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The instability of hot asymmetric nuclear matter with respect to bulk density distortions is 

considered. The equation of state of extended Thomas-Fermi approximation (ETFA) is 

used. The origin of the anomalous dispersion and the influence of the Fermi-surface 

distortion effects on the bulk and isospin instabilities in homogenous nuclear matter are 

investigated. It is shown that the development of both instabilities is significantly reduced 

due to the Fermi surface distortion effects. The dependence of the bulk instability on the 

temperature and on the multipolarity of the particle density distortions are shown for the 
208Pb nucleus. The dependence of the formation of the decay modes (fission or 

multifragmentation) of nuclei on the temperature and the Fermi-surface distortion effects 

are demonstrated. It is shown that in the case of low temperatures the preferable mode for 

the bulk instability is binary fission. For higher temperature, the preferred modes are the 

multifragmentations to small clusters. The number of clusters increases with increasing 

temperature.  
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I. INTRODUCTION 
 
 
 

Diluted nuclear matter is unstable with respect to particle density fluctuations. One expects 

that such a kind of bulk instability plays a significant role in internal clusterization and 

multifragmentation in heavy ion collisions. The bulk instability of nuclear matter was studied 

earlier in Refs. [1,2,3,4,5,6,7,8] where the different aspects of the nuclear equation of state were 

taken into consideration.  

We note, however, that in actual nuclear processes (heavy-ion reactions, nuclear fission, 

etc.), the development of instability depends not only on the equation of state, but also on dynamic 

effects such as the dynamic Fermi-surface distortions (FSD). In particular, the FSD effects lead to 

collisional relaxation on the distorted Fermi surface and to non-Markovian motion in a viscous 

nuclear Fermi liquid [9]. In the present paper, we mainly focus on these aspects in studying bulk 

instability, considering the regimes of frequent and rare internucleon collisions.  

Some specific difficulties appear in the theoretical description of the instability in an 

arbitrary dilute many body system due to the necessity to consider the small density fluctuations 

around a nonequilibrium state of the system. Usually the nonequilibrium state can be fixed through 

the introduction of a formal constrained field [10]. Note also that in considering the development 

of bulk instability in a homogeneous nuclear matter one has to use an equation of state (EOS) 

which is extended to include the gradient terms of particle density ߩ. That is because the particle 

density perturbations ߩߜሺ࢘,  ሻ are, in general, non-homogeneous ones. In the present paper weݐ

use the EOS which is based on the semiclassical extended Thomas-Fermi approximation for the 

internal kinetic energy of nucleons and the potential energy due to the Skyrme effective 

nucleon-nucleon interaction. The inclusion of the gradient terms in the EOS leads to a specific 

effect of the anomalous dispersion which plays a significant role in the description of the 

instability growth rate in nuclear matter.  

The present paper is an extension of our previous work [7] where the general concept of the 

Fermi motion effects was adopted in studying the bulk instability of nuclear matter. In the present 

paper we generalize our approach to both the spinodal (bulk) and isospin instabilities and carry out 

numerical calculations employing commonly used Skyrme interactions. We pay special attention 

to the derivation of the stiffness coefficients, such as the incompressibility and isospin symmetry 

coefficients, beyond the equilibrium point by employing the variational Euler-Lagrange 

procedure. We analyze the occurrence of the anomalous dispersion in both the isoscalar and the 

isovector channels. We consider the temperature dependence of the instability growth rate for the 

bulk mode. We study also the dependence of the instability growth rate on the multipolarity of the 
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nuclear density distortions in hot nuclei with increasing temperature. The last aspect is important 

since an increase of the temperature strongly reduces the Fermi-surface distortion effects and the 

relaxation processes and thereby the growth of instabilities. We point out that the use of the 

Skyrme interaction with parameters adjusted to reproduce the ground state properties of nuclei 

within the mean-field model, is a reasonable approximation for our purposes. In fact, the effective 

interaction is modified only slightly (by a few percent) in a wide temperature range, ܶ ൌ 0 ൊ 20 MeV [11,12].  

In Section II we describe the fluid dynamic approach to the instability of nuclear matter by 

using the extended EOS which includes the gradient corrections to the energy density functional. 

The approach is based on the extended Thomas-Fermi approximation and the effective Skyrme 

interactions. In Section III we provide numerical results for the instability growth rate and its 

dependence on the temperature and the multipolarity of the particle density perturbations. Our 

conclusions are given in Section IV.  

 

I. BULK INSTABILITY OF ASYMMETRIC NUCLEAR MATTER 

 
 

We consider the ࢘ -dependent density fluctuations ߩߜሺ࢘, ሻݐ  around an arbitrary 

nonequilibrium density ߩ଴ ൌ  const of a homogeneous nuclear matter. Following the 

Euler-Lagrange method, the nonequilibrium particle density ߩ଴ can be fixed by introducing a 

formal constrained field into the relevant variational procedure for the total energy ܧ of a many 

body system. Employing this method to nuclear matter and assuming the possible ࢘-dependence 

of the particle density ߩ, we write its total energy as  

ܧ  ൌ න ݀ ࢘ ߳୲୭୲ሾߩሿ, ߳୲୭୲ሾߩሿ ൌ ߳୩୧୬ሾߩሿ ൅ ߳୮୭୲ሾߩሿ, (1)

where ߳୩୧୬ሾߩሿ and ߳୮୭୲ሾߩሿ are the ࢘-dependent kinetic and potential energy densities of nuclear 

matter which are derived below. An arbitrary density ߩ଴ is then given by the following variational 

Euler-Lagrange equation  

 
ߩߜߜ ൤න ݀ ࢘ ሺ߳୲୭୲ሾߩሿ െ ሻ൨ฬఘୀఘబߩߦ ൌ 0, (2)

where െ ߩߦ is the constrained field and ߦ  is the Lagrange multiplier of the Euler-Lagrange 

method. Below we use the density ߩ଴ as an independent variable and Eq. (2) is considered as a 

derivation of the Lagrange multiplier ߦ  only. The inclusion of the constrained field in the 

variational procedure of Eq. (2) plays an important conceptual role because it allows us to consider 
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the adiabatic stiffness coefficients beyond the equilibrium point.  

In evaluating the potential energy density ߳୮୭୲ሾߩሿ in Eq. (1), we adopt the Skyrme type 

effective nucleon-nucleon interaction in the following standard form [13,14,15]:  ݒଵଶ ൌ ଴ሺ1ݐ ൅ ଴ݔ ଵܲଶఙ ሻ ߜሺ࢘ଵ െ ଶሻ࢘ ൅ 12 ଵሺ1ݐ ൅ ଵݔ ଵܲଶఙ ሻ ൤՚݇ଵଶଶ ଵ࢘ሺߜ  െ ଶሻ࢘ ൅ ଵ࢘ሺߜ  െ ଶሻ࢘ ՜݇ଵଶଶ ൨  
൅ݐଶሺ1 ൅ ଶݔ ଵܲଶఙ ሻ  ՚݇ଵଶ ଵ࢘ሺߜ  െ ଶሻ࢘ ՜݇ଵଶ൅ 16 ଷሺ1ݐ ൅ ଷݔ ଵܲଶఙ ሻ ߩఔ ൬࢘ଵ ൅ ଶ2࢘ ൰ ଵ࢘ሺߜ  െ  ଶሻ࢘

 ൅݅ ଴ܹ ՚݇ଵଶ ଵ࢘ሺߜ െ ଵ࣌ଶሻሺ࢘ ൅ ଶሻ࣌ ൈ՜݇ଵଶ. (3)

where ݐ௜, ݔ௜, ߥ and ଴ܹ are the parameters of the interaction, ଵܲଶఙ  is the spin exchange operator, ࣌௜ is the Pauli spin operator, 
՜݇ଵଶൌ െ݅ሺߘ՜ଵെߘ՜ଶሻ/2, and 

՚݇ଵଶൌ െ݅ሺߘ՚ଵെߘ՚ଶሻ/2. Here, the right 

and left arrows indicate that the momentum operators act on the right and on the left, respectively.  

In a Fermi liquid, the linearized equation of motion for small variations ߩߜ ൌ ߩ െ  ଴ ofߩ

the particle density near arbitrary ߩ଴ can be written as, see Refs. [7,9],  

 ݉ ߲ଶ߲ݐଶ ߩߜ ൌ ଴ߩࢺ ࢺ ߩߜܧߜ ൅ ఓߘఔߘ ఔܲఓᇱ . (4)

The equation of motion (4) is obtained from the kinetic equation for the Wigner’s distribution 

function ݂ ؠ ݂ሺ࢘, ;࢖ ሻݐ  and includes both the relaxation phenomena and the Fermi-surface 

distortion effects [9]. The pressure tensor ఔܲఓᇱ  in Eq. (4) is caused by the dynamic distortions of 

the Fermi-surface, see Refs. [9,16,17]. We point out that the constrained field െ ߩߦ does not 

contribute to the equation of motion (4) since ߦ ൌ const.  

Note that the total energy ܧ of the homogeneous nuclear matter in Eq. (4) is written 

beyond the point ߩ଴ ൌ const., where the particle density ߩ ൌ ሺ࢘,  dependent. To-࢘ ሻ becomesݐ

take this fact into consideration, we use the extended Thomas-Fermi approximation (ETFA) for 

the kinetic energy density ߳୩୧୬ሾߩሿ  (see Refs. [18,19]) and the density-dependent Skyrme 

interaction for the potential energy density ߳୮୭୲ሾߩሿ [20] which include the gradient terms ∼  .ߩࢺ

Since the values ߳୩୧୬ሾߩሿ and ߳୮୭୲ሾߩሿ contain the gradients of the particle density, the evaluation 

of the functional derivative ߩߜ/ܧߜ in Eq. (4) must have the form  

 
ߩߜܧߜ ൌ ൤ ߩ߲߲ െ ࢺ ߲߲ሺߩࢺሻ ൅ ଶߘ ߲߲ሺߘଶߩሻ൨ ߳୲୭୲ሾߩሿ. (5)

 

We consider an asymmetric nuclear matter with asymmetry parameter ܺ ൌ ሺܰ െܼሻ/ሺܰ ൅ ܼሻ, where ܰ and ܼ are the number of neutrons and protons, respectively. We introduce 

the isoscalar density ߩା ൌ ௡ߩ ൅ ିߩ ௣ and the neutron excess (isovector) densityߩ ൌ ௡ߩ െ ௣ߩ ൌܺߩା, where ߩ௡ is the neutron density and ߩ௣ is the proton density. Below we restrict ourselves to 
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the commonly used case of a small isospin asymmetry ܺ ا 1 which allows one, in particular, to 

derive the isospin symmetry energy and is sufficient for all existing nuclei. Since ିߩ ا  ା, theߩ

total energy density ߳୲୭୲ሾߩሿ can be reduced to the following convenient form, see Appendix A, 

Eq. (A3),  

 
߳୲୭୲ሾߩሿ ൌ ାሻߩଵሺܣ ൅ ାሻߩଶሺܣ ଶିߩ ൅ ሾܤଵሺߩାሻ ൅ ,ାߩଵሺܥ ାሻଶ൅ߩࢺሻሿ ሺିߩ  ሻଶିߩࢺାሻሺߩଶሺܤ

(6)൅ܦଵሺߩା,  ,ାߩଶߘሻିߩ
where the density dependent functions ܣ௜ሺߩሻ, ܤ௜ሺߩሻ, ܥଵሺߩሻ and ܦଵሺߩሻ are given in Appendix A, 

Eq. (A4). The expression (6) is written up to the second order in ܺ. The higher order correction ∼ ܺସ is negligible in all practically interesting cases.  

Using Eqs. (1) and (5), taking pressure tensor ఔܲఓᇱ  from Ref. [9] and assuming ߩߜ ∼exp ሾ ݅ሺݍ ڄ ݎ െ   ሻሿ, the equation of motion (4) is transformed to the following formݐ߱ 

 െ݉Ԝ߱ଶԜߩߜേ ൌ ଴ሻߩേሺܥൣ െ ிܲ,േሺߩ଴ሻ൧ േߩߜଶߘ െ ଴ሻߩௌ,േሺܨ േ. (7)ߩߜଶߘଶߘ

Here, the transport coefficients ܥേ and ிܲ,േ are given by  

 
଴ሻߩାሺܥ ൌ ,଴ሻ/9ߩሺܭ ଴ሻߩሺିܥ ൌ ,଴ሻߩୱ୷୫ሺܥ2 ிܲ,േሺߩ଴ሻൌ 43 ݅߱߬േ1 െ ݅߱߬േ ሺ ଴ܲ/ߩ଴ሻ, (8)

where ଴ܲ is the pressure ଴ܲ ൌ  ி is the Fermi momentum and ߬േ is the relaxation݌ ,ிଶ/5Ԝ݉݌଴Ԝߩ

time which can be different for isoscalar and isovector channels [21]. The transport coefficients ܨௌ,േ in Eq. (7) are the coefficients of the anomalous dispersion which play a significant role in the 

case of short-wave-length density fluctuations.   

Taking into account the finite temperature, we use the adiabatic (isentropic) [22] values of 

transport coefficients in Eq. (7). Using Eqs. (7), (A5) and (A6) of Appendix A, one obtains for the 

isoscalar mode the incompressibility coefficient,  ܭሺߩ଴ሻ ൌ ħଶ2݉ ߙ 10 ଴ଶ/ଷߩ ൅ 274 ଴ߩ଴ݐ ൅ 916 ሺ2 ൅ ሻሺ1ߥ ൅  ଴ଵାఔߩଷݐሻߥ

൅10 ߙ ൬3ݐଵ ൅ ଶ4ݐ5 ൅ ଶ൰ݔଶݐ  ଴ହ/ଷߩ

൅ܺଶ ቈ109 ߙ ħଶ2݉ ଴ସ/ଷߩ ൅ 38 ߥሺߥ െ 1ሻݐଷ ൬ݔଷ ൅ 12൰  ଴ఔାଵߩ

 െ 109 ߙ ൬ݐଶ2 ൅ ଶݔଶݐ5 െ ଵ8ݔଵݐ3 ൰ ଴ହ/ଷ൨ (9)ߩ

and the isoscalar coefficient of the anomalous dispersion  ܨௌ,ାሺߩ଴ሻ ൌ 12 ħଶ2݉ ߟ ൅ ൤16 ଵݐ െ 2572 ଶݐ ൬1 ൅ 45 ଶ൰൨ݔ  ଴ߩ
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 െܺଶ ቈ12 ħଶ2݉ ߟ ൅ 172 ቂݐଵ ቀ1 ൅ ଵ2ݔ ቁ ൅ ଶݐ ቀ1 ൅ ଶ2ݔ ቁቃ ଴቉, (10)ߩ

where ߙ ൌ ሺ3/5ሻԜሺ3Ԝߨଶ/2ሻଶ/ଷ.  

Similarly, for the isovector mode one has the coefficient ܥୱ୷୫ of isospin symmetry,  

଴ሻߩୱ୷୫ሺܥ  ൌ 59 ߙ ħଶ2݉ ଴ଶ/ଷߩ െ ଴4ݐ ൬ݔ଴ ൅ 12൰ ଴ߩ െ ଷ24ݐ ൬ݔଷ ൅ 12൰ ଴ఔାଵ (11)ߩ

൅ 59 ߙ ൬ݐଶ2 ൅ ଶݔଶݐ5 െ ଵ8ݔଵݐ3 ൰  ଴ହ/ଷߩ

and the isovector coefficient ܨௌ,ି of the anomalous dispersion,  

଴ሻߩௌ,ିሺܨ  ൌ 12 ߟ ħଶ2݉ െ ൤ ଵ24ݐ ൬1 ൅ ଵ2ݔ5 ൰ ൅ ଶ18ݐ ൬1 ൅ ଶ8ݔ19 ൰൨ ଴. (12)ߩ

 

Below, we present results of numerical calculations of the incompressibility coefficient ܭሺߩ଴ሻ and the symmetry energy coefficient ܥୱ୷୫ሺߩ଴ሻ for the SkM* [20], Sly203b [15] and the 

more modern KDE0v1 [23] Skyrme interactions. We note that the KDE0v1 interaction was 

determined by a fit to extensive data on binding energies, charge radii of nuclei, single particle 

spin-orbit splitting, and for the first time inclusion of the radii of valence single particle neutron 

orbits and the energies of the isoscalar giant monopole resonance (ISGMR) in nuclei. Also 

included in the fit are additional constraints, such as the Landau stability conditions, positive 

derivative of the symmetry energy, ܮ ൌ  and a [24,25] ,ߩ ,at large particle density ,ߩ݀/ୱ୷୫ܥ݀ ߩ3

minimal value for the enhancement factor, ߢ, of the energy weighted sum rule (EWSR) of the 

isovector giant dipole resonance (IVGDR). It is important to point out that 240  Skyrme 

interactions, published in the literature, were analyzed by an independent group [26] for their 

ability to pass constraints relating to experimental data on properties of nuclear matter and their 

derivatives, such as incompressibility coefficient ܭ, symmetry energy coefficient, ܥୱ୷୫, and its 

slope, ܮ, effective mass, ݉כ/݉, and observational data of neutron stars. Only the KDE0v1, LNS, 

NRPAR, SKRA and SQMC700 interactions passed the test. These five interactions were then 

tested in Ref. [27] for their ability to reproduce binding energies and fission barriers of nuclei. 

Only KDE0v1 passed the test. We add that although Skyrme parameterizations are not expected, 

in general, to reproduce data to which they were not fitted, the neutron star and fission barrier data 

that are reproduced by the KDE0v1 interaction were not included in the fit. We note that although 

the LNS, NRPAR, SKRA and SQMC700 were fitted to a wide range of data for the equation of 

states, we have adopted the KDE0v1 interaction for its ability to reproduce properties of finite 

nuclei, a reasonable approximation for our purposes. In Table I we present the values of the 

Skyrme parameters for the SkM*, KDE0v1 and Sly230b interactions and the corresponding 
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physical quantities of nuclear matter at saturation density, ୣߩ୯.  

 

Table I: Values of the Skyrme parameters and the corresponding physical quantities of 

nuclear matter for the SkM*, KDE0v1 and Sly230b interactions.  

Parameters  ܵ݇1ݒ0ܧܦܭ כܯ ܸ݁ܯ଴ ሺݐ  230ܾݕ݈ܵ ڄ ݂݉ଷሻ  -2645.00  -2553.0843  -2488.91   ݐଵ ሺܸ݁ܯ ڄ ݂݉ହሻ  410.00  411.6963  486.82   ݐଶ ሺܸ݁ܯ ڄ ݂݉ହሻ  -135.00  -419.8712  -546.39   ݐଷ ሺܸ݁ܯ ڄ ݂݉ଷሺଵାఔሻሻ  15595.00  14603.6069  13777.0   ݔ଴  0.0900  0.6483  0.8340   ݔଵ  0.0000  -0.3472  -0.3438   ݔଶ  0.0000  -0.9268  -1.0   ݔଷ  0.0000  0.9475  1.3539   ଴ܹ ሺܸ݁ܯ ڄ ݂݉ହሻ  130.00  124.4100  122.69   ܭ   15.972  16.23  15.78  ܣ/ܧ   0.166667  0.1673  0.16667  ߥ ሺܸ݁ܯሻ  216.7  227.54  229.90   ୣߩ୯ሺ݂݉ିଷሻ  0.160  0.165  0.160   ݉ܥ   0.695  0.74  0.79  ݉/כୱ୷୫ሺܸ݁ܯሻ  30.03  34.58  32.01   ܮሺܸ݁ܯሻ  45.78  54.69  45.97   0.25  0.23  0.53  ߢ   ୡܶ୰୧୲ሺܸ݁ܯሻ  14.62  14.74  14.67   
 

 

Note that, in general, the transport coefficients ܭ, ,ୱ୷୫ܥ   and  ܨௌ,േ in the equations of 

motion (7) are temperature dependent. This can be seen, in a transparent way, by normalizing the 

density ߩ଴ to the equilibrium density ୣߩ୯ሺܶሻ and using the dimensionless ratio ߩ଴/ୣߩ୯ሺܶሻ as a 

variable. To avoid any misunderstanding, we point out that the particle density ߩ଴  is an 

independent variable which is fixed by the Lagrange multiplier ߦ  in the variational 

Euler-Lagrange equation (2). In the case of ߦ ൌ 0 and zero temperature ܶ ൌ 0, the variational 

equation (2) provides the actual equilibrium state with the saturation density ߩ଴ ൌ ୯ሺܶୣߩ ൌ 0ሻ. In 

a heated system at ܶ ് 0 and below the phase separation point, the equilibrium density ୣߩ୯ሺܶሻ is 

derived by the equilibrium condition for the pressure ܲሺߩ, ܶሻ ൌ 0 , where ܲሺߩ, ܶሻ ൌߩଶ߲ܨሺߩ, ܶሻ/߲ߩ and ܨሺߩ, ܶሻ is the free energy. For higher temperatures above the point of the 

phase separation, the value of ୣߩ୯ሺܶሻ is obtained from the interphase equilibrium condition [22]. 

The temperature dependence of the equilibrium density ୣߩ୯ሺܶሻ  can be approximated as ୣߩ୯ሺܶሻ ൌ ୯ሺܶୣߩ ൌ 0ሻሺ1 െ 1.6 ڄ 10ିଷܶଶሻ, where temperature ܶ is taken in MeV, see Ref. [28]. In 

Figs. 1 and 2, we show the density dependence of the incompressibility, ܭ, and the symmetry 
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energy coefficient, ܥୱ୷୫ , respectively, for different temperatures ܶ for three sets of Skyrme 

forces, SkM*, KDE0v1 and Sly230b.  

  

Fig. 1. The density dependence of the incompressibility coefficient ࡷሺ࣋૙ሻ  for different 

temperatures ࢀ ൌ ૙,  ૡ  and ૚૝  MeV (shown) for Skyrme interactions SkM* (dotted lines), 

KDE0v1 (solid lines) and SLy230b (dashed lines).  

 

As seen from Fig.1, the instability regime where ܭ ൏ 0 is shifted to higher values of the 

ratio ߩ଴/ୣߩ୯ሺܶሻ  with increasing temperature ܶ . The stable mode disappears at the critical 

temperature ୡܶ୰୧୲ ൌ 14 ൊ 15 MeV where ܭ ൌ 0 at ߩ଴/ୣߩ୯ሺܶሻ ൌ 1, see Table I.  

Fig. 2 shows that the dependence of symmetry energy coefficient, ܥୱ୷୫ሺߩ଴ሻ, on the 

particle density ߩ଴ is strongly sensitive to the choice of the Skyrme interactions. In contrast to the 

behavior of the incompressibility coefficient ܭሺߩ଴ሻ in Fig. 1, the ߩ-dependence of the symmetry 

energy coefficient ܥୱ୷୫ሺߩ଴ሻ  is completely different for the SkM*, KDE0v1 and Sly230b 

interactions. This fact was noted earlier in Ref. [14]. In the case of SkM* interaction, the symmetry 

energy coefficient ܥୱ୷୫ሺߩ଴ሻ is a non-monotonic function of the density and it disappears in a 

superdense nuclear matter. In this case, the symmetry energy coefficient ܥୱ୷୫ሺܶሻ and thereby the 

isospin stability of Fermi liquid decreases with temperature for the dilute regime at ߩ଴/ୣߩ୯ሺܶሻ د
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1. This behavior is reversed for the super dense regime at ߩ଴/ୣߩ୯ሺܶሻ ذ 2. For the KDE0v1 and 

Sly230b interactions, the symmetry energy coefficient ܥୱ୷୫ሺߩ଴ሻ is an increasing function of 

particle density and the nuclear matter does not reach the instability regime. Thus, the density 

dependence of the symmetry energy coefficient ܥୱ୷୫ሺߩ଴ሻ and the occurrence of the isospin 

instability are sensitive to the Skyrme interaction parametrization.  

 

Fig. 2. The same as in Fig. 1, but for symmetry energy coefficient ܕܡܛ࡯.  

 
 
 
 

III.  FERMI-SURFACE DISTORTION AND RELAXATION EFFECTS ON 

THE GROWTH OF BULK INSTABILITY 
 

The solutions of the equations of motion (7) are significantly different for the stable and 

unstable modes. Focusing on the unstable modes, ܭ ൏ 0 (or ܥୱ୷୫ ൏ 0), we introduce a growth 

rate of instability Γ ൌ െ݅Ԝ߱ (Γ is real, Γ ൐ 0) and obtain from Eqs. (7) the following dispersion 

relations  

 Γേଶ ൌ ଵ,േ|ଶݑ| ଶݍ െ ሺΓേሻߞ ଶݍ െ ௦,േߢ ସ, (13)ݍ
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where ݑଵ,ା ൌ ඥԜݑ ,9݉/ܭଵ,ି ൌ ඥ2ܥୱ୷୫Ԝ/݉ and ߢ௦,േ ൌ ሺ2/݉ሻܨௌ,േ. In the case of stable modes 

at ܭ ൐ 0 and ܥୱ୷୫ ൐ 0, the values ݑଵ,ା and ݑଵ,ି are the first sound velocities of the isoscalar 

and the isovector modes, respectively. The quantity ߞሺΓേሻ  in Eq. (13) occurs due to the 

Fermi-surface distortion effect and it is given by, see also [7],  

ሺΓേሻߞ  ൌ 43 ݉ േ߬േ1߁ ൅ േ߬േ߁ ଴ܲߩ଴. (14)

 

We have performed numerical calculations of the growth rate Γା  of bulk instability for the 

Skyrme interaction KDE0v1. The relaxation time was taken in the form, see [29],                        

                                      2/ Tτ β± ±= h                                          (15) 

 
with 9.2β+ =  MeV, 4.6β− =  MeV [30] and we have used ߟ ൌ 4/9  for the Weizsäcker’s 

correction in Eqs. (10) and (12). The bulk density ߩ଴  of the unstable mode was taken as ߩ଴ ൌ 0.3Ԝୣߩ୯ሺܶሻ.  

 

  
Fig. 3. The dependence of the isoscalar instability growth rate ડାሺࢗሻ on the wave number ࢗ (in 

units of ࡲ࢑ ൌ  ħ). The solid curves are for the Fermi liquid for different temperatures (shown/ࡲ࢖

near solid curves in MeV) with bulk density ࣋૙ ൌ ૙. ૜Ԝܙ܍࣋ሺࢀሻ and the relaxation parameterԜࢼ ൌૢ. ૛Ԝ MeV (see Eq. (15)). The dashed line is the result for the nonviscous liquid without the Fermi 

surface distortion effects at temperature ࢀ ൌ ૛ MeV. The calculations were performed for 

KDE0v1 interaction. 
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The non-monotony behavior of the isoscalar instability growth rate  Γାሺݍሻ as a function 

of the wave number ݍ is caused by the anomalous dispersion term in Eq. (13). This term provides 

the stability with respect to the short-wave-length density fluctuations with increasing ݍ . 

Comparing the dashed line and solid line 2 in Fig. 3, one concludes that the presence of the Fermi 

surface distortion effects reduces significantly the instability. This fact was noted earlier in Ref. 

[7]. As seen from Fig. 3, the FSD effects are decreasing with increasing temperature ܶ. This is due 

to the increase of the smearing of the Fermi surface with increasing ܶ and thereby the role of the 

Fermi surface distortions becomes weaker with ܶ. The left slopes of lines in Fig. 3 indicate 

preference for nuclear multifragmentation (an increase of Γାሺݍሻ with increasing ݍ) while the 

right slopes are for the nuclear fission (an increase of Γାሺݍሻሻ with decreasing ݍ). With increasing 

temperature, a point from the right slope of curve Γሺݍሻ can appear on its left slope. Due to this 

fact, a nucleus which is unstable with respect to the fission mode at low temperature ܶ can 

become unstable to the multifragmentation mode at higher ܶ.    

Considering the isovector mode, we first note that out of the three parametrizations of 

Skyrme-type interaction considered in this work, an instability regime with ܥୱ୷୫ ൏ 0 is reached 

in a superdense nuclear matter for the *SkM  interaction (representing other interactions with 

negative value of ymsC in a superdense matter). We add that the regime of superdense matter can 

be of interest, in particular, for the astrophysics. The results of numerical calculations of the 

isovector growth rate ( )q−Γ  for the Skyrme interaction *SkM  are shown in Fig. 4. As seen from 

Fig. 4, in contrast to Fig. 3 for ( )q+Γ , the isovector growth rate ( )q−Γ  in a superdense nuclear 

matter is a steadily increasing function of the wave number q. This is due to the fact that the 

coefficient of the anomalous dispersion ,SF −  in Eq. (7) changes sign from positive to negative in a 

superdense nuclear matter due to the presence of the term ∼ρ₀ in Eq. (12). Note also that the Fermi 

surface distortions have little effect on the isovector growth rate Γ₋(q) (compare the dashed and 

solid lines 2 in Fig. 4). This is similar to the case of zero sound modes in stable nuclear matter [8] 

where the Fermi-surface distortion effects do not strongly influence the characteristics of the 

isovector excitations.  
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Fig. 4. The dependence of the isovector instability growth rate ડି ሺࢗሻ on the wave number ࢗ (in 

units of ࡲ࢑ ൌ  ħ). The solid curves are for the Fermi liquid for different temperatures (shown/ࡲ࢖

near solid curves in MeV) with bulk density ࣋૙ ൌ ૟Ԝܙ܍࣋ሺࢀሻ and the relaxation parameterԜࢼ ൌ૝. ૟Ԝ MeV (see Eq. (15)). The dashed line is the result for the nonviscous liquid without the Fermi 

surface distortion effects at temperature ࢀ ൌ ૛ MeV. The calculations were performed for *SkM  

interaction. 

 
The dispersion relation (13) determines also the critical value ݍേ,ୡ୰୧୲ of the wave number 

which is given by the condition Γേሺݍേ,ୡ୰୧୲ሻ ൌ 0. The presence of the critical value of the wave 

number ݍേ,ୡ୰୧୲ plays an important role in the case of finite nuclei. For a finite nucleus the growth 

rate Γାሺݍሻ depends on the multipolarity ܮ  of the density distortions ߩߜേ  because the wave 

number ݍ ൌ  of the ܮ ௅ is fixed by the boundary conditions which depend on the multipolarityݍ

surface distortions [31,32]. Considering a finite nucleus, the dispersion relation (13) is completed 

by the boundary condition which can be taken similarly to the classical form [31,32] as  

 ݉Ԝ|ݑା|ଶߩ଴Ԝ݆௅ሺܴݍ଴ሻ ൌ ሺܮ െ 1ሻ ሺܮ ൅ 2ሻ ߪ ݆௅ᇱ ሺݎݍሻ/ݍ ܴ଴ଶ|௥ୀோబ, (16)

where ܴ଴ is the nuclear radius, ߪ is the surface tension coefficient and ݑା is the zero sound 

velocity, see Refs. [7,9]. The secular equation (16) gives the eigenvalue of the wave number ݍ௅ 

and the instability growth rate Γାሺݍሻ depends on the position of ݍ௅ in the interval of ݍ ൌ 0Ԝ ൊԜݍୡ୰୧୲ [33].  
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The eigenvalues ݍ௅  of secular equation (16) are temperature dependent because the 

surface tension coefficient ߪ in Eq. (16) is temperature dependent. In numerical calculations, we 

have used the following expression for ߪሺܶሻ, (see Refs. [34,35]),  

ሺܶሻߪ  ൌ 1.1 ቆ ௖ܶ௥௜௧ଶ െ ܶଶ
௖ܶ௥௜௧ଶ ൅ ܶଶቇହ/ସ MeV ڄ fmିଶ. (17)

 

  

Fig.  5. The dependence of the isoscalar instability growth rate ડାሺࡸሻ on the multipolarity ࡸ of 

the particle density fluctuations for the nucleus 208Pb for different temperatures. 0.5, 4, 6 and 8 ܄܍ۻ which are shown near the curves. The calculations were performed for KDE0v1 interaction. 

 
 

In Fig. 5 we have plotted the isoscalar instability growth rate Γାሺܮሻ as function of the 

multipolarity ܮ of the particle density fluctuations for the nucleus 208Pb for different temperatures ܶ. As seen from Fig. 5, the development of instability is significantly different for different 

temperature regimes. In the case of low temperatures (line ܶ ൌ 0.5), the preferable mode is the 

binary fission (low multipolarity ܮ ൌ 2 is most unstable). For higher temperature (lines ܶ ൌ 4 

and 8 ), the more preferable unstable modes are the ones with high multipolarity ܮ  which 

correspond to the multifragmentation to small clusters. The number of clusters (the interval of 

accessible multipolarities ܮ on the left slope of curve Γାሺܮሻ) increases with the further increasing 
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temperature (compare lines 4, 6 and 8 MeV in Fig. 5). Note also that the modes with very high 

multipolarity ܮ become overdamped having, Γାሺܮሻ ൏ 0. This is in agreement with the results of 

Fig. 3 and reflects the fact that the eigenvalues ݍ௅ are increasing with ܮ.  

 
 

IV. SUMMARY AND CONCLUSIONS 
 
 

We have considered the appearance and the development of instabilities in an asymmetric 

nuclear matter in both the isoscalar and the isovector channels. Our analysis is based on the 

equations of motion for the quantum Fermi liquid in the presence of the Fermi-surface distortion 

effects and the relaxation processes. We point out that a realistic description of the unstable modes 

in a homogeneous nuclear matter requires the extension of the equation of state by taking into 

consideration the gradient corrections to the total energy functional. The presence of the gradient 

corrections leads to the anomalous dispersion term in the equation of motion and influences 

significantly the behavior of the instability growth rate.  

Studying the appearance of the bulk and isospin instabilities, we have performed numerical 

calculations of the dependence of the incompressibility coefficient ܭሺߩ଴ሻ and the symmetry 

energy coefficient ܥୱ୷୫ሺߩ଴ሻ on the nuclear density ߩ଴. To evaluate the values of ܭሺߩ଴ሻ and ܥୱ୷୫ሺߩ଴ሻ at non-equilibrium density ߩ଴ ് ୯ୣߩ  we have applied the cranking approach. The 

external cranking field was used in the form which excludes the direct contribution of the cranking 

field to the incompressibility coefficient ܭሺߩ଴ሻ for the Skyrme interactions SkM*, KDE0v1 and 

Sly230b for different temperatures and particle densities. We have established the critical 

temperature ୡܶ୰୧୲ ൌ 14 ൊ 15 MeV where the nuclear mater becomes unstable at the equilibrium 

density ୣߩ୯ሺܶሻ. A peculiarity of the isovector mode is that the instability of nuclear matter with 

respect to isovector density fluctuation, i.e. regime ܥୱ୷୫ሺܶሻ ൏ 0, can occur in the superdense 

nuclear matter only and depends significantly on the choice of the Skyrme interaction 

parametrization, such as the case of SkM*.  

We have shown that the Fermi-surface distortion effects strongly hinder the development 

of instabilities in nuclear matter. The dependence of the instability growth rate Γାሺݍሻ on the wave 

number ݍ has a specific non-monotonic behavior (see Figs. 3 and 5) which is caused by the 

anomalous dispersion term. Different slopes of the curve Γାሺݍሻ reflect different regimes (fission 

or multifragmentation) of instability, see also Ref. [33]. To illustrate this fact, we have considered 

the behavior of instability growth rate Γାሺݍሻ  in the finite nucleus 208Pb for different 

multipolarities ܮ  of particle density fluctuations and different temperatures ܶ . The results 
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presented in Fig. 5 show that the fission mode (low ܮ) is preferable at low temperature. The 

instability with respect to multifragmentation (high ܮ) increases with temperatures. Moreover, 

one can expect that the yield of small fragments, which correspond to the highest values of ܮ, is 

strongly increasing for high temperatures, see corresponding lines 4, 6 and 8 MeV in Fig. 5.  
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APPENDIX A. Skyrme energy functional 
 
 

In this paper we use the extended Thomas-Fermi approximation (ETFA) for the kinetic 

energy of nucleons and the Skyrme potential energy due to internucleon interactions. Assuming ିߩ ا  ା and using the standard form of the Skyrme interaction, Eq. (3), we represent the totalߩ

energy density ߳୲୭୲ሾߩ௡, ,ାߩ௣ሿ in the following form [20,36]  ߳୲୭୲ሾߩ ሿିߩ ൌ ħଶ2݉ ାହ/ଷߩߙ ൅ 38 ାଶߩ଴ݐ ൅ 116 ାଶାఔߩଷݐ ൅ 14 ൬3ݐଵ ൅ ଶ4ݐ5 ൅ ଶ൰ݔଶݐ ା଼/ଷߩߙ ൅ 
 ቈ ħଶ2݉ 59 ାଶ/ଷߩߙ െ ଴4ݐ ൬ݔ଴ ൅ 12൰ ାߩ െ ଷ24ݐ ൬ݔଷ ൅ 12൰ ାଵାఔߩ ൅ 59 ൬ݐଶ2 ൅ ଶݔଶݐ5 െ ଵ8ݔଵݐ3 ൰ ାହ/ଷ቉ߩߙ ାߩଶିߩ ൅ 

 

 
14 ߟ ħଶ2݉ ሺߩߘାሻଶߩା ൅ ൭ ଵ12ݐ െ 25144 ଶݐ ൬1 ൅ 45 ଶ൰൱ݔ ሺߩߘାሻଶ ൅ (A1)

 ቈ14 ߟ ħଶ2݉ ቆߩ߂ାߩା െ ሺߩߘାሻଶߩାଶ ቇ ൅ 1144 ቆݐଵ ቀ1 ൅ ଵ2ݔ ቁ ൅ ଶݐ ቀ1 ൅ ଶ2ݔ ቁቇ Δߩା቉  ାߩଶିߩ

 

 ൅ 14 ߟ ħଶ2݉ ሺିߩߘሻଶߩା െ ൤ ଵ48ݐ ൬1 ൅ ଵ2ݔ5 ൰ ൅ ଶ36ݐ ൬1 ൅ ଶ8ݔ19 ൰൨ ሺିߩߘሻଶ. (A2)

Here, ݐ଴, ݐଵ, ݐଶ, ݐଷ, ݔ଴, ݔଵ, ݔଶ, ݔଷ and ߥ are the parameters of Skyrme interaction and ߟ is the 

free Weizsäcker’s parameter of the ETFA.  

One can rewrite (A1), using the following notations, in the form,  ߳୲୭୲ሾߩା, ሿିߩ ൌ ାሻߩଵሺܣ ൅ ଶିߩ ାሻߩଶሺܣ ൅ ሾܤଵሺߩାሻ ൅ ,ାߩଵሺܥ ାሻଶߩࢺሻሿ ሺିߩ ൅  ሻଶିߩࢺାሻሺߩଶሺܤ
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 ൅ܦଵሺߩା, ା, (A3)ߩଶߘሻିߩ

where  ܣଵሺߩାሻ ൌ ħଶ2݉ ାହ/ଷߩߙ ൅ 38 ାଶߩ଴ݐ ൅ 116 ାଶାఔߩଷݐ ൅ 14 ൬3ݐଵ ൅ ଶ4ݐ5 ൅ ଶ൰ݔଶݐ  ,ା଼/ଷߩߙ
ାሻߩଶሺܣ  ൌ ħଶ2݉ 59 ାିଵ/ଷߩߙ െ ଴4ݐ ൬ݔ଴ ൅ 12൰ െ ଷ24ݐ ൬ݔଷ ൅ 12൰ ାఔߩ  

൅ 59 ൬ݐଶ2 ൅ ଶݔଶݐ5 െ ଵ8ݔଵݐ3 ൰  ,ାଶ/ଷߩߙ
 

ାሻߩଵሺܤ  ൌ 14 ߟ ħଶ2݉ ାߩ1 ൅ ൤ ଵ12ݐ െ 25144 ଶݐ ൬1 ൅ 45 ଶ൰൨, (A4)ݔ

ାሻߩଶሺܤ  ൌ 14 ߟ ħଶ2݉ ାߩ1 െ ൤ ଵ48ݐ ൬1 ൅ ଵ2ݔ5 ൰ ൅ ଶ36ݐ ൬1 ൅ ଶ8ݔ19 ൰൨, 
,ାߩଵሺܦ  ሻିߩ ൌ 14 ߟ ħଶ2݉ ାଶߩଶିߩ ൅ 1144 ቂݐଵ ቀ1 ൅ ଵ2ݔ ቁ ൅ ଶݐ ቀ1 ൅ ଶ2ݔ ቁቃ  ,ାߩଶିߩ
,ାߩଵሺܥ  ሻିߩ ൌ െ 14 ߟ ħଶ2݉  .ାଷߩଶିߩ
 

Using ߳୲୭୲ሾߩሿ  of the form of Eq. (A3), one can evaluate the functional derivatives ߩߜ/ܧߜേ for the equations of motion (4) which are significantly different for the isoscalar and 

isovector modes.  

(i) Isoscalar mode:  ߩߜܧߜା ൌ ାߩ߲߲ ାሻߩଵሺܣ ൅ ଶିߩ ାߩ߲߲ ାሻߩଶሺܣ  ൅ ሺߩࢺାሻଶ ାߩ߲߲ ሾܤଵሺߩାሻ ൅ ,ାߩଵሺܥ   ሻሿିߩ
൅ሺିߩࢺሻଶ ାߩ߲߲ ାሻߩଶሺܤ ൅ ሺߘଶߩାሻ ାߩ߲߲ ,ାߩଵሺܦ ାሻߩଵሺܤሾࢺሻ െ2ିߩ ൅ ,ାߩଵሺܥ ାߩࢺ ሻሿିߩ ൅ ,ାߩଵሺܦଶߘ  ሻିߩ

ାߩߜܧߜ  ൌ ൬ ା൰ఘబߩߜܧߜ ൅ ቆ߲ଶܣଵ߲ߩାଶ ቇఘబ ାߩߜ ൅ ቆߩଶି ߲ଶܣଶ߲ߩାଶ ቇఘబ ାߩߜ ൅ ൬߲ሺܤଵ ൅ ାߩଵሻ߲ܥ ൰ఘబ ሺߩߜࢺାሻଶ 

൅ ൬߲ܦଵ߲ߩା൰ఘబ ାߩߜଶߘ െ ࢺ2 ൬߲ሺܤଵ ൅ ାߩଵሻ߲ܥ ൰ఘబ ାߩߜ ڄ ሺߩࢺାሻ଴ 
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െ2ࢺሾܤଵሺߩାሻ ൅ ,ାߩଵሺܥ ሻሿఘబିߩ ڄ ାߩߜࢺ െ 2 ൬߲ሺܤଵ ൅ ାߩଵሻ߲ܥ ൰ఘబ  ାሻ଴ߩଶߘାሺߩߜ

െ2ሺሾܤଵሺߩାሻ ൅ ,ାߩଵሺܥ ାߩߜଶߘ ሻሿሻఘబିߩ ൅ ൬߲ܦଵ߲ߩା൰ఘబ  ାߩߜଶߘ

 

 
ାߩߜܧߜ ൌ ൬ ା൰ఘబߩߜܧߜ ൅ ൥ቆ߲ଶܣଵ߲ߩାଶ ቇఘబ ൅ ቆߩଶି ߲ଶܣଶ߲ߩାଶ ቇఘబ൩ ା (A5)ߩߜ

൅ ൥2 ൬߲ܦଵ߲ߩା൰ఘబ െ 2ሺሾܤଵሺߩାሻ ൅ ,ାߩଵሺܥ  ାߩߜଶߘ ሻሿሻఘబ൩ିߩ

 
(ii) Isovector mode:  ିߩߜܧߜ ൌ ିߩ ାሻߩଶሺܣ 2 ൅ ሺߩࢺାሻଶ ିߩ߲߲ ,ାߩଵሺܥ ሻିߩ ൅ ሺߘଶߩାሻ ିߩ߲߲ ,ାߩଵሺܦ  ିߩࢺ ାሻߩଶሺܤࢺሻ െ2ିߩ

ିߩߜܧߜ  ൌ ൬ ൰ఘబିߩߜܧߜ ൅ 2 ሾܣଶሺߩାሻሿ଴ ିߩߜ ൅ ቆሺߩࢺାሻଶ ߲ଶ߲ߩଶି ,ାߩଵሺܥ ሻቇఘబିߩ  ିߩߜ

൅ ቆሺߩࢺାሻଶ ߲ଶ߲ߩଶି ,ାߩଵሺܦ ሻቇఘబିߩ  ିߩߜ

െ2ሾܤࢺଶሺߩାሻሿఘబ ڄ ିߩߜࢺ െ 2ሾܤଶሺߩାሻሿఘబߘଶିߩ 

 

 
ିߩߜܧߜ ൌ ൬ ൰ఘబିߩߜܧߜ ൅ 2 ሾܣଶሺߩାሻሿఘబ ିߩߜ െ 2ሾܤଶሺߩାሻሿఘబߘଶିߩ (A6)

We note that the first term on the right hand side in Eqs. (A5) and (A6) do not contribute to the 

equation of motion (4) because of the variational condition (2) and that the chemical potentials ߤേ ൌ const., namely, 

 
ାߤ ൌ ฬ௏ܣ߲ܧ߲ ൌ ൬ ା൰ఘబߩߜܧߜ ൌ const, ିߤ ൌ ሺ߲ܰܧ߲ െ ܼሻฬ௏ ൌ ൬ ൰ఘబൌିߩߜܧߜ const.  

(A7)
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