbers.
For the wave number dependence of the growth rate of an
unstable mode, it initially increases with the wave num-

∗
Electronic address: lifengphysics@gamil.com

†Electronic address: ko@comp.tamu.edu

ber but decreases when the wave number is large. For the
collisional effect from quark scattering, we have included
it via the linearized Boltzmann equation and found it to
decrease the growth rates of unstable modes of all wave
numbers. In the present study, we continue the above
work by investigating how unstable modes would grow if
one goes beyond the linear response or small amplitude
limit. This is carried out by using the transport equation
derived from the NJL model [7–9] to study the time evo-
lution of density fluctuations in a confined as well as in an
expanding quark matter. Specifically, we study the time
evolution of higher-order density moments in the quark
matter, the distribution of quark number in a sub-volume
of the quark matter, the quark momentum anisotropy,
and dilepton production rate from quark-antiquark an-
nihilation. As shown below, some of these observables
could serve as signatures for a first-order phase transition
of the baryon-rich quark matter produced in heavy ion
collisions. We note that there have already been a num-
ber of studies on the spinodal instability of quark matter
in heavy ion collisions based on either schematic mod-
els or the hydrodynamic approach [10–14]. These studies
are, however, for quark matter near thermal equilibrium
and are thus different from the present study based on
the transport approach that can take into account the
non-equilibrium effect.
The paper is organized as follows: In the next section,

we give a brief review on the NJL model and the trans-
port equations based on its Lagrangian. The transport
equations are solved by the test-particle method in Sec-
tion III to study both the short and long time behavior
of the spinodal instability of quark matter in a periodic
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box. The same method is applied in Section IV to an ex-
panding quark matter to study how density fluctuations
are affected by the expansion of the system as in heavy
ion collisions. Finally, a summary is given in Section V.
In the Appendix, we describe in detail the effect due to
the finite grid size used in the numerical calculations on
the growth rate of unstable modes.

II. THE NJL MODEL AND THE TRANSPORT

MODEL

The NJL Lagrangian containing only the scalar inter-
action for three quark flavors has the form [15]:

LS
NJL = q̄(i 6 ∂ −m0)q +

GS

2

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λ
aq)2

]

−K
[

detf

(

q̄(1 + γ5)q

)

+ detf

(

q̄(1− γ5)q

)]

, (1)

where q = (u, d, s)T , m0 = diag(m0u,m0d,m0s) and λa

are the Gell-Mann matrices for a = 1, 2 · · ·8, with λ0

being the identity matrix multiplied by
√

2/3. The La-
grangian preserves U(1) × SU(Nf )L × SU(Nf )R sym-
metry but breaks the axial symmetry, which is broken in
QCD by the axial anomaly, by the Kobayashi-Masakawa-
t’Hooft (KMT) interaction given by the last term in Eq.
(1) [16]. The detf in this term denotes the determinant
in the flavor space [17], that is

detf (q̄Γq) =
∑

i,j,k

εijk(ūΓqi)(d̄Γqj)(s̄Γqk), (2)

where Γ denotes either a Dirac gamma or the identity
matrix. The determinantal term is responsible for ob-
taining the correct splitting in the masses of η and η′

mesons.
Because the NJL model is not renormalizable, a reg-

ularization scheme is required to remove infinities in
the momentum integrations. In this study, we assume
that all interactions are among quarks of 3-momenta
with magnitudes below the cutoff momentum Λ. Tak-
ing Λ = 0.6023 GeV, the values of the scalar coupling

GS and the KMT interaction K can be determined from
fitting the pion mass, the kaon mass, and the pion de-
cay constant, and their values are GSΛ

2 = 3.67, and
KΛ5 = 12.36 if the current quark masses are taken to be
m0u = m0d = 3.6 and m0s = 87 MeV [18].

A flavor-singlet vector interaction can be added to the
NJL Lagrangian as follows:

LV
NJL = −GV (q̄γ

µq)2, (3)

where the coupling strength GV is assumed to be inde-
pendent of the temperature T and the net quark chemical
potential µ. The value of GV affects the order of quark
matter phase transition. If GV is large, the first-order
phase transition induced by the attractive scalar interac-
tion could disappear [6]. In the present study, we treat it
as a parameter to change the equation of state of quark
matter.

For describing the quark matter produced in a heavy
ion collision, we use the Boltzmann (or transport) equa-
tions that can be derived from the NJL Lagrangian in
terms of the non-equilibrium Green’s functions for quarks
and antiqaurks [7], and they are:

∂X0fa(X,p) +
pi±

Ep±

∂Xifa(X,p)

−∂XiV S
a (X)

ma

Ep±

∂pi
fa(X,p)∓ ∂XiV V

0 (X)∂pi
fa(X,p)

∓∂XiV V
j (X)

pj±

Ep±

∂pi
fa(X,p) = C[fa], (4)

where fa(X,p) is the phase-space distribution function
of quarks or antiquarks of flavor a. In the above,
p± ≡ p ± VV is the kinetic momentum with the sub-
script + referring to quarks and − referring to anti-
quarks, V V

µ = −2GV

∑

a〈q̄γµq〉a is the vector potential,

and ma = m0a − V S
a is the effective quark mass with

V S
a = 2GS〈q̄q〉a + 2K〈q̄q〉b〈q̄q〉c being the scalar poten-

tial with a 6= b 6= c.

The right hand side of Eq.(4),

C[fa] ≡
∑

bcd

1

1 + δab

∫

d3pb

(2π)32Eb

d3pc

(2π)32Ec

d3pd

(2π)32Ed

(2π)4

2Ea
δ4(pa + pb − pc − pd)

×|Mab|2 [fcfd(1− fa)(1− fb)− fafb(1− fc)(1− fd)] , (5)

is the collisional term that describes the scatterings
among quarks and antiquarks, with the subscripts a, b,
c, and d denoting not only the flavor but also the spin,
color, and baryon charge (quark or anti-quark) of a par-

ton. The above equation can be solved using the test
particle method [19] by expressing the distribution func-
tion in terms of the density of test particles, whose equa-
tions of motions are determined by the left hand side of
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Eq.(4), and they are

ẋ =
p±

Ep±

, (6)

ṗ = ∇V S(x)
m

Ep±

±∇V V
0 (x)±∇V V

j (x)
pj±

Ep±

. (7)

The second equation in the above can also be written as

ṗ± = ∇V S(x)
m

Ep

∓ ẋ×B±E, (8)

where B = ∇ × VV is the strong magnetic field and
E = ∂tV

V +∇V S is the strong electric field.
Besides mean fields, test particles are also affected by

collisions, which can be treated geometrically by gener-
alizing the method of Ref. [20] to use the particle scat-
tering cross section σ in the quark matter frame to check
whether the impact parameter between two colliding par-
ticles is smaller than

√

σ/π and if they pass through each
other at the next time step during the evolution of the
system. For two particles of masses mA and mB, mo-
menta pA and pB, and energies EA and EB, this cross
section is related to the cross section in their center-of-
mass frame σCM(

√
s) with s = (pA + pB)

2 being the
square of their invariant mass, which is the one used in
Ref. [20], by

σ = σCM(
√
s)

√

(s− (mA +mB)2)(s− (mA −mB)2)

2EAEB |vA − vB|
.

(9)
In the above, vA = pA/EA and vB = pB/EB are
the velocities of the two particles. The 3-momenta of
the two particles after the scattering are taken to be
isotropic in their center-of-mass frame. Because of the
high quark baryon chemical potential considered in the
present study, the Pauli blocking effect on scatterings is
also included by checking the available phase space for
the final states [20]. We have checked that the above
treatment of parton scattering reproduces the expected
scattering rate evaluated via direct numerical integra-
tions.

III. QUARK MATTER IN A BOX

This section serves as a bridge between the studies of
the spinodal instabilities in the small and large ampli-
tude limits. Although the case of small amplitude has
already been discussed in Ref. [6], we can develop an in-
tuitive picture for how an initial sinusoidal fluctuation in
a baryon-rich quark matter grows during the early stage
of its time evolution from solving the Boltzmann equation
in the test particle method as discussed in the previous
section. For the large amplitude case, which also includes
the growth of instabilities during the late stage, solving
the Boltzamnn equation allows us to follow the whole
phase separation process to see how dense clusters de-
velop inside a box of initially uniform quark matter and

finally lead to the formation of large scale structures. It
also provides the possibility to find the appropriate ob-
servables to characterize these structures.

A. Small amplitude density fluctuations

FIG. 1: Time evolution of an unstable density mode of wave
number k = 0.31 fm−1.

We consider a quark matter that is confined in a cubic
box with periodic boundary conditions. The system is
prepared by distributing many test particles inside the
box according to the density of the system with their
momenta given by the Fermi-Dirac distribution at cer-
tain temperature. We then study the growth of density
fluctuations from an initial distribution with density and
temperature corresponding to that inside the spinodal re-
gion. Results obtained from solving the Boltzmann equa-
tion by following the classical motions of these test par-
ticles are compared with those obtained from the linear
response theory in Ref. [6]. Specifically, we introduce an
initial density fluctuation that has a sinusoidal oscillation
in the z direction, ρini = ρ0(1+0.1 sin(2πz/L)), where ρ0
is the average initial density and L is the length of the box
with L = 10, 20, 30, 40, 50 fm corresponding to wave
numbers k = 0.63, 0.31, 0.21, 0.16, 0.13 fm−1, respec-
tively. As an example, Fig. 1 shows how the amplitude of
the sinusoidal oscillation, which is obtained by averaging
over 100 events with each event having 1000 test parti-
cles for one physical particle, grows with time in the case
of L = 20 fm, the average density ρ0 = 0.7 fm−3, and
an initial temperature T = 45 MeV. Since the amplitude
of density fluctuation at early times is expected to grow
exponentially, it can be approximated by a hyperbolic
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FIG. 2: Growth rates extracted from numerically solving the
Boltzmann equation for unstable modes of wave numbers 0.13,
0.16, 0.21, 0.31, and 0.63 fm−1 for quark matter of density ρ =
0.7 fm−3 and temperature T = 45 MeV. Analytical results
from the linearized Boltzmann equation of Ref. [6] are shown
by solid and dashed curves for the cases with and without the
collision term, respectively.

cosine function of time, i.e.,

δρ(t) = δρ0cosh(Γkt), (10)

where Γk is the growth rate and can be extracted directly
from the numerical results, and they are shown in Fig. 2
by filled circles, where the error bars indicate the uncer-
tainty in fitting δρ(t) by Eq. (10). They are seen to agree
very well with those obtained from an analytical calcula-
tion based on the linearized Boltzmann equation [6] after
including the finite grid size effect as described in the Ap-
pendix, shown by the solid and dashed lines for the cases
with and without the collision term in the Boltzmann
equation, respectively.

B. Large amplitude density fluctuations

To study how density fluctuations emerge and grow,
we compare results from two calculations based on the
same initial conditions but with and without the spin-
odal instability in the equation of state. This is achieved
by introducing a vector interaction in the NJL model,
which is known to move the state of a quark matter from
inside the spinodal region to the outside if its strength
is sufficiently large [6]. For example, for a quark mat-
ter of temperature T0 = 20 MeV and net quark density
ρ0 = 0.5 fm−3, the spinodal region disappears if the vec-
tor couplingGV has the same value as the scalar coupling

FIG. 3: Time evolution of density distribution for a single
event in a quark matter of temperature T = 20 MeV and net
quark density nq = 0.5 fm−3 for the cases of GV = 0 (left
column) and GV = GS (right column).

FIG. 4: Cross sectional view of density distribution for a single
event on the z = 0 plane at t = 40 fm/c for the case GV = 0
with a first-order phase transition.

GS , although the state of the quark matter is well inside
the spinodal instability region for GV = 0.

Figure 3 shows the time evolution of the density distri-
bution in a box of size 20×20×20 fm3 for the two cases of
GV = 0 (left column) and GV = GS (right column) for
a single event, with the darker color denoting the high
density regions and the lighter color denoting the low
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density regions. Although the system is initially uniform
in space, some dense spots are present due to statistical
fluctuations as a result of finite number of test particles
used in the calculation. In the case of GV = GS with-
out a first-order phase transition or spinodal instability,
the density distribution in the box remains unchanged
with time as shown in the right column. This changes
dramatically, however, for the case of GV = 0. Due to
the spinodal instability, the initial dense spots act like
”seeds”, which create several small low pressure regions
that attract nearby partons and lead to the formation
of many clusters at t = 20 fm/c. These clusters further
grow in size by connecting with each other and form sta-
ble large structures at t = 40 fm/c, when the system
clearly separates into two phases of matter with one of
high density and the other of low density.

FIG. 5: Demonstration of the phase separation in the phase
diagram.

A clearer picture can be obtained by taking a cross sec-
tional view on the z = 0 plane as shown by the density
distribution contours in Fig. 4. The two phases are now
distinguishable with the dilute phase having a density of
about 0.25 fm−3 and the dense phase having a density
of about 1.0 fm−3. According to the phase diagram in
Fig. 5, the initial location of the system is indicated by
the open circle inside the spinodal region. During the
phase separation, the location of most part of the system
moves towards the left boundary of the spinodal insta-
bility region that has a density of about 0.2 fm−3, while
that of the small part of the system moves towards the
right boundary of the spinodal instability region that has
a density of about 0.9 fm−3, consistent with the picture
shown by the density evolution.

As the large scale structure forms, we expect the
density-density correlation ρ(r)ρ(0) to get stronger and
the correlation length to become larger. This is indeed
the case as shown in Fig. 6, where it is seen that both
the amplitude of the correlation function and the correla-
tion length determined from the average over 1000 events
increases with time.

The density fluctuations can also be quantified by the

FIG. 6: Time evolution of the density-density correlation
function, averaged over 1000 events, in a quark matter of
temperature T = 20 MeV and average net quark density
nq = 0.5 fm−3 inside the spinodal region.

scaled density moments 〈ρN 〉/〈ρ〉N [21], where

〈ρN 〉 ≡
∫

d3rρ(r)N+1

∫

d3rρ(r)
. (11)

This quantity is scale invariant since its value remains un-
changed under a scale transformation r → λr, where λ
can be any positive number. The scaled density moments
are all equal to one for a uniform density distribution or
a distribution where the non-zero density regions all have
same value but become greater than one as the density
fluctuations grow. In Fig. 7, we show by dotted, dashed,
and solid lines the event averaged scaled density moments
for N = 2, 4 and 6, respectively. Our results show that
the scaled moments increase during the phase separation
and reach their saturated values at about t = 40 fm/c,
when the phase separation almost ends. Also, moments
with larger N increase faster and saturate at larger val-
ues. The final saturation values can be estimated as fol-
lows. For a system of an initial density ρ0 that separates
into two phases of density ρ1 and ρ2 with volumes V1 and
V2, respectively, the scaled density moments are then

〈ρN 〉
〈ρ〉N =

ρN+1
1 V1 + ρN+1

2 V2

(ρ21V1 + ρ22V2)
N
/ (ρ1V1 + ρ2V2)

N−1
. (12)

Using the condition of particle number conservation

ρ1V1 + ρ2V2 = ρ0(V1 + V2), (13)

the scaled density moments after the phase separation is
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FIG. 7: Time evolution of the scaled density moments, ob-
tained by averaging over 1000 events, in a quark matter of
temperature T = 20 MeV and average net quark density
nq = 0.5 fm−3 inside the spinodal region.

thus

〈ρN 〉
〈ρ〉N =

[ρN+1
1 (ρ2 − ρ0) + ρN+1

2 (ρ0 − ρ1)][ρ0(ρ2 − ρ1)]
N−1

[ρ21(ρ2 − ρ0) + ρ22(ρ0 − ρ1)]N
.

(14)
For our case of ρ0 = 0.5 fm−3, ρ1 ≈ 0.25 fm−3, and ρ2 ≈
1.0 fm−3, we have 〈ρ2〉/〈ρ〉2 ≈ 1.22,〈ρ4〉/〈ρ〉4 ≈ 2.11, and
〈ρ6〉/〈ρ〉6 ≈ 3.75, which are close to the final saturation
values shown in Fig. 7.
Other quantities of interest are the skewness and kur-

tosis of the particle multiplicity distribution, which were
proposed as possible signals for the critical phenom-
ena [22] and have been studied in the beam energy scan
experiments at RHIC [1, 2]. They are defined as follows:

skewness ≡
〈δN3

q 〉
〈δN2

q 〉3/2
,

kurtosis ≡
〈δN4

q 〉
〈δN2

q 〉2
− 3. (15)

Both quantities characterize how far an event-by-event
multiplicity distribution deviates from a normal distribu-
tion. A positive skewness means a long tail on the right
side of the distribution, i.e., most events have the net
quark number below the mean value, while some events
have an extreme high net quark number. A positive kur-
tosis implies a sharper peak than the peak in a normal
distribution, while a negative kurtosis corresponds to a
flatter one. Theoretical calculations based on the grand
canonical picture predict that both quantities diverge
with the correlation length when a system approaches

its critical point [22], with the kurtosis diverging faster
than the skewness. Therefore, they have been suggested
as the signals for the existence of a critical end point in
the QCD phase diagram.

(a)

(b)

FIG. 8: Time evolution of the event-by-event distribution of
the number of quarks in a sub-volume of size 0.6 fm3 (upper
window) and 30 fm3 (lower window) for a quark matter of
temperature T = 20 MeV and average net quark density nq =
0.5 fm−3 inside the spinodal region. The total number of
events is 1000.

To be consistent with the grand canonical picture, we
consider quarks in a sub-volume of the box in our study,
such as its central cell, and treat the remaining part as
the reservoir. When the system is initially inside the spin-
odal instability region, quarks in the reservoir can some-
times move into the sub-volume, but in most of the times
quarks would leave from the sub-volume to the reservoir.
The number of quarks inside this sub-volume thus varies
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drastically from event to event, leading to large values for
the skewness and kurtosis in its event-by-event distribu-
tion. In Figs. 8, we show the event-by-event distribution
of the number of quarks in the central cell from 1000
events at t = 0, 20, and 40 fm/c by the solid, dashed and
dotted lines, respectively, for the two cases of sub-volume
of size 0.6 fm3 (upper window) and 30 fm3 (lower win-
dow). The upper window of Fig. 8 clearly shows that the
distribution for the small sub-volume becomes asymmet-
ric as time increases, starting with an initial skewness
of 0.11 and increasing to 0.60 at 20 fm/c and 0.75 at
40 fm/c. This feature is absent in the lower window of
Fig. 8 for the larger sub-volume, where the distribution
remains essentially symmetric with increasing time, with
the skewness changing slowly from -0.001 (t=0) to 0.086
(t=20 fm/c) and 0.132 (t=40 fm/c), and there is no ap-
parent increase or decrease in the kurtosis. We note that
the event-by-event fluctuation shown in Fig. 8 is smooth
because of the use of test particles. Even for the small
sub-volume of 0.6 fm3, there are about 300 test particles
inside this volume.
The event-by-event parton number fluctuation in the

small sub-volumes is, however, not directly observable
in heavy ion collisions. What has been measured is the
event-by-event net charge or net proton number fluctua-
tion for particles in certain momentum bin [4, 5]. How
the latter is related to the number fluctuation in certain
spatial volume is not understood and needs to be studied.

IV. EXPANDING QUARK MATTER

A. Blast wave initial conditions

To study how large density fluctuations due to the
spinodal instability as a result of a first-order phase tran-
sition obtained from the box calculation in the previous
section are affected by the expansion of the system as
in a heavy ion collision, we carry out a dynamical cal-
culation using the transport model that includes parton
scatterings besides the mean-field potentials described in
Section II. For the initial parton distributions, their po-
sitions are taken to follow a spherical Wood-Saxon form:

ρ(r) =
ρ0

1 + exp((r −R)/a)
(16)

with a radius R = 5 fm and a surface thickness param-
eter a = 0.5 fm, similar to that expected from a central
Au+Au collisions. The momenta of these partons are
again taken to be that of a Fermi-Dirac distribution at
certain temperature. Calculations using 1000 test parti-
cles for one physical particle are then carried out with two
different equations of state with and without a first-order
phase transition, which can be realized by adjusting the
coupling strength for the vector interaction.
To see how the expanding system goes into the spin-

odal region in the QCD phase diagram, we first study by

4 fm/c
5 fm/c

6 fm/c

/c

3 fm/c
4 fm/c

10

GV=0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

n (fm-3)

T
(M
e
V
)

FIG. 9: (Color online). Phase trajectory of the central cell of
an expanding quark matter obtained by averaging over 100
events for the two cases with (solid line) and without (dashed
line) a first-order phase transition using the blast wave initial
conditions. The spinodal region in the case of GV = 0 is
shown by the gray color, and it disappears for GV = GS .
The region where quark matter can be bound in the case of
GV = 0 is shown by red color.

averaging over 100 events the time evolution of the tem-
perature and net quark density in the central volume of
42.875 fm3 that has an initial density ρ0 = 1.5 fm3 and
temperature T = 70 MeV, and trace its phase trajec-
tory as shown in Fig. 9 for the two cases with (solid line)
and without (dashed line) a phase transition. Although
the quark matter described by the transport model may
not always be in perfect thermal equilibrium, we approx-
imate its temperature by that of an equilibrated one that
has the same energy density and net quark density in the
NJL model. As expected, the quark matter with a first-
order phase transition (solid curve) enters the spinodal
instability region, which is shown by the gray color, at
about 6.5 fm/c and leaves the region at about 17.4 fm/c
after spending about 10 fm/c inside this region. How the
central density decreases with time is shown by the solid
line in Fig. 10, which is seen to decrease slower than in
the case without a first-order phase transition shown by
the dashed line obtained with GV = GS .

The density fluctuations can be seen from the density
distribution for a single event on a plane such as the one
at z = 0 shown in Fig. 11. The upper window shows
the density distribution at t = 20 fm/c for the case with
a first-order phase transition, while the lower window
shows that at t = 10 fm/c for the case without a first-
order phase transition, when the density of the central
cell is about 0.2 fm−3 in both cases. Although density
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FIG. 10: Time evolution of the density of the central cell of
an expanding quark matter obtained by averaging over 100
events for the two cases with (solid line) and without (dashed
line) a first-order phase transition.

clumps appear in both cases, those in the one with a
first-order phase transition are significantly larger. As in
the case of quark matter in a box, we can quantify the
density fluctuations by the event-averaged scaled den-
sity moments [23]. They are shown in Fig. 12 by the
black and red lines for the cases with and without a first-
order phase transition, respectively. The dotted, dashed,
and solid lines are for N = 2, 4, and 6, respectively.
In both cases, the scaled density moments first increase
and then decrease with time.This behavior is caused by
the fast increase of the surface of the quark matter and
the quick deviation from its initial smooth Wood-Saxon
density distribution and the eventual decrease of the av-
erage density due to expansion. While the former leads
to a broadened, density profile, which increases the vol-
ume of the low density regions and thus the scaled den-
sity moments, the latter shrinks the density profile and
thus decreases the scaled density moments. Although the
scaled density moments in the case without a first-order
phase transition are larger than one, those in the case
with a first-order phase transition are much larger, re-
flecting the effect due to density clumps that distribute
randomly inside the expanding quark matter. However,
previous studies have indicated that possible signals for
the enhanced scaled density moments are strongly diluted
in experimental observables [21].

Since density fluctuations can lead to spatial
anisotropy even in central heavy ion collisions, it has been
suggested that they may affect the anisotropic flows in
the transverse plane [13, 14]. The latter are defined by
the coefficients vn in the expansion of the transverse mo-

FIG. 11: (Color online). Density distributions of an expand-
ing quark matter for a single event on the z = 0 plane at
t = 20 fm/c for the case with a first-order phase transition
(left window) and at t = 10 fm/c for the case without a first-
order phase transition (right window).

mentum distribution f(pT , φ) as a Fourier series in the
azimuthal angle φ,

f(pT , φ) =
N(pT )

2π
{1 + 2

∞
∑

n=1

vn(pT ) cos[n(φ− ψn)]},(17)

where ψn is the event plane angle [24]. To calculate the
anisotropic flow coefficients, we use the two particle cu-
mulant method [25, 26], namely, vn{2} =

√

〈cos(n∆φ)〉
by averaging over all pairs of test particles in an event.
We have calculated v2{2} and v4{2} for 100 events of an
expanding quark matter with the same blast wave initial
conditions, and their respective final event distributions
are shown in the upper and lower windows of Fig. 13
with the solid and dashed lines for the cases with and
without first order phase transition, respectively. Both
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FIG. 12: (Color Online). Scaled density moments obtained
by averaging over 100 events as functions of time for the cases
with (black lines) and without (red lines) a first-order phase
transition.

distributions peak at a larger value for the case with a
first-order phase transition, particularly for v4, thus pro-
viding a plausible signal for the first-oder phase transi-
tion. However, the values of the fluctuation induced v2
and v4 are much smaller than those in non-central heavy
ion collisions.
We have also studied the effect of density fluctuations

on dilepton production from a quark matter. Since the
dilepton production rate is proportional to the square
of parton density, more dileptons are produced when the
density fluctuation is large. Also, a longer partonic phase
as a result of a first-order phase transition would increase
the depletion yield as well. As usually done in study-
ing dilepton production in heavy ion collisions [27], we
use the perturbative approach to calculate the dilepton
yield from the quark-antiquark scattering by neglecting
its effect on the dynamics of the expanding quark matter.
Using the dilepton production cross section,

σqq̄→e+e− =
4πα2

3M2

√

1− 4m2
e/M

2

1− 4m2
q/M

2

×
(

1 + 2
m2

e +m2
q

M2
+ 4

m2
em

2
q

M4

)

, (18)

where M2 = (pe− + pe+)
2 is the square of the dilepton

invariant mass, we have calculated the dilepton invariant
mass spectrum by averaging over 100 events from the ex-
panding quark matter, and they are shown in Fig. 14 by
the solid and dashed lines for the cases with and without
first-order phase transition, respectively. As expected,
more dileptions are produced from the quark matter with

(a)

(b)

FIG. 13: Final anisotropic flow coefficients v2 (upper win-
dow) and v4 (lower window) distributions for 100 events of
an expanding quark matter with the same blast wave initial
conditions.

a first-order phase transition. We note the dilepton in-
variant mass spectrum peaks at M ≈ 0.5 GeV with the
peak value being about 3.5× 10−4 GeV−1, which is com-
parable with the result obtained from a hadronic trans-
port model [28]. This enhancement in dilepton produc-
tion may thus be detectable in experiments.

We note that like in other chiral quark models [14],
quark matter in the NJL model can be bound at cer-
tain densities and temperatures. The region for such
a unphysical state of matter is shown in Fig. 9 by the
red color. Since the phase trajectory does not enter
this region, the density fluctuations and their effects on
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FIG. 14: Dilepton yield, averaged over 100 events, as a func-
tion of the invariant mass M for the cases with (solid line)
and without (dashed line) a first-order phase transition in an
expanding quark matter with the blast wave initial conditions.

anisotropic flows and dilepton production presented in
the above are not due to the formation of stable quark
droplets during the expansion of the quark matter.

B. AMPT initial conditions

In this subsection, we use a more realistic initial par-
ton distribution for heavy ion collisions. Specifically, the
initial partons are obtained from a multiphase trans-
port (AMPT) model with string melting [29] that uses
the heavy ion jet interaction generator (HIJING) [30–32]
as the input. This model includes not only the mini-
jet partons from initial hard collisions but also hadrons
produced from excited strings, which are projectile and
target nucleons that have suffered interactions, by con-
verting them to partons according to the flavor and spin
structures of their valence quarks. In particular, a me-
son is converted to a quark and an anti-quark, while a
baryon is first converted to a quark and a diquark, and
the diquark is then decomposed into two quarks. The
quark masses are taken to be mu = 5.6, md = 9.9, and
ms = 199 MeV/c2 as in the PYTHIA program [33]. The
above two-body decomposition is isotropic in the rest
frame of the parent hadron or diquark. These partons
are produced after a formation time of tf = EH/m

2
T,H ,

with EH and mT,H denoting, respectively, the energy
and transverse mass of the parent hadron. To obtain
these partons as the initial conditions for our study of
an expanding quark matter, we run the AMPT program
with vanishing parton scattering cross sections in Zhang’s
parton cascade (ZPC)[34] and with the hadronic after-

burner based on a relativistic transport (ART) [35, 36]
turned off. In the AMPT, these partons are assumed to
be produced at the tip of the light cone, i.e., on a thin
disk perpendicular to the longitudinal axis or beam direc-
tion, which is reasonable in collisions at the top energy of
RHIC. For collisions at lower energies such as in the BES
experiments, the initial parton distribution is expected to
be more extended in the longitudinal direction, and we
take this into account by increasing the thickness of the
initial disk to 2dmN/

√
sNN for head-on collisions, where

d is the diameter of the colliding nuclei, and assuming
that the initial partons are uniformly distributed in this
disk.

Using 1000 test partons for each physical partons pro-
duced from Au+Au collisions at zero impact parame-
ter and a center-of-mass energy

√
sNN = 2.5 GeV and

smearing the distribution of initial partons from the
AMPT with a longitudinal length of d/3.5 to mimic the
initial conditions for collisions at

√
sNN = 7 GeV, we

have found that some parts of the system go through the
spinodal region when the SU(3) NJL model with GV = 0
is used in the Boltzmann equation and in constructing
the phase diagram.

4 fm/c
5 fm/c

6 fm/c

3 fm/c

4 fm/c

10

GV=0

0

40

60

(fm-�)

(M
e
V
)

FIG. 15: (Color online). Same as Fig. 9 for the phase trajec-
tories of the central part of an expanding quark matter ob-
tained by averaging over 100 events for the cases with (solid
line) and without (dashed line) a first-order phase transition
using the initial parton distribution from the AMPT model
that is smeared in the longitudinal direction as described in
the text.

As shown by the solid line in Fig. 15, the trajectory of
the central part of the system, obtained by averaging over
100 events for the case with a first-order phase transition,
goes into the spinodal instability region at about 6 fm/c
after expansion, and moves out of this region at about
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8.5 fm/c. As in the case of blast-wave initial conditions,
the phase trajectory of the expanding quark matter never
enters the region where stable quark droplets exist. Al-
though 2.5 fm/c is too short for the spinodal instability
to develop in the central part of the quark matter, its
other parts may stay longer in the spinodal instability
region as shown below. For the case without a first-order
phase transition, the trajectory is shown by the dashed
line in Fig. 15. We note that the initial temperatures in
these two cases are different, since the temperature in the
GV = GS case is lower than that in the GV = 0 case for
the same parton distribution.

FIG. 16: (Color online). Time evolution of the density dis-
tributions in a single event in central Au+Au collisions at
√

sNN = 2.5 GeV using smeared initial conditions from the
AMPT for the cases with (left column) and without (right
column) a first-order phase transition.

A 3-dimensional view of the time evolution of the den-
sity distributions in a single event using the same AMPT
initial conditions but two different equations of states
with (left column) and without (right column) a first-
order phase transition is shown in Fig. 16, where high
and low densities are depicted in orange and blue col-
ors, respectively. In the case with a first-order phase
transition, i.e. GV is set to zero, a disk of high den-
sity appears due to its lower pressure as a result of the
spinodal instability, which later transforms into several
disjointed clusters on a ring at z = 0. These cold and
dense clusters stay in the spinodal instability region even
at t = 14 fm/c, which agrees with the statement in the
previous paragraph. The dynamics in the case without

N=6
N=4
N=

0 5 10 15

5

10

50

100

t (fm/ )

<
ρ
N
>
/<
ρ
>
N

FIG. 17: (Color Online). Scaled density moments averaged
over 100 events as functions of time for the cases with (black
lines) and without (red lines) a first-order phase transition.

a first-order phase transition is, on the other hand, quite
different. Due to the large pressure gradient in the lon-
gitudinal direction, the system first expands along this
direction and form two high density regions at the two
ends. After further expansion when the two dense re-
gions disappears, the whole system becomes a uniform
and dilute gas at t ≈ 10 fm/c. It is further seen from
Fig 16 that the quark matter with a first-order phase
transition expands slower than that without a first-order
phase transition.
The dense clumps or density fluctuations shown in

the left column of Fig. 16 can again be quantified by
the event-averaged scaled density moments as shown in
Fig. 17 for the 2nd (dotted curve), 4th (dashed curve),
and 6th (solid curve) order scaled moments with the
black and red colors denoting results obtained with and
without a first-order phase transition, respectively. It
is seen that the density moments continue to increase
during the spinodal tdecomposition or first-order transi-
tion, which is different from the cases with a spherical
initial distributions in the previous section, and saturate
at higher values than in the case without a first-order
phase transition. Such a feature is more prominent for
the higher-order scaled density moments.
The dense clumps on the z = 0 plane in Fig. 16 also

affect the final rapidity distribution of quarks by slowing
down the expansion in the longitudinal direction, thus
reducing their rapidities to a narrow region around the
mid-rapidity. As shown by the solid line in the upper
window of Fig. 18, the event averaged parton rapidity
distribution in the case with a first-order phase tran-
sition is much narrower than that in the case without
a first-order phase transition shown by the dashed line.
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FIG. 18: Final rapidity distribution of quarks averaged over
100 events (upper window) and its event-by-event variance
(lower window) for the cases with (solid curve) and without
(dashed curve) a first-order phase transition from an expand-
ing quark matter using the AMPT initial conditions.

The event-by-event fluctuation of the quark number in
each rapidity bin, which is shown in the lower window
of Fig. 18, is also enhanced in the small rapidity region
by the first order-phase transition. This effect can be
regarded as a possible signal of a first-order phase tran-
sition and is worth studying in experiments.

We have also studied the event averaged dilepton in-
variant mass spectrum from an expanding quark mat-
ter with initial conditions from the AMPT model. This
is shown in Fig. 19 by the solid and dashed lines for

GV 0
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FIG. 19: Dilepton yield averaged over 100 events as a func-
tion of invariant mass

√

s for the cases with (solid curve) and
without (dashed curve) a first-order phase transition from an
expanding quark matter using the AMPT initial conditions.

the cases with and without a first-order phase transi-
tion, respectively. As in the previous section using the
blast-wave initial conditions, the presence of a first-order
phase transition enhances the dilepton yield as a result of
density fluctuations and a longer partonic phase. How-
ever, the dilepton yield is lower than that obtained from
the calculation with the blast wave initial condition by
two orders of magnitude because there are very few anti-
quarks in the partonic matter produced in heavy ion colli-
sions at the low collision energy considered here and also
because we have not included the bremsstrahlung con-
tribution to dilepton production from the quark-quark
scattering.

V. CONCLUSIONS

The spinodal instability is a thermodynamic feature
of a first-order phase transition in a many-body system.
It occurs when its pressure in some parts decreases with
increasing density. This can amplify the density fluc-
tuations and lead to a phase separation in the system.
We have studied this phenomenon by solving the Boltz-
mann equations using the test particle method. The cal-
culations are based on the NJL model, which has been
shown to give good a description of the vacuum proper-
ties of the hadrons and also predicts the existence of a
first-order phase transition in baryon-rich quark matter.
We have obtained some intuitive pictures on the phase
separation in a quark matter that is either in a static
box or undergoes expansion. For the case of a static box,
we have found that the growth rates extracted from the
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early growth of a sinusoidal density fluctuation agree with
the analytical results obtained from the linearized Boltz-
mann equation. We have also calculated the higher-order
density moments of the quark matter and found them to
increase and saturate at large values after phase separa-
tion. The skewness of the quark number event-by-event
distribution in a small sub-volume of the quark matter
is also found to increase, but this feature disappears if
the sub-volume is large. As for the expanding quark
matter, two cases have been studied. One is based on
the blast-wave initial conditions, while the other uses the
AMPT initial conditions. In both cases, we have found
that the expansion of the quark matter is slowed down
by the presence of a first-order phase transition. Density
clumps are found to appear and lead to an anisotropy in
the momentum space, which can be characterized by the
scaled density moments and the anisotropic flows v2 and
v4, respectively. An enhancement in the dilepton yield is
also observed. The expansion of the quark matter with
the AMPT initial conditions is more complex. The dense
clumps are mostly formed on the middle transverse plane,
resulting in a narrower rapidity distribution.
In the future, we plan to develop a more consistent

transport model, in which all cross sections are calcu-
lated self-consistently from the NJL model, so that the
temperature and density dependence of the collisional ef-
fect can be taken into account. The dilepton production
through the qq → qqe+e− process will also be included,
since it could be the main contribution to the dilepton
yield from a quark matter of high baryon chemical poten-
tial. We also plan to extend the transport model using
the PNJL model [37], which is more realistic and agrees
better with the lattice results for the properties of quark
matter with low baryon chemical potential. We hope
that our study will help to understand the phase transi-
tion in the baryon-rich matter by comparing theoretical
predictions with available and future experimental data.
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Appendix: Finite grid size effects

Counting partons in a grid of finite size in evaluat-
ing the mean fields effectively allows the partons in the
grid interact with each other, thus modifying the contact
interactions in the NJL model to finite-range ones. To
study this effect, we need to calculate the probability for

two partons in the same grid to have a separation ∆x.
Given a parton located at x ∈ [0, a] in a 1-dimensional
grid [0, a], the probability to find another parton located
at x+∆x in the same grid is

P (∆x) =
1

a

∫

dxθ(x)θ(a − x)θ(x +∆x)θ(a − x−∆x)

= tri

(

∆x

a

)

, (A.1)

where

tri(x)
∆
= max(0, 1− |x|). (A.2)

The above expression can be straightforwardly general-
ized to the 3-dimensional case to give

P (∆x) =
∏

i

tri

(

∆xi

ai

)

, (A.3)

where {a1, a2, a3} are the grid lengths. The interaction
between two partons at x and y is then replaced by

GSδ
3(x− y) → GS

∏

i a
i

∏

i

tri

(

xi − yi

ai

)

,

Kδ3(x− y) → K
∏

i a
i

∏

i

tri

(

xi − yi

ai

)

. (A.4)

Transforming Eq. (A.4) from x-space to k-space gives

GS → G̃S = GS

∏

i

2 cos(aiki)− 2

aiki
,

K → K̃ = K
∏

i

2 cos(aiki)− 2

aiki
. (A.5)

Note that in the limit that aiki → 0 for all i, G̃S → GS

and K̃ → K, which means the modification does not
affect the long wavelength modes.
Replacing GS and K in Eq. (35) in Ref. [6] with G̃S

and K̃, respectively, and solving the resulting equation,
we obtain the modified dispersion relation, and they are
shown in Fig. 2 for a grid size ai = 2/3 fm by the solid
and dashed lines for the cases with and without the colli-
sion term, respectively. As expected, the growth rate Γk

is not much affected in the small k region but is signif-
icantly suppressed in the large k region. The finite grid
size effect is thus similar to the quantum effect shown in
Ref. [6]. Using a finite grid size essentially allows partons
to interact at finite separation, resulting in an effective
finite-range interaction. This effect can be corrected by
reducing the size of the grid.
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H. Stöcker, Phys. Rev. C 44, 1091 (1991).

[26] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev.
C 64, 054901 (2001).

[27] L. Xiong, Z. G. Wu, C. M. Ko, and J. Q. Wu, Nucl. Phys.
A512, 772 (1990).

[28] T. Galatyuk, P. M. Hohler, R. Rapp, F. Seck, and
J. Stroth, Eur. Phys. J. A52, 131 (2016).

[29] Z.-W. Lin, C. M. Ko, B.-A. Li, B. Zhang, and S. Pal,
Phys. Rev. C 72, 064901 (2005).

[30] X.-N. Wang, Phys. Rev. D 43, 104 (1991).
[31] X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501

(1991).
[32] M. Gyulassy and X.-N. Wang, Comput. Phys. Commun.

83, 307 (1994), ISSN 0010-4655.
[33] T. Sjstrand, Comput. Phys. Commun. 82, 74 (1994),

ISSN 0010-4655.
[34] B. Zhang, Comput. Phys. Commun. 109, 193 (1998),

ISSN 0010-4655.
[35] B.-A. Li and C. M. Ko, Phys. Rev. C 52, 2037 (1995).
[36] B.-A. LI, A. T. Sustich, B. Zhang, and C. M. Ko, Int. J.

Mod. Phys. E 10, 267 (2001).
[37] K. Fukushima, Phys. Rev. D 77, 114028 (2008), [Erra-

tum: Phys. Rev. D 78, 039902(2008)].


