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Abstract

A systematic analysis of correlations between different orders of pT -differential flow is presented,

including mode coupling effects in flow vectors, correlations between flow angles (a.k.a. event-

plane correlations), and correlations between flow magnitudes, all of which were previously studied

with integrated flows. We find that the mode coupling effects among differential flows largely

mirror those among the corresponding integrated flows, except at small transverse momenta where

mode coupling contributions are small. For the fourth- and fifth-order flow vectors V4 and V5 we

argue that the event plane correlations can be understood as the ratio between the mode coupling

contributions to these flows and the flow magnitudes. We also find that for V4 and V5 the linear

response contribution scales linearly with the corresponding cumulant-defined eccentricities but

not with the standard eccentricities.
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I. INTRODUCTION

The ultimate goal of studying relativistic heavy ion collisions is to extract from experi-

mentally measured final particle momentum distributions quantitatively precise information

on the transport properties and dynamical evolution of the quark-gluon plasma (QGP) gen-

erated in these collisions. The azimuthal anisotropy of particle emission in the transverse

plane, known as anisotropic flow, is one key observable suggesting that QGP behaves like

an almost perfect liquid [1]. Using an azimuthal Fourier expansion of the single particle dis-

tribution up to harmonic order N , this anisotropy can be characterized by 2N parameters:

the flow magnitude vn and the flow angle Ψn (relative to the reaction plane) which is often

called the n-th order event plane angle (1 ≤ n ≤ N). They are combined into the complex

flow vectors Vn = vne
inΨn .

Due to quantum mechanical fluctuations in the initial conditions created in heavy-ion

collisions, the flow vectors Vn fluctuate from event to event, even for identical impact pa-

rameters and collision systems. Correlations between anisotropic flow vectors of different

orders have been studied both theoretically and experimentally. Examples are correlations

between flow angles (a.k.a, event-plane correlations) [2–7], correlations between the mag-

nitudes of the flow harmonics [8, 9, 11], and nonlinear mode coupling effects between flow

vector contributing to Vn for n > 3 [12, 13]. These correlations may shed light on the

fluctuating initial conditions, but their strength is also affected by dissipative effects in the

dynamical evolution of the QGP.1

Since measurements of such correlations are very statistics-hungry, existing correlation

studies are almost exclusively for the integrated flows, using the flow vectors of all charged

particles in a centarin rapidity window without differentiating them according to their trans-

verse momentum. Given the continuously increasing number of collected data we here ask

the question what would change if one performed this studies differentially in transverse

momentum. We present a systematic study of the correlation between differential flows of

differerent harmonic orders for Pb+Pb collisions at 2.76 TeV, using the VISH2+1 hydro-

dynamic code [14, 15] to describe the dynamical evolution of the collision. Admittedly, our

study does not suffer from the same kind of statistical limitations faced by experimental-

ists: We use the Cooper-Frye prescription to compute the final particle spectra from the

1 Even without E-b-E fluctuations, the even orders of flow are correlated because of the almond shaped

deformation of the initial spatial distribution in noncentral collisions which is not of pure cos(2φ) form.
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hydrodynamic output, which yields a continuous final particle momentum distribution, cor-

responding to the limit of an infinite number of particles emitted from each event. Therefore,

our results are affected only by fluctuations associated with the fluctuating initial conditions

(which we sample by evolving 2000 or 3000 events2 per centrality class through the hydrody-

namic code) and not by finite number statistical fluctuations in the final state that arise in

real experiments from the fact that Nature, due to the limited energy content of each event,

can sample the final momentum distribution only with a finite number of particles. – We

here use the MC-Glauber initial conditions as input, start the hydrodynamic evolution at

τ0 = 0.6 fm/c without pre-equilibrium flow, and end it on an isothermal freeze-out surface of

temperature Tdec = 120 MeV. Unless otherwise stated, the shear viscosity is set to a default

value of η/s = 0.08. Correlations between flow angles and flow magnitudes are discussed

in Secs. II and III, respectively. In Sec. IV we present the mode coupling effects in higher

order of differential flow vectors. The results are discussed and summarised in Sec. V. Some

studies elucidating the meaning of the linear part (previously called the “linear response

part”) of higher harmonic flows are presented in the Appendix.

II. CORRELATIONS BETWEEN FLOW ANGLES

Correlations between different flow angles are usually called event plane correlations

whereas the correlations between the angles associated with the corresponding initial spatial

eccentricities are known as participant plane correlations. These multi-plane correlations

have yielded insight into the initial conditions and hydrodynamic evolution of heavy ion

collisions [2–7].

To calculate the event plane correlations we use the scalar product definition which does

not depend on the event-plane resolution [16]:

〈cos(c1n1φn1 + ...+ cknkφnk)〉{SP} :=
〈Qc1

n1
Qc2
n2
...Qck

nk
〉√

〈Qc1
n1Q

∗c1
n1 〉...〈Qck

nkQ
∗ck
nk 〉

. (1)

Here, 〈cos(4(Ψ2 − Ψ4))〉{SP} is chosen as an example of a two-plane correlation, and

2 In this paper, most of the results (Figs. 2 – 6) are obtained from the same set of events, namely 42,000

events of 0-70% centrality evolved with η/s = 0.08. Dividing these 42,000 events into 14 centrality classes

yields 3000 events per centrality class. In Figs. 1 and 7, however, we use a different set of events for ideal

(and, for comparison, viscous) hydrodynamic evolution, with only 2000 events in each of the centrality

classes shown in these two figures.
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〈cos(2Ψ2 + 3Ψ3 − 5Ψ5))〉{SP} as an example of a three-plane correlation:

〈cos(4(Ψ2 −Ψ4))〉{SP} :=
〈V4V

∗2
2 〉√

〈v2
4〉〈v4

2〉
,

〈cos(2Ψ2 + 3Ψ3 − 5Ψ5))〉{SP} :=
〈V5V

∗
2 V
∗

3 〉√
〈v2

5〉〈v2
2〉〈v2

3〉
.

(2)

From this definition we see that 〈cos(4(Ψ2−Ψ4))〉{SP} in fact equals the Pearson correlation

coefficient between V4 and V 2
2 . On the other hand, 〈cos(2Ψ2+3Ψ3−5Ψ5))〉{SP} does not

equal the Pearson correlation coefficient between V5 and V2V3 unless the fluctuations of the

elliptic and triangular flows are uncorrelated and factorize as follows: 〈v2
2v

2
3〉 = 〈v2

2〉〈v2
3〉.

While this may be a reasonable assumption for v2 and v3 because v3 is dominated by initial

state fluctuations whereas v2 has generally a strong geometric component, it is certainly not

justifiable for the correlation between v2
2 and v2

4 which are correlated with each other by

the deformed initial collision geometry in non-central collisions. This geometric correlation

between the elliptic and quadrangular flow magnitudes affects the three-plane correlation

〈cos(2Ψ2 + 4Ψ4 − 6Ψ6))〉{SP}. This shows that event-plane correlations in general are not

Pearson correlation coefficients between the corresponding Vn.

The event plane correlations (2) for differential (as a function of transverse momemtum)

and integrated flows are shown in Fig. 1 and compared with the corresponding participant

plane correlations. Note that for the pT -differential event plane correlators all correlated

particles are taken from the same pT bin. (This is different from the usual definition of

second- or third-order pT -differential flow cumulants (see e.g. [17]) where only one particle

comes from the selected pT bin and its flow vector is correlated with others constructed from

all charged hadrons.) Red circles denote event-plane correlations of differential flows from

ideal hydrodynamic evolution, and the red shaded bands show the corresponding event-plane

correlations of pT -integrated flows for the same events for comparison. Blue triangles and

blue shaded bands show the analogous correlations for events that were evolved with viscous

hydrodynamics using shear viscosity η/s = 0.08. The upper (lower) panels are for central

(0-5% centrality) and mid-peripheral (40-50% centrality) collisions.

Similar to what was observed for the pT -integrated flows, the event plane correlations

between the pT -differential flows increase with impact parameter from central to semi-

peripheral collisions. Shear viscosity increases the strength of the event-plane correlation as

previously found by Yan [3] and Qiu [7] for pT - integrated flows. The shear viscous strength-
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FIG. 1. (Color online) pT dependence of the two- and three-plane correlations

〈cos(4(Ψ2−Ψ4))〉{SP} and 〈cos(2Ψ2+3Ψ3−5Ψ5)〉{SP}. Subgraphs (a-b) are for events of 0-5%

centrality while (A-B) are for 40-50% centrality. In each centrality class 2000 hydrodynamic events

are used for the analysis. Red and blue represent ideal and viscous hydrodynamic results, respec-

tively. Markers show event-plane correlations for differential flows, and colored bands are those for

the corresponding integrated flows shown for comparison. The corresponding participant plane cor-

relations are shown as yellow bands. The widths of the bands indicate the corresponding variances

due to event-by-event fluctuations.

ening of the correlations is relatively more pronounced in central than in more peripheral

collisions, but it appears to disappear at higher pT values. At low pT , the differential event
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plane correlations are much weaker than those of the integrated flows and almost negligible.

Increasing with pT , the differential event plane correlations become approximately equal to

those of the integrated flows around pT ≈ 0.5 GeV/c; at even larger pT , however, for viscous

evolution the pT -differential correlations drop below the pT -integrated values, indicating that

the viscous strengthening of the event-plane correlations operates only at thermal transverse

momenta and disappears for harder pT .

The differences between differential and integrated event plane correlations can to a large

extent be explained as a consequence of the decorrelation between the flow angles at different

pT -values. As noted in [18], in general the flow angle Ψn depend on pT and, as a function of

pT , Ψn(pT ) wanders around the ‘average angle’ Ψn. The pT -averaged event-plane correlator

thus closely represents the pT -differential one only in the pT -region in which the majority

of particles are emitted. At small pT , the variance σ(Ψn(pT ) − Ψn) is quite large for all n

due to the fluctuating Ψn(pT ). This is the likely reason for the much weaker event-plane

correlations of the pT -differential flows at small pT compared to the pT -averaged ones: At

small pT , the directions of the complex flow vectors are almost uncorrelated [19]. For this

reason, we will mostly ignore the low-pT region in the rest of the paper.

III. CORRELATIONS BETWEEN FLOW MAGNITUDES

There are mainly two ways to describe the correlations between flow magnitudes: One way

is to study the correlation between vm and vn via the event-shape selection method, suggested

by the ATLAS collaboration [8, 20] and already tested with the hydrodynamic model [9]. The

other way is using the Symmetric 2-harmonic 4-particle Cumulant (or Moment) SC(m,n) to

evaluate the correlation between vm and vn, suggested by the ALICE Collaboration [10, 11]

and tested with hydrodynamic, transport and hybrid models. In particular, the authors of

[21] studied the pT dependence of the normalized correlators SC(m,n), ie. NSCv(m,n) ≡
〈v2mv2n〉−〈v2m〉〈v2n〉
〈v2m〉〈v2n〉

, between the magnitudes of the differential flows vm(pT ) and vn(pT ) at 20-

30% centrality with the VISH2+1 and AMPT models. They found that for both models,

NSCv(3, 2) and NSCv(4, 3) change sign from negative to positive with increasing pT around

at pT ∼ 3 GeV/c.

Furthermore, Niemi and collaborators studied the linear correlation coefficient c(vm, vn)

of the differential flows vm(pT ) and vn(pT ) as a function of transverse momentum for 20-
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30% Au+Au collisions at
√
sNN = 200 GeV with the hydrodynamic model [22]. In their

calculation, c(v2, v3) and c(v3, v4) also exhibit a sign change with increasing pT . However,

they argued that at 20-30% centrality, (v2, v3) and (v3, v4) are not linearly correlated since

c(v2, v3) ≈ c(v3, v4) ≈ 0 . They also suggested that the differential c(v2, v4)(pT ) is sensitive

to shear viscosity and decoupling temperature and is strongly affected by c(ε2, ε4) in the

initial state.

In this paper, we use the event-shape selection method to study the correlations be-

tween differential flows [20]. Building on previous work reported in [9], 42,000 hydro-

dynamically generated events of 0-70% centrality were divided into 14 equal centrality

classes according to multiplicity, then ordered by qn and subdivided by percentile into 6

bins per centrality class (0−0.1, 0.1−0.2, 0.2−0.5, 0.5−0.8, 0.8−0.9, and 0.9−1.0) where

qn = qn e
inΨqn ≡ 〈mT e

inφp〉/〈mT 〉 (with mT =
√
m2+p2

T ). The differential flow magnitude

is calculated as vn{2}(pT ) = 〈vn(pT ) vncos
(
n(Ψn(pT ) − Ψn)

)
〉/
√
〈v2
n〉; here vn is n-th order

integrated flow coefficient and 〈...〉 denotes the average over events in one q2 (or q3) bin.

Before discussing the correlations between the differential flow magnitudes further we

would like to emphasize that the event shape selection based on qn yields equivalent event

classes for different pT ranges. As seen in Fig. 6 in [8] for n = 2 and 3, vn for the range

0.5 < pT < 2 GeV shows approximate linearity with vn in the range 3 < pT < 4 GeV, for

different qn bins and in all centrality classes.
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FIG. 2. (Color online) vm{2} vs. vn{2} for different pT ranges at 25-30% centrality, calculated

with viscous hydrodynamics using η/s = 0.08. In each 5% centrality class 3000 events are used

for the analysis. While solid black circles represent the integrated vm{2} − vn{2} correlations, the

colored hollow markers show the correlations at different pT . Markers connected by dotted lines

represent the hydrodynamic results; the solid lines are fits using Eqs. (3).

Fig. 2 shows the correlations between vm and vn for different pT ranges, at 25-30% collision

centrality. Differently colored lines represent flows calculated within different pT ranges while
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different points along a line of given color represent different qn bins (q2 bins for the left

three panels, q3 bins for the right panel). The solid black circles connected by dotted lines

are the pT -integrated vm − vn correlations for comparison.

Since the differential vm and vn all increase with pT in the pT ranges shown here, and the

integrated flows are the yield-weighted averages of the differential flows, the pT -integrated

black lines are in the middle of the colored lines representing pT -differential correlations. In

fact, the pT -integrated vm− vn correlation is quite close to the differential one for the range

0.6 < pT < 1 GeV/c. As for the pT -integrated flows [8, 9], the differential v4 and v5 are

positively correlated with the differential v2 whereas v3 is anticorrelated with v2. In Ref. [9]

the following fit functions were found to yield good representations of the pT -integrated

vm − vn correlations:

v3{2} = v0
3 + k3v2{2},

v4{2} =
√

(v0
4)2 + (k4v2

2{2})2,

v5{2} =
√

(v0
5)2 + (k5v2{2}v3{2})2.

(3)

The solid colored lines in Fig. 2 show that these fit functions represent the pT -differential

correlations equally well. The corresponding fit parameters are plotted as functions of cen-

trality in Fig. 3, v0
n in the left and kn in the right panels. One sees that the fit parameters for

the differential flow correlations at different pT have similar centrality dependences as those

for the integrated flows. Except for the most central collisions, kn decreases with impact

parameter. k3 is negative, due to the anti-correlation between v3 and v2 except for the most

central collisions. As discussed in [9] the latter is caused by neglecting p−p multiplicity

fluctuations in the initial conditions used in this study. k4 and k5 are both positive. Using

q2 or q3 in the event-shape selection leads to some differences in the fitted parameters for v5.

The new information from the pT -differential analysis is that v0
n increases while kn decreases

with increasing pT , for all n. This means that, as pT increases, the linear contribution v0
n(pT )

increases in sync with vn(pT ) whereas the strength of the non-linear mode coupling described

by kn(pT ) decreases. Another interesting observation is that k4 and k5 of the pT -integrated

flows are larger than those of the pT -differential flows, in all pT ranges and at all collision

centralities. We will discuss this further in the next section.
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FIG. 3. (Color online) Centrality dependence of the parameters v0
n and kn extracted from the fits

of the vm{2}−vn{2} correlations shown in Fig. 2 with Eqs. (3), for the different pT ranges (colored

markers)) as well as the pT -averaged correlation (black lines) shown in that figure, using the same

color coding.
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IV. MODE COUPLING EFFECTS IN THE DIFFERENTIAL FLOW VECTORS

It has now been established that, while V2 and V3 respond almost linearly to their corre-

sponding initial eccentricity vectors, V4 and higher harmonic flows are affected by significant

nonlinearities in their response. In [12, 13], Vn (n > 3) was decomposed into linear response

and nonlinear mode coupling contributions as follows:

V4 = V4L + χ422V
2

2 ,

V5 = V5L + χ523V2V3,

V6 = V6L + χ624V2V4L + χ633V
2

3 + χ6222V
3

2 ,

V7 = V7L + χ725V2V5L + χ734V3V4L + χ7223V
2

2 V3.

(4)

Some questions about the interpretation of VnL as the linear response contribution to the

corresponding initial eccentricity were raised in Ref. [13]. In the Appendix we contribute to

the further clarification of this question by showing empirically that for n = 4 and 5 VnL

responds approximately linearly to the cumulant-based but not to the moment-based initial

eccentricities, as first suggested in [23, 24]. The mode coupling coefficients in Eqs. (4) are

defined by

χ422 =
Re〈V4(V ∗2 )2〉
〈v4

2〉
, χ523 =

Re〈V5V
∗

2 V
∗

3 〉
〈v2

2v
2
3〉

,

χ624 = Re
〈V6V

∗
2 V
∗

4 〉〈v4
2〉 − 〈V6V

∗3
2 〉〈V4V

∗2
2 〉(

〈v2
4〉〈v4

2〉−〈V4V ∗22 〉2
)
〈v2

2〉
,

χ633 =
Re〈V6V

∗2
3 〉

〈v4
3〉

, χ6222 =
Re〈V6V

∗3
2 〉

〈v6
2〉

, (5)

χ725 = Re
〈V7V

∗
2 V
∗

5 〉〈v2
2v

2
3〉 − 〈V7V

∗2
2 V ∗3 〉〈V5V

∗
2 V
∗

3 〉(
〈v2

5〉〈v2
2v

2
3〉−〈V5V ∗2 V

∗
3 〉2
)
〈v2

2〉
,

χ734 = Re
〈V7V

∗
3 V
∗

4 〉〈v4
2〉 − 〈V7V

∗2
2 V ∗3 〉〈V4V

∗2
2 〉(

〈v2
4〉〈v4

2〉−〈V4V ∗22 〉2
)
〈v2

3〉
,

χ7223 =
Re〈V7V

∗2
2 V ∗3 〉

〈v4
2v

2
3〉

.

As discussed in the preceding section, the pT -differential flows exhibit qualitatively simi-

lar mode coupling effects as the integrated flows. To quantify them we compute the mode

coupling coefficients for the differential flows according to Eqs. (5) and show their pT de-

pendence in Fig. 4. The pT -differential mode coupling coefficients show similar centrality
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FIG. 4. (Color online) pT dependence of the mode coupling coefficients for pT -differential flows

from viscous hydrodynamics with η/s = 0.08. Lines of different colors and styles represent dif-

ferent collision centralities. Each 5% centrality bin contains 3000 events. For comparison, shaded

bands of the same color as the lines show the mode coupling coefficients for the integrated flows

corresponding to the same centrality.

dependence as the integrated ones (shown as colored shaded bands) and generally have only

a weak dependence on pT , except at small pT . The strong variation of the mode coupling

coefficients at small pT is related to the similarly strong pT -dependence of the event-plane

correlators shown in Fig. 1 and can again be attributed to the large variance of the flow

angles Ψn at small pT .

In the pT regions where pT -differential mode coupling coefficients show only weak pT

dependence their magnitudes are generically smaller than those of the integrated flows, for

almost all modes and and for all collision centralities studied here. To understand this

intuitively let us consider the case of quadrangular flow in the approximation where the

non-linear mode coupling contribution dominates:

V4 ≈ χ422V
2

2 , V4(pT ) ≈ χ422(pT )V 2
2 (pT ),

χ422 ≈
V4

V 2
2

=
v4e

i4Ψ4

v2
2e
i4Ψ2

=
v4

v2
2

=
{v4(pT )}
{v2(pT )}2

=
{χ422(pT ) v2

2(pT )}
{v2(pT )}2

(6)

Here {...} denotes symbolically the averaging of the differential flow over pT . If χ422(pT )

is independent of pT (which according to Fig. 4 is approximately true for pT ≥ 0.5 GeV/c)
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then

χ422 ≈ χ422(pT )
{v2

2(pT )}
{v2(pT )}2

≥ χ422(pT ). (7)

As observed above when discussing the vm−vn correlations, the kn values associated with

the integrated flows are also larger than those of the pT -differential flows. In fact, both the

χ and k coefficients describe mode coupling effects, and hence they are tightly connected.

Taking n = 4 as an example, this is illustrated by combining Eqs. (3) and (4) as follows:

〈v2
4〉 = (v0

4)2 + k2
4〈v2

2〉2

= 〈v2
4L〉+ χ2

422〈v4
2〉 = 〈v2

4L〉+ χ2
422

(
〈v2

2〉2+σ2
v22

)
. (8)

Here σ2
v22

is the variance of v2
2, and we used 〈V4LV

∗2
2 〉 ≈ 0 [12, 13]. Using the first of these

equations, a similar argument as in Eqs. (6,7) provides support for our observation that

k4 ≥ k4(pT ).

Using the decomposition (4) for the higher-order flows in the form 〈v2
n〉 = v2

nL + v2
nM we

can separate the linear and mode coupling terms as follows:

v4L =

√
〈v2

4〉 −
|Re〈V4V ∗22 〉|2
〈v4

2〉
, v4M =

|Re〈V4V
∗2

2 〉|√
〈v4

2〉
,

v5L =

√
〈v2

5〉 −
|Re〈V5V ∗2 V

∗
3 〉|2

〈v2
2v

2
3〉

, v5M =
|Re〈V5V

∗
2 V
∗

3 〉|√
〈v2

2v
2
3〉

. (9)

Figure 5 shows the linear and mode-coupling contributions to the pT -differential flows,

vnL and vnM as defined in Eqs. (9), together with the ratio of the latter with vn,rms(pT ) ≡√
〈v2
n(pT )〉 (which indicates the relative importance of the mode-coupling terms to the pT -

differential flows), as functions of pT for different collision centralities. Similar to what was

observed earlier for the pT -integrated flows [13], the linear and mode-coupling contributions

to the differential flows exhibit opposite centrality dependences: the linear terms depend

relatively weakly on centrality whereas the mode-coupling terms increase rapidly with in-

creasing impact parameter.

Comparing the definition (1) of the event plane correlations with Eqs. (9) for the mode-

coupling contributions vnM one sees that for n = 4, 5 the correlation of the nth order event

plane with those of lower harmonic order is, in fact, given by the fraction vnM/vn,rms of the

nth order rms flow vn,rms contributed by mode-coupling effects, plotted in the bottom row

12
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FIG. 5. (Color online) pT dependence of vnL, vnM and vnM/vn,rms for n = 4, 5 from viscous hydro-

dynamics with η/s = 0.08. Lines with different colors and symbols represent different centrality

classes, with 3000 events in each 5% centrality bin. For comparison, the colored shaded bands

show the corresponding values for the pT -integrated flows.
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of Fig. 5.3

〈cos(4(Ψ2−Ψ4))〉{SP} =
〈V4V

∗2
2 〉√

〈v2
4〉〈v4

2〉
=

v4M

v4,rms

,

〈cos(2Ψ2+3Ψ3−5Ψ5))〉{SP} =
〈V5V

∗
2 V
∗

3 〉√
〈v2

5〉〈v2
2〉〈v2

3〉
=

v5M

v5,rms

.

(10)

That means that for n = 4, 5 the mode coupling contributions to the flow magnitudes are

caused by correlations between the nth-order and lower-order event planes. By implication,

the smallness of the event plane correlations shown in Fig. 1 near pT = 0 should lead to

similarly small mode coupling contributions to v4,5(pT ) at small pT . While this pT region is

not shown in Fig. 5, for reasons explained in Sec. II, the bottom panels in Fig. 5 indicate

a steep drop of the mode coupling contributions to v4 and v5 below pT ∼ 0.5 GeV/c. At

higher pT , the approximate pT -independence of the event plane correlations shown in Fig. 1

is reflected in the flatness of vnM(pT )/vn,rms(pT ) shown in the bottom panels of Fig. 5.

Since, except for small pT , the differential flows v4,5(pT ) receive a mode-coupling contribu-

tion that is almost independent of pT , the mode-coupling contribution to their pT -integrated

analogues is very similar. The shaded bands in Figs. 5e,f show this. The above connection

between mode-coupling effects and event plane correlations thus provides an explanation

for the similarity of the strengths of the event plane correlations for pT -integrated and pT -

differential flows noted in the discussion of Fig. 1 in Sec. II.

V. SUMMARY AND CONCLUSIONS

Using viscous hydrodynamics as a model for the dynamical evolution of Pb-Pb colli-

sions at the LHC we presented a first systematic study of the correlations between different

harmonic orders of the pT -differential anisotropic flows of charged hadrons. We identified

nonlinear mode coupling contributions to the differential flow, studied their pT and central-

ity dependence and compared them with those for the pT -integrated flows. We identified

correlations with lower-order event planes as the main contributor to the mode coupling

effects seen in the magnitudes of higher-order harmonic flows. Except for very low pT ,

the mode coupling fraction depends very weakly on transverse momentum, and this is re-

flected in event plane correlations between the differential flows that are close to those of

3 More precisely, the two observables are equal up to a sign. For example, 〈cos(4(Ψ2−Ψ4))〉{SP} =
sign(χ422) v4M/v4,rms. Since the two event plane correlators discussed in this paper, 〈cos(4(Ψ2−Ψ4))〉{SP}
and 〈cos(2Ψ2 +3Ψ3−5Ψ5)〉{SP}, are mostly positive (except at small pT where the event planes fluctuate
strongly) we omit the sign for short.
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the integrated flows and largely independent of pT . At very low pT they exhibit strong pT

dependence, caused by large, pT -dependent fluctuations of the flow angle. These event plane

fluctuations destroy the mode coupling contributions to the higher-order flow magnitudes at

low pT , by averaging them away. Correlations between the magnitudes of the pT -differential

flows of different order have similar strength and centrality dependence as those between

the corresponding integrated flows. The mode-coupling coefficients extracted from a two-

component fit using event-shape engineering techniques were found to be smaller for the

pT -differential flows than those for the integrated flows. This observation has a simple ex-

planation as described in Sec. IV. The linear part of the two-component fit was shown to

reflect the linear hydrodynamic flow response to the cumulant-based initial eccentricities but

not to their standard moment-based analogues.
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Appendix A: Discussion of VnL

Usually, the eccentricities of the initial spatial distributions of energy or entropy are

defined as moments with weight rn: En = εne
inΦn ≡ − 〈r

neinφ〉
〈rn〉 (for n > 1). The authors of

[23, 24] suggested a different set E ′n of eccentricity coefficients using spatial cumulants:

E ′2 ≡ ε2e
i2Φ2 = E2, E ′3 ≡ ε3e

i3Φ3 = E3,

E ′4 ≡ ε′4e
i4Φ′

4 ≡ −〈z
4〉 − 3〈z2〉2

〈r4〉
= E4 +

3〈r2〉2

〈r4〉
E2

2 ,

E ′5 ≡ ε′5e
i5Φ′

5 ≡ −〈z
5〉 − 10〈z2〉〈z3〉
〈r5〉

= E5 +
10〈r2〉〈r3〉
〈r5〉

E2E3,

E ′6 ≡ ε′6e
i6Φ′

6 ≡ −〈z
6〉 − 15〈z2〉〈z4〉 − 10〈z3〉2 + 30〈z2〉3

〈r6〉

= E6 +
15〈r2〉〈r4〉
〈r6〉

E2E4 +
10〈r3〉2

〈r6〉
E2

3 +
30〈r2〉3

〈r6〉
E3

2 .

(A1)
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Here z ≡ x + iy = reiφ. Note that E1 (which is not used in our discussion) has a different

definition.

By defining eccentricities using cumulants instead of moments one subtracts contributions

from lower order z correlations. This led Teaney and Yan to suggest [23, 24] that the linear

hydrodynamic response contribution to higher order flows should be linearly proportional to

the cumulant-defined eccentricities and not to the traditional moment-defined ones. They

also used this hypothesis to successfully explain the experimentally observed event plane

correlators in terms of linear response to the corresponding participant plane correlators,

except for one event plane correlator: 〈cos(2Ψ2 − 6Ψ3 + 4Ψ4)〉 [3, 25]. Figure 6 shows that

we agree with their findings. Like them, we do not have an explanation for the apparent

non-linearity of the response leading to the 2-3-4 flow correlator.

To further examine the (non-)linearity of the hydrodynamic response, we use the ratio

between flow and eccentriciy as a function of eccentricity. Since in Eqs. (9) the square of the

magnitude of the linear response term is averaged over events, we use the root mean square

eccentricities for normalization:

vn,rms =
√
〈v2
n〉,

εn,rms =
√
〈|En|2〉,

ε′n,rms =
√
〈|E ′n|2〉,

(A2)

with E ′n from Eqs. (A1). In Fig. 7 we plot the ratios vn/εn as functions of εn for different

definitions of numerator and denominator as described in the legend, for n = 4 and 5,

using 2000 ideal hydrodynamic events at 40-50% centrality. We find that, different from

vn{2}/εn{2} (shown as red triangles) and vnL/εn{2} (shown as blue diamonds), vnL/ε
′
n{2}

(shown as black circles) is almost independent of the εn used in the denominator, suggesting

that VnL is indeed the linear response to E ′n.
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FIG. 6. (Color online) Event plane correlations and the corresponding participant plane correlations

from viscous hydrodynamics with MC-Glauber initial conditions and η/s = 0.08. 42000 minimum

bias (0-70% centrality) events are cut into 14 equal centrality classes according to their multiplictiy.

Red circles represent event plane correlations between flow vectors integrated over the pT range

pT ∈ [0.3, 3.5) GeV/c, black triangles represent the corresponding participant plane correlators with

moment-defined eccentricities while black hollow squares represent the corresponding participant

plane correlators of the cumulant-defined eccentricity vectors.
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FIG. 7. (Color online) Check of the linearity between vn and εn, using 2000 ideal hydrody-

namic events at 40-50% centrality. Red triangles represent vn{2}/εn{2}, blue diamonds represent

vnL/εn{2} and black circles are vnL/ε
′
n{2}. The left panel is for n = 4 while the right panel is for

n = 5.
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