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Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy,
and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements
are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed
as three-body reactions and described with Faddeev techniques.

Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in
order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective
interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent.
Including excitations of the nucleus in the calculation requires a multichannel optical potential. The purpose of this
paper is to introduce a separable, energy-dependent multichannel representation of complex, energy-dependent
optical potentials that contain excitations of the nucleus and that fulfill reciprocity exactly.

Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to
obtain the form factors for the separable representation.

Results: Starting from energy-dependent multichannel optical potentials for neutron and proton scattering from
12C, separable representations based on a generalization of the Ernst-Shakin-Thaler (EST) scheme are constructed
which fulfill reciprocity exactly. Applications to n+12C and p+12C scattering are investigated for energies from
0 to 50 MeV.

Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phe-
nomenological multichannel optical potentials describes scattering data with the same quality as the original
potential.
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I. INTRODUCTION

Nuclear reactions are an important probe to learn about the structure of unstable nuclei. Due to the short lifetimes
involved, direct measurements are usually not possible. Therefore indirect measurements using (d, p) reactions have
been proposed (see e.g. Refs. [1–3]). Deuteron induced reactions are particularly attractive from an experimental
perspective, since deuterated targets are readily available. From a theoretical perspective they are equally attractive
because the scattering problem can be reduced to an effective three-body problem [4]. Traditionally deuteron-induced
single-neutron transfer (d, p) reactions have been used to study the shell structure in stable nuclei. Nowadays experi-
mental techniques are available to apply the same approaches to exotic beams (see e.g. [5]). Deuteron induced (d, p)
or (d, n) reactions in inverse kinematics are also useful to extract neutron or proton capture rates on unstable nuclei
of astrophysical relevance. [6]. Given the many ongoing experimental programs worldwide using these reactions, a
reliable reaction theory for (d, p) reactions is critical.

One of the most challenging aspects of solving the three-body problem for nuclear reactions is the repulsive Coulomb
interaction. While for very light nuclei, exact calculations of (d,p) reactions based on momentum-space Faddeev
equations in the Alt-Grassberger-Sandhas (AGS) [7] formulation can be carried out [8] by using a screening and
renormalization procedure [9, 10], this technique leads to increasing technical difficulties when moving to computing
(d,p) reactions with heavier nuclei [11]. Therefore, a new formulation of the Faddeev-AGS equations, which does not
rely on a screening procedure, was presented in Ref. [12]. Here the Faddeev-AGS equations are cast in a momentum-
space Coulomb-distorted partial-wave representation instead of the plane-wave basis. Thus all operators, specifically
the interactions in the two-body subsystems, must be evaluated in the Coulomb basis, which is a nontrivial task. The
formulation of Ref. [12] requires the interactions in the subsystems to be of separable form. The same reference suggests
an extension of the Faddeev-AGS equations to take excitations of the nucleus into account. Faddeev-AGS calculations
taking into account rotational excitations were carried out for (d,p) reactions with 10Be and 24Mg in Refs. [13, 14],
showing that the inclusion of excited states in those nuclei could improve the description of experimental data.

Taking into account excitations in nuclear reaction calculations has a long standing tradition leading to formulating
the scattering equations as a coupled-channel problem (see e.g. [15–17]), and a large body of work in nuclear reactions
is based on solving coordinate space coupled-channel differential equations. To include excitations of the nucleus
in the formulation of Ref. [12], separable representations of the effective neutron and proton interactions with the
nucleus which include those excitations need to be constructed in momentum space. We follow here work already
carried out for single-channel optical potentials that are complex [18] as well as energy dependent [19]. These separable
representations have roots in the work by Ernst, Shakin, and Thaler [20] (EST), who derived a scheme for constructing
separable representations using scattering wave functions at given energies as basis for their expansion. In momentum
space, the scattering wave functions are related to half-shell t matrices. Thus, the EST choice guarantees that, at
those fixed energies, the separable expansion is not only on-shell but also half-shell exact. The generalization to
complex, energy-dependent optical potentials of Refs. [18, 19] fulfills the same conditions and in addition guarantees
that reciprocity is fulfilled.

Using scattering wave functions as basis for deriving separable representations is not the only possible choice.
Following the work of Refs. [21, 22] Sturmian basis functions have recently been used to define a separable multichannel
potential for describing low energy neutron scattering from 12C and successfully capturing the low lying resonances [23,
24].

The goal of this work is to generalize the formulation of Ref. [19] so that excitations of the nucleus can be taken
into account in a multichannel framework. Although an extension of the EST scheme to multichannel potentials
was already carried out in Ref. [25], that work was limited to Hermitian potentials. In this manuscript we want
to obtain a separable representation of complex, energy-dependent multichannel optical potentials. First we derive
the formulation for multichannel neutron-nucleus optical potentials in Sec. II and apply the formulation to neutron
elastic and inelastic scattering off 12C. In Sec. III we extend this formulation to charged particle scattering and show
as application the elastic and inelastic scattering of protons from 12C. Our findings are summarized in Sec. IV. The
manuscript is accompanied by three appendices explaining analytic and numerical details.
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II. ENERGY-DEPENDENT MULTICHANNEL NEUTRON-NUCLEUS OPTICAL POTENTIALS

A. Formal Considerations

1. Coupled-Channel Formalism

For setting up the multichannel problem, let us consider a nucleus characterized by the spin-parity Iπ. The nuclear
wavefunction is represented by |ΦIMI

〉, where MI is the projection of I along the z-axis. A neutron interacting
with the nucleus through a potential U has an angular momentum jp = l ± s, with l being the relative orbital
angular momentum and s = 1/2 its spin. The total, conserved angular momentum J of the system takes values
|I − jp| ≤ J ≡ |J| ≤ I + jp, and its projection along the z-axis is given by M . The states of conserved angular
momentum are thus given by [16]

|(Ilsjp)JM〉 =
∑

MImjp

C(IjpJ,MImjpM)|Yjpmjpls 〉|ΦIMI
〉, (1)

where

|Yjpmjpls 〉 =
∑
mlms

C(lsjp,mlmsmjp)|Ylml〉|sms〉. (2)

The functions Ylml are the spherical harmonics, χsms are the corresponding spinors, and C(lsjp,mlmsmjp) Clebsch-
Gordon (C.G.) coefficients. The quantities I, l, and jp collectively characterize a particular configuration of the
system but are not individually conserved. These configurations make up the angular momentum channels and will
be denoted using the Greek letters α, β, γ, etc. Since the potential U couples different angular momentum channels,
we need to employ a coupled-channel formulation to describe a scattering process. The multichannel wavefunction

|ΨJπ(+)
α0 〉 is characterized by the total angular momentum J , the parity π, as well as the incident angular momentum

channel α0, and obeys a coupled set of Lippmann-Schwinger (LS) equations,

|ΨJ(+)
αα0
〉 = |lk0〉 δαα0

+G0α(E)
∑
α′

UJαα′ |ΨJ(+)
α′α0
〉. (3)

Here |ΨJ(+)
αα0 〉 represents a projection of the wavefunction |ΨJπ(+)

α0 〉 onto the α-channel. The free propagator in a given

channel α has the form G0α(E) = (E − εα −H0 + iε)
−1

with E = k20/2µ being the nonrelativistic kinetic energy in
the incident channel and µ the reduces mass. Here εα designates the nuclear excitation energy in channel α. Using
the states of Eq. (3) in the operator LS equation, T (E) = U + UG0(E)T (E), one obtains a set of coupled t matrix
equations

T Jαα0
(E) = UJαα0

+
∑
α′

UJαα′G0α′(E)T Jα′α0
(E). (4)

Here UJαα0
≡ 〈αJM |U |α0JM〉 and T Jαα0

(E) ≡ 〈αJM |T (E)|α0JM〉 are elements of the multichannel potential and t
matrix respectively. The explicit LS equation for the half-shell t matrix in momentum space takes the form

T Jαα0
(k′, k;E) = UJαα0

(k′, k) +
∑
α′

∞∫
0

dpp2 UJαα′(k, p)G0α′(E, p)T Jα′α0
(p, k;E), (5)

where the propagator is given by G0α(E, p) =
(
Eα − p2/2µα + iε

)−1
. Here Eα ≡ E − εα is the center of mass (c.m.)

energy and µα the reduced mass in channel α. Further details on the scattering of neutrons from deformed nuclei are
given in Appendix B.

2. Separable Representation of complex, energy-dependent Multichannel Potentials

For single-channel separable representations, the work of Ref. [18] already showed that the EST scheme presented
in Ref. [20] leads to the violation of reciprocity when applied to complex potentials, which can be resolved if both,
incoming and outgoing scattering states are used in the separable expansion. However, the separable potentials from
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Ref. [18] still do not completely fulfill reciprocity for energy-dependent potentials. A further generalization of the
EST scheme for potentials that are both complex and energy-dependent had to be developed [19], which involves
introducing an energy-dependent separable potential

u(E) =
∑
ij

U(Ei)
∣∣ψ(+)
i

〉
λij(E)

〈
ψ
(−)
j

∣∣U(Ej). (6)

Here |ψ(+)
i 〉 is an outgoing single-channel scattering wavefunction corresponding to U at the energy Ei, and |ψ(−)

i 〉
is an incoming single-channel scattering wavefunction corresponding to U∗ at the energy Ei. The energies Ei are
referred to as the EST support points. The total number of EST support points defines the rank of the separable
potential and thus is the upper limit of the rank indices i and j. Equation (6) shows that the energy dependence is
introduced into the coupling matrix elements λij(E), which obey the constraint

Uemn(E) = 〈ψ(−)
m |u(E)

∣∣ψ(+)
n 〉

=
∑
ij

〈ψ(−)
m

∣∣U(Ei)
∣∣ψ+
i

〉
λij(E)

〈
ψ
(−)
j

∣∣U(Ej)
∣∣ψ+
n

〉
, (7)

where the matrix elements between in- and out-going scattering states at energies Em and En are given as

Uemn(E) ≡
〈
ψ(−)
m

∣∣U(E)
∣∣ψ(+)
n

〉
. (8)

Defining the matrix elements Umn

Umn ≡ Ue(Em) = 〈ψ(−)
m |U(Em)|ψ(+)

n 〉, (9)

leads to a more compact form for Eq. (7),

Uemn(E) =
∑
ij

U tmi λij(E) Ujn,

=
[
U t · λ(E) · U

]
mn

(10)

where U t represents the transpose of U . This constraint ensures that the eigenstates of U and u coincide at the EST
support points. The coupling matrix is symmetric so that λij(E) = λji(E), a condition necessary for the fulfillment
of reciprocity. Since u is explicitly energy dependent, we coin this representation as energy-dependent EST (eEST)
scheme. For single-channel, energy-dependent optical potentials the on-shell t matrix elements obtained with the
eEST scheme and its energy-independent approximation (EST) agree quite well [19].

To generalize the eEST scheme to multichannel potentials, we proceed analogously to Ref. [25] and replace the

single-channel scattering wavefunctions ψ
(+)
i and ψ

(−)
j with their multichannel counterparts Ψ

Jπ(+)
ρ,i and Ψ

Jπ(−)
σ,j . The

indices J and π will be omitted hereafter since the potential U preserves the total angular momentum and parity.
The multichannel separable potential is thus given as

u(E) =
∑
ρσ

∑
ij

U(Ei)
∣∣Ψ(+)

ρ,i

〉
λρσij (E)

〈
Ψ

(−)
σ,j

∣∣U(Ej). (11)

The indices i and j stand for the EST support points as was the case in Eq. (6), while ρ and σ characterize the
coupling to different channels. The separable potential of Eq. (11) is defined for a specific conserved total angular
momentum and parity Jπ. The sum over the channel indices thus includes all angular momentum channels that
correspond to a particular Jπ. For example, let us consider a system of a neutron and a nucleus with a 0+ ground
state and a 2+ excited state. For Jπ = 1/2+ there are 3 coupled channels so that the upper limit for ρ and σ is 3.
When evaluating cross sections, many values of J contribute. In this work the maximum value for J is 13/2 which
corresponds to 12 angular momentum channels. The total number of channels required to evaluate cross sections is
76.

Using the definition of the multichannel half-shell t matrix [26],

T (Ei)
∣∣ρ kρi 〉 = U(Ei)

∣∣Ψ(+)
ρ,i

〉
,〈

σ kσj
∣∣T (Ei) = 〈Ψ(−)

σ,j

∣∣U(Ej), (12)

the Eq. (11) can be recast as

u(E) =
∑
ρσ

∑
ij

T (Ei)
∣∣ρkρi 〉 λρσij (E)

〈
kσj σ

∣∣T (Ej). (13)
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To determine the constraint on u(E), we first generalize the matrices Ue(E) and U defined by Eqs. (8) and (9) to
multichannel potentials. This is accomplished by replacing the single-channel scattering states by the multichannel
wavefunctions in the initial and final state, so that

Ue,αβmn (E) ≡
〈
Ψ(−)
α,m

∣∣U(E)
∣∣ Ψ

(+)
β,n〉, (14)

and

Uαβmn ≡ Ue,αβmn (Em) =
〈
Ψ

(−)
α,m

∣∣U(Em)
∣∣Ψ(+)

β,n

〉
. (15)

Here Eq. (15) shows that the matrix U depends only on the support energies Em and En. On other hand, we see
from Eq. (14) that Ue(E) depends on the projectile energy E as well as the support energies. The constraint on the
separable potential is obtained by substituting the multichannel matrices Ue and U into Eq. (10) leading to

Ue,αβmn (E) =
∑
ρσ

∑
ij

(
U t
)αρ
mi

λρσij (E) Uσβjn ,

=
[
U t · λ(E) · U

]αβ
mn

. (16)

To evaluate the separable multichannel t matrix, Eqs. (13) to (16) are inserted into Eq. (4) to give

t(E) =
∑
ρσ

∑
ij

U(Ei)
∣∣Ψ(+)

ρ,i

〉
τρσij (E)

〈
Ψ

(−)
σ,j

∣∣U(Ej),

=
∑
ρσ

∑
ij

T (Ei)
∣∣ρkρi 〉 τρσij (E)

〈
kσj σ

∣∣T (Ej). (17)

The coupling matrix elements τρσij (E) are implicitly defined by

R(E) · τ(E) =M(E), (18)

where

Rρσij (E) =
〈
kρi

∣∣∣ Tρσ(Ei) +
∑
β

Tρβ(Ei)Gβ(Ej)Tβσ(Ej)
∣∣∣kσj 〉

−
∑
ββ′

∑
n

Mρβ
in 〈k

β
n

∣∣∣Tββ′(En)Gβ′(E)Tβ′σ(Ej)
∣∣∣kσj 〉, (19)

and

Mρσ
ij (E) =

[
Ue(E) · U−1

]ρσ
ij
. (20)

The expression for the matrix Rρσij (E) is analogous to the one obtained in Ref. [19] for the single-channel case except
for the extra channel indices.

The eEST scheme simplifies considerably for energy-independent potentials. From Eqs. (14) we see that the depen-
dence of the separable potential u on the scattering energy E arises from the energy dependence of U . Consequently,
the separable potential is independent of the energy E if U is energy-independent. To derive the multichannel EST
separable representation for energy-independent potentials we set

U(E) = U(Ei) = U(Ej) = U(Em) = U (21)

in Eq. (15). This leads to

Uαβmn ≡ Ue,αβmn =
〈
Ψ

(−)
α,m

∣∣U ∣∣ΨJ(+)
β,n

〉
, (22)

which implies that the matrices U and Ue are identical. As a consequence, the matrix M in Eq. (20) reduces to an
identity matrix. The energy-independent separable potential takes the form

u(E) =
∑
ρσ

∑
ij

T (Ei)
∣∣ρkρi 〉 λρσij (E)

〈
kσj σ

∣∣T (Ej), (23)

with the constraint

δαβδmn =
∑
iρ

(
U t
)αρ
mi

λρβin . (24)
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The corresponding separable t matrix is given by Eq. (17). The coupling matrix τ(E) is obtained by replacing the
matrix M in Eqs. (18) and (19) with the identity matrix so that

R(E) · τ(E) = 1. (25)

The matrix elements Rρσij (E) are given as

Rρσij (E) =
〈
kρi

∣∣∣ Tρσ(Ei) +
∑
β

Tρβ(Ei)Gβ(Ej)Tβσ(Ej)
∣∣∣kσj 〉

−
∑
β

∑
n

〈kρn
∣∣∣Tρβ(En)Gβ(E)Tβσ(Ej)

∣∣∣kσj 〉. (26)

Since the separable potential does not depend on the scattering energy E, we refer to this scheme as the energy-
independent EST separable representation. Although it is derived for energy-independent potentials, it can be applied
to energy-dependent ones as well since only the multichannel half-shell t matrices are required as input. The con-
sequences of applying the energy-independent EST separable representation scheme to energy-dependent potentials
were investigated in Ref. [19] for single-channel optical potentials. It was determined that the off-shell t matrix was
not symmetric and thus violated the reciprocity theorem. Here a similar study will be carried out for multichannel
neutron optical potentials.

3. Simple Illustration for implementing the multichannel eEST Scheme

The eEST separable representation scheme in Section II B for the potential and the t matrix is derived for arbitrary
rank as well as an arbitrary number of coupled channels, and thus looks quite complicated. To demonstrate a simple
implementation, we want to consider a case where there are only two coupled angular momentum channels, as it
would occur in the scattering of neutrons and protons in the triplet channel. To further simplify, we restrict the
rank of the separable potential to one EST support point E1. This means that the channel indices have the domain
1 ≤ α, β, ρ, σ ≤ 2, while all other indices i, j, m, and n are equal to one. The goal is to use the multichannel eEST
scheme to construct a multichannel separable potential u(E) starting from an otherwise non-separable, complex,
and energy-dependent multichannel potential U(E). The separable potential is then used to obtain the separable
t matrix by evaluating Eqs. (17) to (20). The momentum space expressions for the separable t matrix are given by
Eqs. (B4) and (B5). In our example, the input consists of the four half-shell t matrices T11(E1), T21(E1), T12(E1),
and T22(E1), which are obtained by solving the coupled-channel LS equation, Eq. (5), with the starting potential
U(E). This allows the evaluation of the matrix elements R11(E), R12(E), R21(E), and R22(E) using Eq. (B4). The
coupling matrix elements τ11, τ12, τ21, and τ22 can then be computed from Eq. (B1). Finally, we employ Eq. (B5) to
obtain the multichannel separable t matrix

tαβ(k′, k;E) = Tα1(k′, k
(1)
1 ;E1) τ11(E) T1β(E1) + Tα1(k′, k

(1)
1 ;E1) τ12(k′, k

(2)
1 ;E) T2β(k′, k

(1)
1 ;E1)

+ Tα2(k′, k
(2)
1 ;E1) τ21(E) T1β(k′, k

(1)
1 ;E1) + Tα2(k′, k

(2)
1 ;E1) τ22(k′, k;E) T2β(k′, k

(2)
1 ;E1). (27)

Here k
(1)
1 and k

(2)
1 are the on-shell momenta corresponding to E1 in channels 1 and 2. The matrix elements t11(k′, k;E),

t21(k′, k;E) = t12(k, k′;E), and t22(k′, k;E) are obtained from Eq. (27). Applying the eEST scheme to realistic
multichannel nucleon-nucleus optical potentials involves many more angular momentum channels and EST support
points. Nonetheless, the procedure is similar to the simple example considered here.

B. Application to the Elastic and Inelastic Scattering of Neutrons from 12C

In this section we demonstrate that the eEST scheme introduced in Section II A 2 can be successfully employed to
create high quality separable representations of multichannel neutron optical potentials. As an example we consider
the scattering of neutrons from the nucleus 12C. The 12C nucleus possesses selected excited states, with the first and
second levels having Iπ = 2+ and Iπ = 4+ and being located at 4.43 and 14.08 MeV above the 0+ ground state.
The collective rotational model [27] is assumed to describe the coupling between the ground state and these excited
states. The Deformed Optical Model Potential (DOMP) by Olsson 89 [28] is a coupled-channel optical potential
and is adopted to describe the n+12C interaction. It is based on the rigid rotor model and fits its parameters to
elastic and inelastic neutron scattering data between 16 and 22 MeV laboratory kinetic energy. Since different angular
momentum channels are coupled, it must be treated with a coupled-channel formalism. Further details about the
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model are provided in Appendix C. The Olsson 89 DOMP only considers elastic scattering and inelastic scattering
to the first excited state.

First we construct a separable representation of the Olsson 89 DOMP using the multichannel eEST scheme. Then
the corresponding separable t matrix, the S matrix, and the differential cross sections are computed. They agree
very well with those obtained by directly solving Eq. (5) with the Olsson 89 DOMP. Finally, by considering the
off-shell t matrix elements, we illustrate that the multichannel eEST separable representation of the DOMP obeys
the reciprocity theorem.

1. S-matrix Elements and Differential Cross Section

First we want to consider S-matrix elements in well defined channels to study how well the energy-dependent
multichannel eEST scheme can represent them and what rank is required to do so. In Fig. 1 the Jπ = 1/2+ S-matrix
elements, SJαα0

(E), are shown for the 0+⊗s1/2 → 0+⊗s1/2 and 0+⊗s1/2 → 2+⊗d3/2 channels for neutron scattering

from 12C as function of the laboratory energy. The diagonal 0+ ⊗ s1/2 → 0+ ⊗ s1/2 channel is represented by the

solid line and the coupling to the 2+ ⊗ d3/2 by the dashed line. The corresponding S matrix elements obtained by
directly solving Eq. (5) with the Olsson 89 DOMP are represented by the solid diamonds and squares. The agreement
between the energy-dependent separable representation and the original calculation is excellent. It should be noted
that in this case already a rank-2 representation with support points at 6 and 40 MeV is sufficient to achieve this
high quality agreement between 0 and 50 MeV laboratory energy.

The energy-independent EST scheme is a simplification of the eEST scheme leading to an energy-independent
separable representation. To illustrate the difference between the two schemes, Fig. 2 shows the S-matrix elements in
the diagonal channel 0+ ⊗ s1/2 −→ 0+ ⊗ s1/2 computed in the eEST scheme (solid line) and the energy-independent
EST scheme (dashed line) using the same support points (rank). As a reference, the results obtained by solving Eq. (5)
with the original multichannel Olsson 89 optical potential are given by the filled diamonds. The figure clearly shows
that the representation with the EST scheme is of lesser quality than the eEST scheme. This finding is consistent with
observations for representations of single-channel optical potentials [18]. This suggests that the EST scheme might
be improved by increasing the rank of the representation. However, in the multichannel case there is an additional
complication, since in the energy-independent scheme coupling matrix elements are not symmetric, i.e. SJαα′ 6= SJα′α,
as will be illustrated later.

The numerical effort needed to evaluate the matrix elements Ue,αβij (E) increases rapidly with the number of coupled
channels. To simplify the implementation of the eEST scheme, one can avoid the evaluation of these matrix elements

for every energy one wants to compute. Instead Ue,αβij (E) can be computed at fixed energies and an interpolation

scheme used to determine its value elsewhere. Following Ref. [19], we choose the fixed energies to coincide with the
EST support points. Such a choice has the advantage that the potential matrix elements are needed only at the
support points. The results obtained with the interpolated eEST scheme are shown by the dash-dotted lines in Fig. 2.
We observe that the results agree remarkably well with those obtained with the exact eEST scheme. To show the
overall quality of the eEST separable representation in all partial wave S matrix elements, we compute cross sections
for elastic and inelastic scattering. In Fig. 3 the differential cross sections for elastic and inelastic scattering for the
n+12C system are shown at various incident neutron energies. The left hand panel shows the differential cross section
for elastic scattering, and the right hand panel the differential cross section for inelastic scattering to the 2+ state of
12C. The support points are at Elab = 6 and 40 MeV. The separable representation describes both differential cross
sections very well and agrees with the coupled channel calculation directly based on the Olsson potential. However,
we want to point out that the angular region beyond about 120 deg of both experimental differential cross sections is
not well described by the Olsson 89 DOMP. This may be due to omitting additional excited states or not taking into
account rearrangement channels.

2. Off-shell t matrices

The reciprocity theorem requires that the off-shell t matrix be invariant under simultaneous interchange of channel
indices and momenta. It is thus imperative that we investigate the properties of the off-shell t matrix elements
computed with the separable representation schemes. First, we calculate the multichannel off-shell t matrix with the
original Olsson 89 DOMP and show the real parts of the Jπ = 1/2+ tmatrix for the n+12C system at 20.9 MeV incident
neutron energy in Fig. 4. The matrix elements correspond to the quantum numbers α0 = {I = 0, l = 0, j = 0.5}
and α1 = {I = 2, l = 2, j = 3/2}. We observe that the t matrices exhibit high momentum components in all
channels, which is characteristic of local potentials. In the coupled channels they are invariant under the simultaneous
interchange of channel indices and momenta, as required by the reciprocity theorem.
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Next, we explore the off shell properties of t matrix obtained with the eEST separable representation scheme.
In Fig. 5 the real part of the multichannel eEST separable t matrix is shown for the n+12C system at 20.9 MeV
incident neutron energy for the same channels. First we observe that the separable representation does not contain
high-momentum components in either channel. We also see that t matrix elements obtained with the eEST separable
representation are invariant under a simultaneous interchange of channel indices and momenta, as required by the
reciprocity theorem. To illustrate that the energy-independent EST separable representation is deficient in that
respect, Fig. 6 shows the off-shell t matrix for the same channels. It is quite obvious that the channel-coupling t
matrices, panels (b) and (c), are not invariant under a simultaneous interchange of channel indices and momenta.
However, even the diagonal channels, panels (a) and (d) are not symmetric under the exchange of k and k′. This
violation was already found for single channel energy-independent EST calculations [19]. In multi-channel calculations
this violation of symmetry seems to be enhanced.

To determine the extent to which reciprocity is violated (as in Ref. [19]), we define an asymmetry relation as

∆tJαα0
(k′, k;E) =

∣∣∣∣ tJαα0
(k′, k;E)− tJα0α(k, k′;E)

[tJαα0
(k′, k;E) + tJα0α(k, k′;E)]/2

∣∣∣∣ . (28)

In Fig. 7 this asymmetry is shown for the n+12C system computed at 20.9 MeV as function of the off-shell momenta
k′ and k for the energy-independent EST representation. Panel (b) clearly shows that even at the on-shell point
(k′ = k = k0 = 0.93 fm−1) the asymmetry in the α 6= α0 channel is non-zero. This behavior can not be repaired
by increasing the rank of the separable representation. The same calculation for the eEST representation will give
exactly zero for all values of k′ and k in all channels. The panels would be white and are therefore not shown. From
this we conclude that for a separable representation of energy-dependent multi-channel complex optical potential, the
eEST scheme must be applied if reciprocity should be fulfilled.

III. SEPARABLE REPRESENTATION OF ENERGY-DEPENDENT MULTICHANNEL
PROTON-NUCLEUS OPTICAL POTENTIALS

A. Formal Considerations

The interaction of protons with nuclei comprises the strong nuclear force and the Coulomb potential. The nuclear
interaction is given by the complex, energy-dependent optical potential and usually has the same form as the neutron
optical potential. The Coulomb interaction consists of a long-ranged point-Coulomb potential V C and a short-ranged
piece. The latter arises from the charge distribution of the nucleus and is commonly approximated by a uniformly
charged sphere. The point-Coulomb potential is long-ranged and affects the asymptotic behavior of the scattering
wavefunctions. Consequently, the proton-nucleus scattering problem can not be treated with the same techniques
employed for neutron scattering in Section II. According to the Goldberger-Gell-Mann relation [29], the scattering
amplitude for p+A scattering separates into two parts. The first part is the Rutherford amplitude corresponding to
the point Coulomb potential. The second part is the nuclear amplitude corresponding to the short-range potential U ,
consisting of the nuclear interaction and the short-range Coulomb potential. While the Rutherford amplitude is known
analytically, the nuclear amplitude must be evaluated numerically. The nuclear amplitude is evaluated in a basis of
Coulomb wavefunctions according to Eq. (A14). When working in momentum space, this is a very challenging task
since the Coulomb wavefunctions are singular. We employ the techniques presented in Ref. [30], where the authors
showed that, in the Coulomb basis, the Coulomb-distorted nuclear t matrix fulfills a LS-type equation of the same
form as in the basis of plane waves. The momentum-space matrix elements of the potential in the Coulomb basis are
obtained via Fourier transform from coordinate space. For multichannel potentials, the nuclear t matrix fulfills the
coupled set of LS-type equations shown in Eq. (B7).

To derive a separable representation for the short-ranged proton-nucleus potential U , we modify the multichannel

eEST scheme of Section II A 2. The multichannel scattering wavefunctions
∣∣Ψ(+)

ρ,i

〉
are replaced by the Coulomb-

distorted multichannel scattering wavefunctions
∣∣Ψc(+)

ρ,i

〉
. This leads to the separable potential

u(E) =
∑
ρσ

∑
ij

U(Ei)
∣∣Ψc(+)

γρ,i

〉
λc, ρσij (E)

〈
Ψc(−)

σ,j

∣∣U(Ej),

=
∑
ρσ

∑
ij

T c(Ei)
∣∣ρ φcρi 〉 λc, ρσij (E)

〈
φcσj σ

∣∣T c(Ej). (29)

Here φcσj are the scattering Coulomb wavefunctions corresponding to the channel momentum kσj . The Coulomb-
distorted nuclear transition matrix T c(E) fulfills the LS equation

T c(E) = U + UGC(E)T c(E), (30)
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with GC(E) = [E − H0 − V C + iε]−1 being the Coulomb Green’s function, H0 the free Hamiltonian, and V C the
point-Coulomb potential. In analogy to Eqs. (14) and (15), we define the energy-dependent matrix

Ue,αβmn (E) ≡
〈
Ψc(−)

α,m

∣∣U(E)
∣∣Ψc(+)

β,n〉, (31)

and the energy-independent matrix

Ucαβmn = Uce,αβmn (Em) ≡
〈
Ψc(−)

α,m

∣∣U(Em)
∣∣Ψc(+)

β,n〉. (32)

The coupling matrix elements λc, ρσij (E) then fulfill

Uce,αβmn (E) ≡
〈
Ψc(−)

α,m

∣∣u(E) Ψc(+)
β,n

〉
,

=
∑
ρσ

∑
ij

〈
Ψc(−)

α,m

∣∣T c(Ei)∣∣ρJM φcρi
〉
λc, ρσij (E)

×
〈
φcσj
∣∣T c(Ej)∣∣Ψc(+)

νβ,n

〉
,

=
[
Uct · λc(E) · Uc

]αβ
mn

. (33)

Here Uct represents the transpose of Uc. The separable representation of the t matrix is then given as

tc(E) =
∑
ρσ

∑
ij

U(Ei)
∣∣Ψc(+)

ρ,i

〉
τ c, ρσij (E)

〈
Ψc(−)

σ,j

∣∣U(Ej),

=
∑
ρσ

∑
ij

T c(Ei)
∣∣ρφcρi 〉 τ c, ρσij (E)

〈
φcσj σ

∣∣T c(Ej). (34)

Substituting Eqs. (29)-(34) into the LS equation leads to

Rc(E) · τ c(E) · Uc = Uce(E), (35)

where

Rc, ρσij (E) =
〈
φcρi

∣∣∣ T cρσ(Ei) +
∑
β

T cρβ (Ei)GCβ(Ej) T
c
βσ(Ej)

∣∣∣φcσj 〉
−
∑
ββ′

∑
n

Mc, ρβ
in (E)〈φcβn

∣∣∣T cββ′(En)GCβ′(E)T cβ′σ(Ej)
∣∣∣φcσj 〉, (36)

and

Mc, ρσ
ij (E) =

[
Uce(E) · (Uc)−1

]ρσ
ij
. (37)

Here the indices β, β′ represent angular momentum channels. It is noteworthy that the expressions for the Coulomb
distorted separable multichannel nuclear t matrix elements have the same form as the ones obtained for neutron-
nucleus systems in Section II A 2. The only difference is that all quantities are evaluated in the Coulomb-basis.
Moreover, the behavior of the off-shell nuclear t matrices under a transposition does not depend on the chosen basis,
and thus the multichannel eEST separable representation for proton-nucleus systems fulfills the reciprocity in the
same fashion as the one for neutron-nucleus systems.

B. Elastic and Inelastic Scattering of Protons from 12C

To illustrate the implementation of the multichannel separable expansion presented in Section III A, we consider
the scattering of protons from 12C including both the the 0+ ground state and 2+ excited state. A rigid rotor model
is adopted to describe the structure of the 12C nucleus as in Section II B. The proton-12C interaction is given by a
deformed OMP plus the point-Coulomb potential. The proton OMP includes a short-range contribution arising from
the nuclear charge distribution. Deformations are introduced using multipole expansions as outlined in Appendix C.
In this work, we employ the Meigooni 85 [31] DOMP which is presented in Appendix C 2. A uniformly charged sphere
is assumed for the nuclear charge distribution so that the short-ranged Coulomb potential has the form

Vcoul(r,Rc) = Zα

[
1

2Rc
(3− r2/R2

c)−
1

r

]
. (38)
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The values of the Coulomb radius Rc are adopted from Ref. [32]. Here Z is the atomic number and α the electromag-
netic coupling constant.

First, the differential cross sections are evaluated using the Meigooni 85 DOMP and compared to the ones obtained
using its separable representation. In Fig. 8 the differential cross section for elastic proton scattering from 12C as
function of the center of mass (c.m.) angle θc.m. is shown for proton incident energies at 35.2 MeV (panel (a)) and
65 MeV (panel (c)). The solid lines show the eEST separable representation while the crosses represent calculations
based on the original Meigooni 85 DOMP. The support points for the separable representation are chosen to be
at Elab = 25, 45, and 65 MeV. The differential cross sections for inelastic scattering to the 2+ state are shown in
panels (b) and (d) for the same energies. We observe that the cross sections computed with the eEST separable
representation of rank-3 agree very well with the ones computed directly from the Meigooni 85 DOMP.

When incorporating the rotational excitation of 12C in the calculations presented in Fig. 8, we deformed the
nuclear part of the optical potential as well as the short-ranged Coulomb potential, since the charge distribution
should undergo the same deformation as the nuclear short-ranged potential. In order to investigate if deforming the
short-ranged Coulomb potential affects the cross sections, we carry out the same calculations as before, but keeping
the short-range Coulomb potential spherical. The result of this calculation is shown in Fig. 9 by the filled upward
triangles. It is interesting to note that the differential cross sections for inelastic scattering do not show any effect of
this simplification. This may be due to the still relatively small charge (Z=6) of 12C where a deviation from a spherical
charge has a small effect. In the framework of (d,p) reactions on 24Mg it was shown that for Z=12 the deformation of
the charge only leads to a very small effect in the transfer cross section [14], thus our finding is consistent. However,
since the strength of the short-ranged Coulomb force depends on nuclear charge, its deformation would have a larger
effect on the cross sections for heavier nuclei.

Differential cross sections are summed up over all partial waves. The fact that the eEST scheme represents the
cross sections directly obtained from the Meigooni 85 DOMP very well implies that overall the partial waves must
be well represented. To study further details we now concentrate on the Jπ = 1/2+ state and study the half t
matrices tJ

π

α,1(k, k1;E) calculated at the incident proton energy 35.2 MeV in more detail. Here α can take the values
α = 1 = {I = 0, l = 0 , j = 1/2} and α = 2 = {I = 0, l = 2 , j = 3/2}. The real parts of the t matrices in
those channels are depicted in Fig. 10. Panel (a) shows the half-shell t matrix elements for the channels ‘11’ and
‘21’ in the interval 0 fm−1 ≤ k ≤ 7 fm−1 for the full calculation and a calculation in which the short-range Coulomb
potential is omitted. The matrix elements in the ‘21’ channel are multiplied with a factor 3 to be roughly of the same
size as the matrix elements in the ‘11’ channel. Since the fall-off behavior of the matrix elements for large momenta
may be important for reaction calculations, we depict in panel (b) the matrix elements in the momentum interval
4 fm−1 ≤ k ≤ 10 fm−1. Here we see that the short-range Coulomb potential mainly influences the diagonal ‘11’
channel. At 6 fm−1 the t matrix calculated with the nuclear potential only is essentially zero, while the short-ranged
Coulomb potential still gives a small contribution. In the ‘21’ channel both t matrices fall off to zero, indicating that
the deformation of the short-ranged Coulomb potential has little effect for a nucleus as light as 12C. This may however
be different when considering heavier nuclei and will have to be investigated further.

Finally, we separately investigate the effects of the deformation of the short-ranged Coulomb potential on the
half-shell multichannel t matrix elements. To do so, the coupled-channel calculation is carried out with a spherical
short-ranged Coulomb potential and compared with the full calculation. This comparison is shown in Fig. 11. We
plot the t matrices in the same momentum ranges as in Fig. 10. In the curves in panel (a) we can not discern between
the two calculations. Only when considering a much smaller scale in panel (b) the calculations in the ‘21’ channel are
slightly different. However, the differences are so small that using a spherical short-range Coulomb potential can be
considered a good approximation for 12C, as already seen in the cross section at high momentum transfer in Fig. 9.

IV. SUMMARY AND CONCLUSION

In this work we introduce separable representations of complex, energy-dependent multichannel optical potentials
for neutron as well as proton scattering from nuclei. To fulfill reciprocity exactly, the separable representation must
be energy-dependent. This is achieved by having energy-dependent coupling constants.

The first part of the manuscript concentrates on the separable expansion of neutron-nucleus Deformed Optical
Model Potentials (DOMPs). This is achieved by generalizing the energy-dependent EST (eEST) scheme of Ref. [19]
to multichannel potentials. To illustrate the implementation of the multichannel eEST scheme, we considered neutron
scattering from 12C. In order to describe the structure of the 12C nucleus, the rigid rotor model is assumed, and the
Olsson 89 [28] DOMP was adopted to describe the effective neutron-12C interaction. The multichannel eEST scheme
was then used to construct a separable representation for the Olsson 89 DOMP. In this case a rank-2 separable
expansion was sufficient to describe elastic and inelastic scattering cross sections between 0 and 50 MeV incident
neutron energies.
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To demonstrate the necessity of using an energy-dependent multichannel separable representation, we also con-
structed a separable expansion based on the energy-independent multichannel EST scheme, which needed to be of
rank-3 to match the representation of S-matrix elements between 0 and 50 MeV with the same quality as the eEST
scheme. An examination of the off-shell t matrix elements showed that only the multichannel eEST separable repre-
sentation fulfills reciprocity, i.e. the t matrix is invariant upon a simultaneous interchange of momenta and channel
indices. In contrast, the energy-independent multichannel expansion yields an asymmetric off-shell t matrix, as was
already observed in single channel expansions in Ref. [19].

The cost of implementing the eEST scheme for multichannel potentials increases with the number of channels, since

the matrix elements Ue,αβij (E) must be calculated at each desired energy E. However, it turns out that it is sufficient
to compute this matrix element at fixed energies and interpolate on the energy to obtain its value at arbitrary energies.
As already observed in Ref. [19] for single-channel potentials, the results obtained with the interpolated eEST scheme
agree very well with the ones obtained without the interpolation.

The second part of the manuscript focuses on the separable representation of proton-nucleus DOMPs. The proton-
nucleus potential consists of a nuclear piece as well as the Coulomb interaction. The Coulomb interaction further
separates into a short-ranged part, usually represented as a charged sphere, and a the long-ranged point-Coulomb
force. The point-Coulomb potential is incorporated by working in the Coulomb basis in accordance with the Gell-
Mann-Goldberger [29] relation. In order to employ the eEST scheme in the same fashion as for neutron-nucleus
scattering, we need to solve a Lippmann-Schwinger type equation to obtain half-shell t matrices in the Coulomb
basis. While the Coulomb propagator is quite simple in this basis, the evaluation of potential matrix elements is more
involved. We followed Ref. [30] to evaluate the potential matrix elements.

To demonstrate an implementation of an eEST representation of a proton-nucleus optical potential, we considered
proton scattering off 12C and used the Meigooni 85 [31] DOMP as a starting point. Differential cross sections for elastic
and inelastic scattering were computed using the eEST scheme, showing that a rank-3 separable expansion is sufficient
to represent the Meigooni 85 [31] DOMP. Note that the only difference between the eEST schemes for neutron and
proton optical potentials is the basis employed for the separable expansion. This implies that the discussions on
reciprocity given in Section II B for neutron-nucleus potentials apply to proton-nucleus systems as well.

In the Meigooni 85 DOMP the short-ranged Coulomb potential is deformed in the same fashion as the short-
range nuclear potential. To study the effects of deforming the short-ranged Coulomb potential, the coupled-channel
calculations were repeated with the Coulomb deformation parameter set to zero. It was observed that the differential
cross sections are not significantly altered by using a spherical short-ranged Coulomb potential. The effect on the
half-shell t matrix elements for elastic scattering is also negligible. There is a minimal change to the half-shell t matrix
elements for inelastic scattering. However, those changes are so small that when considering a nucleus as light as
12C a deformation of the charge distribution may be safely neglected. This insight is consistent with the finding in
Ref. [14]. Most likely, for heavier nuclei this will not be the case and a deformation of the short-ranged Coulomb
potential will be mandatory.
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FIG. 1. The energy-dependent EST (eEST) separable representation of the Jπ = 1/2+ multichannel S-matrix elements,
SJαα0

(E), for the n+12C system as function of the laboratory energy. The solid (dashed) line represents the S-matrix elements
obtained with a rank-2 eEST separable representation in the 0+ ⊗ s1/2 → 0+ ⊗ s1/2 (0+ ⊗ s1/2 → 2+ ⊗ d3/2) channel. The
support points are located at 6 and 40 MeV. The filled diamonds and squares represent the corresponding S-matrix elements
directly evaluated with the Olsson 89 DOMP [28].
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FIG. 5. The real part of multichannel off-shell eEST separable t matrix elements for the n+12C system at 20.9 MeV incident
neutron energy. Panels (a), (b), (c), and (d) depict Tα0α0 , Tα1α0 , Tα0α1 , and Tα1α1 . The quantum numbers for the states
shown here are Jπ = 1/2+ α0 = {I = 0, l = 0, j = 0.5}, and α1 = {I = 2, l = 2, j = 1.5}. The on-shell momentum is given by
k0 = 0.93 fm−1.



17

0.0

1.0

2.0

3.0

4.0

k
′  [
fm

−1
]

(a) Re[t J=0.5
α0α0

(k′,k;E)] (b) Re[t J=0.5
α1α0

(k′,k;E)]

1.0 2.0 3.0 4.0
k [fm−1 ]

0.0

1.0

2.0

3.0

4.0

k
′  [
fm

−1
]

(c) Re[t J=0.5
α0α1

(k′,k;E)]

0.0 1.0 2.0 3.0 4.0
k [fm−1 ]

(d) Re[t J=0.5
α1α1

(k′,k;E)]

-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.40

-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02

-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02

-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00

-0.03

-0.02

-0.01

0.00

0.01

0.02

-0.03

-0.02

-0.01

0.00

0.01

-0.01

-0.01

-0.01

0.00

0.01

0.01

-0.01

-0.01

-0.01

0.00

0.01

FIG. 6. Same as Fig. 8 but for the EST separable representation of the t matrix.
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k. Panels (a)and (b) show the asymmetry for the energy-independent EST separable representations.
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FIG. 8. The differential cross sections for proton scattering off 12C. Panels (a) and (c) depict the differential cross sections for
elastic scattering at proton incident energies of 35.2 MeV (a) and 65 MeV (c). The corresponding cross sections for inelastic
scattering to the 2+ state at 4.43 MeV are depicted in panels (b) and (d). The solid lines represent the calculations with
the eEST separable representation, while calculations with the original optical potential by Meigooni 85 [31] are given by the
crosses. The support points for the separable representation at located at Elab = 25, 45, and 65 MeV. The data represented
by filled circles at 35 and 65 MeV are taken from Refs. [33] and [34] respectively.
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FIG. 9. The differential cross sections for proton scattering off 12C. Panels (a) and (c) depict the differential cross sections for
elastic scattering at proton incident energies of 35.2 MeV (a) and 65 MeV (c). The corresponding cross sections for inelastic
scattering to the 2+ state at 4.43 MeV are depicted in panels (b) and (d). The solid lines represent the calculations with the
eEST separable representation. The support points for the separable representation at located at Elab = 25, 45, and 65 MeV.
The filled triangles represent a calculation in which only the short range nuclear potential is deformed, while the short-ranged
Coulomb potential spherical. The data at 35 and 65 MeV are taken from Refs. [33] and [34] respectively.
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FIG. 10. The real part of half-shell multichannel t matrix elements tJ
π

α1 (k, k1;E) for Jπ = 1/2+ for proton scattering from
12C at incident proton energy 35.2 MeV. Panel (a) shows the half-shell t matrix in the interval 0 fm−1 ≤ k ≤ 7 fm−1, while
panel (b) depicts the same half-shell t matrix between k = 4 and 10 fm−1. The channels ‘1’ and ‘2’ are represented as

1 ≡ {I = 0, l = 0 , j = 1/2} and 2 ≡ {I = 0, l = 2 , j = 3/2}. The dashed line represents the t matrix elements t
1/2+

11 (k, k1;E)
calculated from the eEST separable representation of the Meigooni 85 DOMP [31] for the on-shell momentum k1 = 1.2 fm−1

as function of k. The solid line gives the the t matrix elements t
1/2+

21 (k, k1;E) obtained in the same fashion, but multiplied by
a factor 3 to enhance its features. For the calculations of the same channels, represented with the dotted and dash-dotted lines
the short-ranged Coulomb potential is omitted.
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Coulomb potential is included but taken to be spherical. The t-matrix elements of the coupling channels are multiplied by a
factor 3 to enhance their features.
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Appendix A: Nucleon Scattering from a Deformed Nucleus

1. Neutrons

Let us consider a neutron scattering from a nucleus possessing a rotational energy spectrum characterized by the
spin-parity Iπ. The spectrum corresponds to collective rotational states with wavefunctions |ΦIMI

〉. These are given
by [35]

ΦIMIK(ξ) =

(
2I + 1

8π2

)1/2

DIMK(ξ), (A1)

where DIMK(ξ) are the Wigner rotation matrices. Here ξ are the angles specifying the orientation of the nucleus. The
interaction between the neutron and the nucleus leads to couplings between states of different spin-parity. Here we
treat couplings to selected rotational states explicitly, while the imaginary part of the optical potential accounts for
couplings to all other channels besides those that are included. To compute scattering observables for such systems,
the coupled-channels formalism [36] must be adopted.

a. States of conserved angular momentum

To construct states of conserved angular momentum we adopt the so-called jj-coupling scheme. The neutron spin
s = 1/2 is coupled to the relative orbital angular momentum l to yield jp = |l ± 1/2|. The corresponding projections
along the z-axis ms and ml fulfill the condition mjp = ms + ml. The angular momentum jp is in turn coupled to
the nuclear spin I to yield the total angular momentum |I − jp| ≤ J ≤ I + jp. The angular momentum J and its
projection along the z-axis M = MI + mjp are conserved. To obtain the states of conserved angular momentum
|(Ilsjp)JM〉, we first define

|Yjpmjpls 〉 =
∑
mlms

C(lsjp,mlmsmjp)|Ylml〉|sms〉, (A2)

where the functions Ylml are the spherical harmonics and χsms is the corresponding spinor. The quantity C(lsjp,mlmsmjp)
is the Clebsch-Gordon (C.G.) coefficient. The inverse relation is given by

|Ylml〉|sms〉 =
∑
jpmjp

C(lsjp,mlmsmjp)|Yjpmjpls 〉. (A3)

The sates |I(lsjp)JM〉 are constructed by coupling Eq. (A2) to the rotational state |ΦIMI
〉 so that

|(Ilsjp)JM〉 =
∑

MImjp

C(IjpJ,MImjpM)|Yjpmjpls 〉|ΦIMI
〉, (A4)

with inverse relation

|Yjpmjpls 〉|ΦIMI
〉 =

∑
JM

C(IjpJ,MImjpM)|(Ilsjp)JM〉. (A5)

Substituting Eq. (A2) and (A3) into Eqs.(A5) and (A4) leads to

|(Ilsjp)JM〉 =
∑

MImjp

∑
mlms

C(IjpJ,MImjpM)C(lsjp,mlmsmjp)|Ylml〉|sms〉|ΦIMI
〉, (A6)

with the inverse relation given by

|Ylml〉|sms〉|ΦIMI
〉 =

∑
JM

∑
jpmjp

C(IjpJ,mImjpM)C(lsjp,mlmsmjp)|(Ilsjp)JM〉. (A7)

To simplify the notation, we define a channel index α ≡ (Ilsjp) so that the states of conserved angular momentum
can be written as |(Ilsjp)JM〉 = |αJM〉. These states form a complete basis

1 =
∑
αJM

αJM〉〈αJM |. (A8)
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b. Scattering amplitudes and cross sections

The on-shell t matrix is related to the S-matrix by

SJαα0
(E) = δαα0

+ 2iκJαα0
(E),

with κJαα0
(E) = −π√ραρα0

T Jαα0
(kα0 , k

α0
0 ;E). (A9)

Here ρα = µαk
α
0 is the density of states in channel α. To obtain the scattering amplitude for the process

|k0smsIMI〉 −→ |kαsm′sI ′M ′I〉, we first evaluate the t matrix

TI′M ′
Ism

′
s:IMIsms(kα,k0;E) = 〈I ′M ′Ism′skα|T (E)|k0smsIMI〉

=
∑
JM

∑
ll′jpj′p

C(IjpJ,MIM −MIM) C(lsjp,M −MI −msmsM −MI)

× C(l′sjp,M −M ′I −m′sm′sM −M ′I)C(I ′j′pJ,M
′
IM −M ′IM)

× T Jαα0
(kα, k0;E) Yl′M−M ′

I−m′
s
(k̂α)Y ∗lM−MI−ms(k̂0). (A10)

The scattering amplitude for can be inferred from the relation [37]

fI′M ′
Ism

′
s:IMIsms(E, θ) = 〈I ′M ′Ism′skα|f(E)|k0smsIMI〉

=
4π2

k0

√
ρα0

ρα〈I ′M ′Ism′skα|T (E)|k0smsIMI〉. (A11)

If the momentum k0 is chosen to be along the z-axis, the orbital angular momentum l has no projection along this
direction. Since we are dealing with axially symmetric potentials, we set the azimuthal angle φ = 0. The scattering
amplitude thus takes the form

fI′M ′
Ism

′
s:IMIsms(E, θ) =

4π

k0

∑
JM

∑
ll′jpj′p

C(IjpJ,MIM −MIM) C(lsjp,M −MI −msmsM −MI)

× C(l′sjp,M −M ′I −m′sm′sM −M ′I) C(I ′j′pJ,M
′
IM −M ′IM)

× κJαα0
(E) Yl′M−M ′

I−m′
s
(θ, 0)Y ∗l0(0, 0). (A12)

Finally, to obtain the differential cross section we take the square of the scattering amplitude |fI′M ′
Ism

′
s:IMIsms(E, θ)|2.

If the spin projections are not measured, the cross section is evaluated by averaging over the initial magnetic quantum
numbers and summing over the final ones. This leads to the unpolarized differential cross section

dσ(θ)

dΩ
=

1

(2I + 1)(2s+ 1)

∑
M ′
Ims′

∑
MIms

∣∣∣fI′M ′
Isms′ :IMIsms(E, θ)

∣∣∣2. (A13)

2. Protons

The coupled-channel calculations for proton-nucleus systems proceed similarly to those of the neutron-nucleus
systems. However, due to the presence of the Coulomb force the point-Coulomb is separated via the Gell-Mann-
Golberger relation [29] and the nuclear amplitude is calculated in the basis of Coulomb scattering states. The full
proton-nucleus scattering amplitude thus takes the form [27]

fI′M ′
Ism

′
s:IMIsms(E, θ) = fc(θ)δI′M ′

Ism
′
s:IMIsms

+
4π

k0

∑
JM

∑
ll′jpj′p

ei[σl′ (kα)+σl(k0)]C(IjpJ,MIM −MIM) C(lsjp,M −MI −msmsM −MI)

× C(l′sjp,M −M ′I −m′sm′sM −M ′I) C(I ′j′pJ,M
′
IM −M ′IM)

× κcJαα0
(E) Yl′M−M ′

I−m′
s
(θ, 0)Y ∗l0(0, 0). (A14)

Here fc(θ) is the Rutherford amplitude and σl′(k0) the Coulomb phase shift. The dimensionless κcJαα0
(E) is related

to the Coulomb-distorted multichannel t matrix T cJαα0
(kα0 , k

α0
0 ;E) by Eq. (A9). The unpolarized differential cross

sections computed are according to Eq. (A13).
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Appendix B: Numerical Aspects

1. Neutron Optical Potentials

To evaluate the separable t matrix of Eq. (17), the multichannel half-shell t matrices T Jαρ(Ei)
∣∣kρi 〉 and coupling

matrix τρσij (E) are required as input. The half-shell t matrices are obtained as solutions of Eq. (5). The matrix

τρσij (E) is determined by solving Eq. (18), where the matrix Rρσij (E) is calculated according to Eq. (19). For the

purpose of evaluating τρσij (E) numerically, a different notation for the channel and energy indices is adopted. Each

combination {i, ρ} is denoted by a single index a. We proceed by expressing Eqs. (18) - (19) in the form

Mab(E) ≡ [R(E) · τ(E)]ab, (B1)

where

Rab(E) = 〈ka aJM
∣∣T (Ea) + T (Ea)G0(Eb)T (Eb)

∣∣bJM kb
〉

−
∑
c

Mac(E)〈kc cJM
∣∣T (Ec)G0(E)T (Eb)

∣∣bJM kb
〉
, (B2)

with

Mac(E) ≡
[
Ue(E)U−1

]
ac
. (B3)

The explicit momentum space expression for R(E) is given as

Rab(E) = T Jαaαb(kb, ka;Ea) +
∑
β

∞∫
0

dp p2 T Jαa,β(p, ka;Ea)G0β(Eb)T
J
βαb

(p, kb;Eb)

−
∑
c

Mac(E)
∑
β

∞∫
0

dp p2 T Jαcβ(p, kc;Ec)G0β(E)T Jβαb(p, kb;Eb). (B4)

The coupling matrix τ(E) is thus determined from Eq. (B1) so that the separable multichannel t matrix is given as

tJαβ(k′, k;E) =
∑
ρσ

∑
ij

T Jαρ(k
′, kρi ;Ei)τ

ρσ
ij (E)T Jσβ(k, kσj ;Ej),

=
∑
ab

T Jαa(k′, ka;Ea)τab(E)T Jbβ(k, kb;Eb). (B5)

If the potential U is energy-independent, the matrix Mac(E) reduces to an identity matrix. Consequently, the eEST
scheme reduces to an energy-independent separable representation. In this limit the matrix Rab(E) is given by

Rab(E) = T Jαaαb(kb, ka;Ea)

+
∑
β

∞∫
0

dp p2 T Jαa,β(p, ka;Ea)G0β(Eb)T
J
βαb

(p, kb;Eb)

−
∑
β

∞∫
0

dp p2 T Jαaβ(p, ka;Ea)G0β(E)T Jβαb(p, kb;Eb). (B6)

2. Proton-nucleus Optical Potentials

We note that the separable t matrix given by Eqs. (34) - (36) has a similar form as the one obtained for neutron
optical potentials, except that

(a) the half-shell t matrices T Jαρ(Ei)
∣∣kρi 〉 are replaced by the Coulomb-distorted half-shell t matrices T cJαρ (Ei)

∣∣kρi 〉,
(b) the Coulomb propagator GC(E) = [E −H0 − V C + iε]−1 replaces the free propagator G0(E).
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The Coulomb-distorted t matrix elements fulfill a set of LS equations

T cJαα0
(k′, k;E) = U cJαα0

(k′, k) +
∑
α′

∞∫
0

dpp2 U cJαα′(k, p)GCα′(E, p)T cJα′α0
(p, k;E). (B7)

Evaluating the Coulomb propagator GC(E) in the Coulomb basis leads to

GCα(E, p) = G0α(E, p) =
(
E − εα − p2/2µα + iε

)−1
, (B8)

where µα is the reduced mass in channel α. Here U cJαα0
(k′, k) are the potential matrix elements in the Coulomb

basis. A direct evaluation of U cJαα0
(k′, k) in momentum space is extremely difficult since the Coulomb wavefunctions

are singular. Instead, it is evaluated using the non-singular coordinate space Coulomb wavefunctions as described in
Ref. [30].

Repeating the steps outlined in Section B 1 we obtain

tcJαβ(k′, k;E) =
∑
ρσ

∑
ij

T cJαρ(k
′, kρi ;Ei)τ

c, ρσ
ij (E)T cJσβ(k, kσj ;Ej),

=
∑
ab

T cJαa(k′, ka;Ea)τ cab(E)T cJbβ(k, kb;Eb). (B9)

The matrix Rcab(E) fulfills

Mc
ab(E) ≡ [Rc(E) · τ c(E)]ab, (B10)

where

Rcab(E) = T cJαaαb(kb, ka;Ea) +
∑
β

∞∫
0

dp p2 T cJαa,β(p, ka;Ea)GCβ(Eb)T
cJ
βαb

(p, kb;Eb)

−
∑
a

Mc
ad(E)

∑
β

∞∫
0

dp p2 T cJαdβ(p, kd;Ed)GCβ(E)T cJβαb(p, kb;Eb). (B11)

The matrix M c
ad(E) is given by

Mc
ad(E) ≡

[
Uce(E)(Uc)−1

]
ad
. (B12)
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Appendix C: Deformed Optical Model Potentials

Spherical optical model potentials (OMPs) are usually based on Woods-Saxon functions and depend on the distance
between the nucleon and the surface of the nucleus, r−R. Nuclear deformations naturally lead to a deformed Optical
Model Potential (DOMP). The evaluation of the DOMP presented here follows closely that of Refs. [38, 39]. For a
DOMP the Woods-Saxon functions depend on the orientation of the nucleus so that fws(r, θ, a,R) ≡ fws(r̃(θ), a, R)
where the shifted radius is given as

r̃(θ) = r − δ(ξ̂ · r̂). (C1)

Here ξ̂ represents the orientation of the nucleus relative to a space fixed coordinate frame. The shift function δ(ξ · r)
is expanded in multipoles

δ(ξ̂ · r̂) =
∑
λ6=0

δλY
0
λ (θ, 0),

=
∑
λ6=0, µ

√
4π√

2λ+ 1
δλY

µ
λ
∗
(ξ̂)Y µλ (r̂). (C2)

The angle θ is defined by cos θ = ξ̂ · r̂. In the reference frame rotating with the nucleus, θ is simply the zenith angle of
the relative vector r. The deformation length δλ is proportional the maximum shift in the radius r at each multipole.
Each term of the OMP is deformed independently, and has the multipole expansion

Û(ξ, r) =
∑
λµ

√
4πÛλ(r)Dλ

µ,0(ξ̂)Y µλ (r̂), (C3)

where the rotational matrix is given by

Dλ
µ,0(ξ̂) =

√
4π√

2λ+ 1
Y µλ
∗
(ξ̂). (C4)

The expansion in Eq. (C3) can be written as

Û(ξ, r) =
∑
λµ

√
4πÛλ(r)

√
4π√

2λ+ 1
Y µλ
∗
(ξ̂)Y µλ (r̂) (C5)

=
∑
λ

√
4πÛλ(r)Y 0

λ (θ, 0),

= 4π
∑
λ

(−1)λÛλ(r)[Yλ(ξ̂)× Yλ(r̂)]00. (C6)

For each multipole λ, the potential is given by the angular integral

Ûλ(r) =
√
π

1∫
−1

d cos θ U(r̃)Y 0
λ (θ, 0),

=
1

2

√
2λ+ 1

1∫
−1

d cos θ U(r̃)Pλ(cos θ). (C7)

This integral is zero for odd λ, which implies that Û can only change the spin of the nucleus by an even number. For
small deformations we can perform a Taylor expansion around r̃ = r

U(r̃) = U(r)− U ′(r)
∑
λ6=0

δλY
0
λ (θ, 0) + ... . (C8)

The monopole term is given by

Û0 = U(r), (C9)
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and for λ > 0 one obtains

Ûλ = − 1√
4π
δλU

′(r). (C10)

An alternative way of representing the deformation involves defining the deformation parameter

βλ = δλ/R. (C11)

It is a measure of the deformation relative to the radius of the spherical potential. Such a deformation leads to
the coupling of different angular momentum channels. To evaluate scattering observables using a deformed optical
potential one must solve a coupled set of Lippmann-Schwinger or Schrödinger equations.

A parametrization of a DOMP must specify, in addition to the the optical potential shape U(r), the deformation
length δλ or the deformation parameter βλ. The multipole potential can then be evaluated according to Eq. (C7).
For small deformation lengths the multipole potentials are evaluated using Eqs. (C9-C10). In practice, only a few
terms of the multipole expansion are necessary to describe elastic and inelastic nucleon-nucleus scattering. In order
to constrain the DOMP, both elastic and inelastic scattering data are necessary.

1. The Olsson 89 Deformed Optical Model Potential

Thus far we have described how a DOMP potential can be constructed starting from a spherical optical potential.
We now focus on a a specific parametrization of the DOMP for the n+12C system. The starting point is a spherical
optical potential of the form

−U(r, E) = Vr(E) fws(r, ar, Rr) + 2Vso(E)

(
−1

r

)
d

dr
fws(r, aso, Rso) l · σ

+ iWs(E)(−4as)
d

dr
fws(r, as, Rs). (C12)

The real and imaginary strengths are indicated by V (E) and W (E). The indices r, so, i, and s denote the real volume,
spin-orbit, imaginary volume, and surface potential terms respectively. The imaginary surface term is included
to simulate the effects of a surface-peaked absorption at low energies, while at higher energies volume absorption
dominates. The Woods-Saxon (WS) function is given by

fws(r, a,R) =

[
1 + exp

(
r −R
a

)]−1
, (C13)

where a and R are the diffusiveness and radius. To proceed, deformations are introduced as described at the beginning
of this section. This leads to a multichannel potential which is complex. The imaginary part simulates the effects
of those processes that are not treated explicitly. The DOMP parameters include all the parameters of the spherical
potential appearing in Eq. (C12) as well as the deformation parameters βλ. In Ref. [28] Olsson and collaborators
constrained these parameters of the DOMP by a simultaneous fit to cross sections for elastic and inelastic scattering
of neutrons from 12C for incident energies between 16 and 26 MeV. The multipole expansion is truncated at λ = 4
with the deformation parameters given as

β2 = −0.65 and β4 = 0.05. (C14)

For the readers convenience the remaining parameters are shown in Table I.

2. The Meigooni 85 Deformed Optical Model Potential

The parametrization of the DOMP for proton-nucleus systems is carried in a similar manner as the neutron DOMP
of Section C 1. The starting point is a spherical optical potential of the form

−U(r, E,A) = Vr(E,A) fws(r, ar, Rr)

+ 2
(
Vso(E,A)

)(−1

r

)
d

dr
fws(r, aso, Rso) l · σ

+ i

[
Wi(E,A) fws(r, ai, Ri) +Ws(E,A)(−4as)

d

dr
fws(r, as, Rs)

]
+ Vcoul(r,Rc), (C15)
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Strength [MeV] Radius [fm] Diffusiveness [fm]

Vr = 64.02− 0.674En Rr = 1.093A1/3 ar = 0.619

Ws = 1.16 + 0.251En Rs = 1.319A1/3 as = 0.327

Vso = 6.2 Rso = 1.050A1/3 aso = 0.550

TABLE I. Deformed optical potential parameters adjusted to n+12C elastic and inelastic scattering data. These parameters
are taken from Ref. [28]. Here En is the neutron energy in the laboratory frame and should be given in MeV.

where the Vcoul(r,Rc) is the short-ranged Coulomb potential given by Eq. (38). As described in Section C 1, intro-
ducing deformations leads to a complex multichannel potential which must be treated within the coupled-channel
formalism of Section II A 1. The parameters are adjusted to describe elastic and inelastic scattering data simulta-
neously. Meigooni and collaborators [31] fitted this form of the DOMP to differential cross sections for elastic and
inelastic scattering of protons from 12C. The deformation parameters have the values β2 =-0.61 and β4 =0.05. The
remaining parameters are shown in Table II for the readers convenience.

Strength [MeV] Radius [fm] Diffusiveness [fm]

Vr = 64.02− 0.674En Rr = 1.093A1/3 ar = 0.619

Wi(E) = 0 for E ≤ 20 Ri = 1.22A1/3 ai = 0.478 + 0.0043E

Wi(E) = 15.5 [1− 2/(1 + exp(E − 20)/25)] for E > 20

Ws(E) = e0.095E for E ≤ 21 MeV

Ws(E) = 10.29− 0.145E for 21 ≤ E < 71 MeV Rs = 1.25A1/3 as = 0.27

Ws(E) = 0 for E > 71 MeV

Vso = 6.2 Rso = 1.050A1/3 aso = 0.550

TABLE II. Parameters for the Meigooni 85 [31] DOMP. Here E is the proton energy in the laboratory frame and should be
given in MeV.


