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Theoretical uncertainties in the predictions of inner fission barrier heights in superheavy elements
have been investigated in a systematic way for a set of state-of-the-art covariant energy density func-
tionals which represent major classes of the functionals used in covariant density functional theory.
They differ in basic model assumptions and fitting protocols. Both systematic and statistical uncer-
tainties have been quantified where the former turn out to be larger. Systematic uncertainties are
substantial in superheavy elements and their behavior as a function of proton and neutron numbers
contains a large random component. The benchmarking of the functionals to the experimental data
on fission barriers in the actinides allows to reduce the systematic theoretical uncertainties for the
inner fission barriers of unknown superheavy elements. However, even then they on average increase
on moving away from the region where benchmarking has been performed. In addition, a compar-
ison with the results of non-relativistic approaches is performed in order to define full systematic
theoretical uncertainties over the state-of-the-art models. Even for the models benchmarked in the
actinides, the difference in the inner fission barrier height of some superheavy elements reaches 5−6
MeV. This uncertainty in the fission barrier heights will translate into huge (many tens of the orders
of magnitude) uncertainties in the spontaneous fission half-lives.

PACS numbers: 21.10.Dr, 21.10.Pc, 21.60.Jz, 27.90.+b

I. INTRODUCTION

The region of superheavy elements (SHE), character-
ized by the extreme values of proton number Z, is one
of the extremes of the nuclear landscape and an arena of
active experimental and theoretical studies (see Refs. [1–
3] and references therein). Contrary to other regions of
the nuclear chart, the SHE are stabilized only by quan-
tum shell effects. Currently available experimental data
reach proton number Z = 118 [4, 5] and dedicated exper-
imental facilities such as the Dubna Superheavy Element
Factory will hopefully allow to extend the region of SHE
up to Z = 120 and for a wider range of neutron numbers
for lower Z values.

The stability of SHEs is defined by the fission barri-
ers. In addition, the experimental studies of SHEs are
based on the observation of α-decays. As a consequence,
only SHEs with spontaneous fission half-lives τSF longer
than the half-lives τα of the α-decays could be observed
in experiment. An additional limit is set up by the fact
that only α-decays longer than 10 µs can be observed in
experiment. Therefore it is of great importance to study
the fission barriers in SHEs. The height of the fission
barrier, Bf , which is the difference of the energies of the
respective saddle in the potential energy surface (PES)
and the ground state, is one of most important quantities.
It defines the survival probability of SHEs synthesized in
heavy-ion reactions and impacts the spontaneous fission
half-lives. The later is important for an understanding of
the competition between the fission process and α parti-
cle emission.

Fission barriers have been extensively studied in dif-
ferent theoretical frameworks; these studies have been
reviewed in Refs. [1, 6]. The theoretical frameworks

used are the microscopic+macroscopic method [7], non-
relativistic density functional theories (DFT) based on
finite range Gogny [8] and zero range Skyrme forces [9],
and covariant density functional theory (CDFT) [10].
Our present investigation is performed in CDFT. It has
been less frequently used in the studies of fission barri-
ers in SHEs as compared with non-relativistic theories:
a systematic investigation of the fission barriers in the
Z = 112 − 120 SHE has been performed in the triaxial
relativistic mean field plus BCS (RMF+BCS) framework
with the NL3* functional in Ref. [11] and potential en-
ergy surfaces in the (β, γ) plane for the even-even isotopes
in the α-decay chains of the 298120 and 300120 nuclei
have been calculated in the triaxial relativistic Hartree-
Bogoliubov approach with the DD-PC1 functional in Ref.
[12].

Theoretical investigations require an estimate of the-
oretical uncertainties. This becomes especially impor-
tant when one deals with the extrapolations beyond the
known regions, as for example in particle number or de-
formation. This issue has been discussed in detail in Refs.
[13, 14] and in the context of global studies within CDFT
in the introduction of Ref. [15]. In the CDFT frame-
work, the studies of theoretical uncertainties have been
restricted to the ground state properties so far. System-
atic theoretical uncertainties and their sources have been
studied globally for the ground state masses, deforma-
tions, charge radii, neutrons skins, positions of drip lines
etc in Refs. [3, 15–19]. Of particular importance in the
context of the present manuscript is the study of the-
oretical uncertainties in the ground state properties of
SHE presented in Ref. [3]. An analysis of statistical the-
oretical uncertainties in the ground state observables is
currently underway and will be submitted for publication
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soon [20]. The major goal of the present paper is to ex-
tend these investigations to excited states, namely, to the
fission barriers in superheavy nuclei. Both statistical and
systematic theoretical uncertainties in the description of
fission barriers will be considered here.

Theoretical uncertainties emerge from the underly-
ing theoretical approximations. In the DFT framework,
there are two major sources of these approximations,
namely, the range of interaction and the form of the den-
sity dependence of the effective interaction [9, 21]. In the
non-relativistic case one has zero range Skyrme and finite
range Gogny forces and different density dependencies
[9]. A similar situation exists also in the relativistic case:
point coupling and meson exchange models have an inter-
action of zero and of finite range, respectively [10, 22–24].
The density dependence is introduced either through an
explicit dependence of the coupling constants [22, 24, 25]
or via non-linear meson couplings [21, 23]. This ambigu-
ity in the definition of the range of the interaction and
its density dependence leads to several major classes of
the covariant energy density functionals (CEDF) which
were discussed in Ref. [15].

As a consequence, in the present manuscript, we fo-
cus on the uncertainties related to the choice of the en-
ergy density functional. They can be relatively easily de-
duced globally [15] (at least for axial reflection symmetric
shapes). We therefore define theoretical uncertainty for
a given physical observable (which we call in the follow-
ing “spreads”) via the spread of theoretical predictions
as [15]

∆O(Z,N) = |Omax(Z,N)−Omin(Z,N)|, (1)

where Omax(Z,N) and Omin(Z,N) are the largest and
smallest values of the physical observable O(Z,N) ob-
tained within the set of CEDFs under investigation for
the (Z,N) nucleus. Note that these spreads are only a
crude approximation to the systematic theoretical errors
discussed in Ref. [14] since they are obtained with a very
small number of functionals which do not form an inde-
pendent statistical ensemble. Note also that these sys-

tematic errors are not well defined in unknown regions
of nuclear chart or deformation since systematic biases
of theoretical models could not be established in these
regions in the absence of experimental data and/or an
exact theory.

We use the CEDFs NL3* [23], DD-ME2 [22], DD-MEδ
[26], DD-PC1 [24] and PC-PK1 [27]. These state-of-the-
art functionals represent the essential types of CEDFs
used in the literature (for more details see the discus-
sion in Sect. II of Ref. [15] and the introduction to Ref.
[3]). Moreover, their performance and the related theo-
retical uncertainties have recently been analyzed globally
in Refs. [15, 18, 19, 28] and in particular in superheavy
nuclei in Ref. [3]. They are characterized by an improved
accuracy of the description of experimental data as com-
pared with the previous generation of CEDFs.

In details they are based on rather different concepts:

• NL3* [23], a slightly improved modern version of
the well known functional NL3 [29], is a represen-
tative of the first group of CEDFs proposed in 1977
in the pioneering work of Boguta and Bodmer [21].
These two functionals are based on the Walecka
model [30] with its three mesons σ, ω, and ρ and in-
clude a density dependence through non-linear me-
son couplings in the σ-channel. In addition to the
four basic parameters (mσ, gσ, gω, and gρ) they de-
pend on two non-linear coupling constants g2 and
g3 describing the strength of cubic (σ3) and quartic
(σ4) terms. This class of functionals misses a den-
sity dependence in the isovector channel and there-
fore the asymmetry energy of such functionals is
relatively large and their dependence on the den-
sity is rather stiff.

• The second class of the functionals, originally in-
troduced in 1999 by Typel and Wolter [25], is also
based on meson-exchange forces, but the non-linear
meson couplings are replaced by an explicit den-
sity dependence of the coupling constants (gi(ρ),
i = σ, ω, ρ) with four additional parameters. The
set DD-ME2 [22] is probably one of the most suc-
cessful CEDFs of this type. Its eight parameters
have been adjusted in a very careful way to the
binding energies and radii of a set of twelve spher-
ical nuclei. Here gρ(ρ) depends on the density and
therefore this set reproduces rather well not only
the ab-initio results for the equation of state (EoS)
of symmetric nuclear matter, but also those for neu-
tron matter [31].

• The third functional DD-MEδ [26] is in its form
very similar to DD-ME2 but it represents a new
idea. It is, to a large extent, derived from mod-
ern ab-initio calculations of nuclear matter [32, 33].
Therefore it contains in addition to three mesons σ,
ω, and ρ the scalar isovector meson δ. Only four
phenomenological parameters (mσ, gσ, gω, and gρ)
at saturation density are adjusted to the same set
of data as it has been used for DD-ME2. All the
rest is derived from ab-initio calculations.

• The last two functionals DD-PC1 [24] and PC-PK1
[27] have been chosen because they represent zero-
range functionals, which are technically much sim-
pler than those based on meson exchange forces
with finite range. They can be derived in the limit
of large meson masses. This class of functionals
has been first proposed in the eighties by Manakos
et al. [34], but only recently their density depen-
dence has been adjusted carefully to experimental
data. We chose two versions of this model with
a different density dependence and with a differ-
ent fitting strategy. The functional DD-PC1 [24]
contains an exponential density dependence and it
has been adjusted only to nuclear matter data and
masses of a large set of deformed nuclei. On the
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other hand, PC-PK1 [27] has a density dependence
of polynomial form in all spin-isospin channels and
it is adjusted to a very large set of spherical nu-
clei. Because of its polynomial density dependence
it can also be used for beyond mean field calcula-
tions in the framework of the Generator Coordinate
Method (GCM) [35]. However, it does not have a
density dependence in the isovector channel.

An additional source of theoretical uncertainties is
related to the details of the fitting protocol such as
the choice of experimental data and the selection of
adopted errors. It applies only to a given functional and
the related theoretical uncertainties are called statistical

[14, 36]. Note that the selection of adopted errors is to a
degree subjective, in particular, if one deals with quanti-
ties of different dimensions. The investigation of statis-
tical theoretical uncertainties for potential energy curves
is time-consuming since it involves constrained deformed
calculations over a substantial number of grid points per-
formed for a substantial number of the variations of the
original functional. As a result, such an analysis is per-
formed only for a single nucleus and only for two CEDFs.
We restrict our investigation to inner fission barriers.

There are several reasons behind this choice. A sys-
tematic investigation of Ref. [11] within the RMF+BCS
framework with the NL3* CEDF has shown that the
fission barriers of many SHEs have a double-humped
structure in axial reflection-symmetric calculations. The
inclusion of octupole and triaxial deformations lowers
outer fission barriers by 2 to 4 MeV so that they are
only around 2 MeV in height with respect of superde-
formed minimum. A similar situation exists also in
Gogny DFT calculations (Ref. [37]). In addition, sim-
ilar to actinides (Ref. [38]) symmetry unrestricted cal-
culations which combine octupole and triaxial deforma-
tions simultaneously could further reduce the heights of
outer fission barriers. These low barriers would translate
into a high penetration probability for spontaneous fis-
sion such that most likely these superdeformed states are
metastable and that outer fission barriers do not affect
substantially the fission process in total. Note also that
outer fission barriers do not exist in most of the SHEs
with Z ≥ 110 in Skyrme DFT calculations [39, 40]. An
accurate description of outer fission barriers would re-
quire the use of a symmetry unrestricted RHB code. Un-
fortunately, the computational cost for such an investi-
gation of theoretical uncertainties in the description of
outer fission barriers is prohibitively high.
Despite these limitations this investigation provides for

a first time a systematic analysis of theoretical uncer-
tainties in the description of fission barriers within the
CDFT framework. It also gives an understanding which
observables/aspects of many-body physics can be pre-
dicted with a higher level of confidence than others for
density functionals of the given type. Moreover, it is
expected that they will indicate which aspects of many-
body problem have to be addressed with more care dur-
ing the development of next generation of EDFs. This

study also represents an extension of our previous stud-
ies of theoretical uncertainties in the global description of
the ground state properties of the nuclei from the proton
to neutron drip lines [15–17, 19], superheavy nuclei [3],
and rotating nuclei [41].
The paper is organized as follows. Section II describes

the details of the calculations. The results of global in-
vestigation of inner fission barriers and related systematic
theoretical uncertainties within the axial RHB framework
are discussed in Sec. III. Statistical uncertainties in the
description of fission barriers and potential energy curves
are investigated in Sec. IV. Sec. V is devoted to the study
of systematic uncertainties in the description of the ener-
gies of fission saddles within the triaxial RHB framework.
In Sec. VI we present a comparison of fission barriers ob-
tained in different models. Finally, Sec. VII summarizes
the results of our work.

II. NUMERICAL DETAILS

In the present manuscript, axially symmetric and tri-
axial RHB frameworks are used for the studies of fission
barriers and the related theoretical uncertainties.
First, the axially symmetric RHB framework is used

for systematic studies of all Z = 96 − 126 even-even ac-
tinides and SHEs from the proton-drip line up to neu-
tron number N = 196. The proton-drip lines for the
different functionals are defined in Refs. [3, 15, 16]. The
details of this formalism have been discussed in Secs. II-
IV of Ref. [15] and Sec. II of Ref. [17]. Thus, we only
provide a general outline of the features specific for the
current RHB calculations. In these calculations, we solve
the RHB-equations in an axially deformed oscillator ba-
sis [18, 42–45]. The truncation of the basis is performed
in such a way that all states belonging to the shells up
to NF = 20 fermionic shells and NB = 20 bosonic shells
are taken into account. As tested in a number of calcula-
tions with NF = 26 andNB = 26, this truncation scheme
provides sufficient numerical accuracy. For each nucleus
the potential energy curve is obtained in a large defor-
mation range from β2 = −1.0 up to β2 = 1.05 in steps of
β2 = 0.02 by means of a constraint on the quadrupole mo-
ment Q20. Then, the correct ground state configuration
and its energy are defined; this procedure is especially
important for the cases of shape coexistence (see the dis-
cussion in Ref. [3]). The effect of the octupole deforma-
tion on the binding energies of the ground states (and
thus on the heights of inner fission barriers) is also taken
into account according to the results obtained in Refs.
[18, 46]. Note that octupole deformation in the ground
states affects fission barriers and their spreads only for
the Z ∼ 92, N ∼ 132 and Z ∼ 96, N ∼ 196 nuclei.
In order to avoid uncertainties connected with the

size of the pairing window, we use the separable form
of the finite range Gogny pairing interaction introduced
by Tian et al [47]. As follows from the RHB studies
with the CEDF NL3* of odd-even mass staggerings, mo-
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FIG. 1. (Color online) The heights of inner fission barriers in selected nuclei as obtained in axially symmetric RHB calculations
with indicated CEDFs.

ments of inertia and pairing gaps, the Gogny D1S pairing
and its separable form work well in the actinides (Refs.
[15, 41, 48]). A weak dependence of its pairing strength
on the CEDF has been observed in the studies of pairing
and rotational properties of deformed actinides in Refs.
[41, 49], of pairing gaps in spherical nuclei in Ref. [15]
and of pairing energies in Ref. [17]. Thus, in the present
work, the same pairing strength is used also in the calcu-
lations with DD-PC1, DD-ME2, DD-MEδ, and PC-PK1.
Considering the global character of this study as well as
the existing uncertainties in the extrapolation of pairing
from actinides (where experimental data could be con-
fronted with the results of calculations) to superheavy
nuclei, this is a reasonable choice.

As a next step, we perform triaxial RHB (TRHB) cal-
culations in a parity conserving cartesian oscillator basis
[45, 50] using the same pairing and the same set of the
functionals. However, such calculations are enormously
time-consuming. Therefore, they cannot be carried out
on the same global scale as axial RHB calculations. As a
result, we restricted the TRHB studies to a selected set of
the Z = 112−120 nuclei. These nuclei are located mostly
in the region where extensive experimental studies have
either been already performed or will be performed in a
foreseeable future. Even then the calculations of full po-
tential energy surfaces (PES) are numerically prohibitive
for the NF = 20 fermionic basis. However, the topol-
ogy of the PESs obtained in the TRHB calculations with
the truncation of the fermionic basis at NF = 16 and
NF = 20 is the same. Thus, full PESs have been cal-
culated only with the NF = 16 fermionic basis. These

results define the positions in the deformation plane and
the energies of axial and triaxial saddles. Afterwards,
they are corrected for the NF = 20 fermionic basis by
performing the TRHB calculations with the NF = 20
fermionic basis in the spherical/normal deformed mini-
mum and at few grid points near the saddles.

III. GLOBAL INVESTIGATION OF INNER

FISSION BARRIERS AND RELATED

SYSTEMATIC THEORETICAL UNCERTAINTIES

IN THE AXIAL RHB CALCULATIONS.

Fig. 1 compares the heights of inner fission barriers ob-
tained in axially symmetric RHB calculations with the
five functionals. We show only results for nuclei in which
the lowest saddle is axially symmetric in the systematic
triaxial RMF+BCS calculations with NL3* of Ref. [11].
One can see that NL3*, DD-PC1 and PC-PK1, which
successfully describe experimental fission barriers in the
actinides [11, 12, 38, 51, 52], give similar results for the
heights of inner fission barriers. On the other hand, the
fission barriers produced by DD-ME2 are always at the
upper end. This may be a generic feature of this func-
tional since it produces also in 236U and 240Pu inner fis-
sion barriers which are higher than those of NL3* and
DD-PC1 [11]. The functional DD-MEδ produces unreal-
istically low fission barriers (see Sec. III in Ref. [11] for a
discussion of the inner fission barriers in SHEs).
The global behavior of the inner fission barrier heights

in the region of superheavy nuclei is shown in Fig. 2 for
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FIG. 2. (Color online) The heights of inner fission barriers (in MeV) obtained in axially symmetric RHB calculations as
a function of proton and neutron number. The results of the calculations with the indicated CEDFs are shown from the
two-proton drip line up to N = 196.

all five employed functionals. Again the highest fission
barriers are provided by DD-ME2 and the lowest by DD-
MEδ.
The employed functionals can be split into two groups

[3]. The first group, consisting of NL3*, DD-ME2 and
PC-PK1, predicts bands of spherical SHEs in the (Z,N)
plane centered around the Z = 120 and N = 184 lines.
The second group includes DD-MEδ and DD-PC1 and it
does not predict spherical SHE in the vicinity of above
mentioned particle numbers. The impact of the pro-
ton and neutron spherical shell gaps at Z = 120 and
N = 184 is clearly visible for NL3*, DD-ME2, and PC-
PK1; there is a substantial increase of the inner fission
barrier heights around these numbers. In contrast, no
such effect is seen in the calculations with DD-MEδ and

DD-PC1. For NL3* and PC-PK1, the heights of the in-
ner fission barriers are lowered around Z ∼ 100, N ∼ 172
and Z ∼ 108, N ∼ 194. Similar regions of reduced inner
fission barrier heights could be found also for the other
functionals but they are centered around different com-
binations of proton and neutron numbers.
The spreads in the predictions of inner fission barrier

heights are shown for all five employed functionals in Fig.
3a. One can see that in the actinides (Z ≤ 100, N ≤ 164)
these spreads are typically smaller than 2.5 MeV. Note
that in this mass region theoretical uncertainties in the
prediction of the ground state deformations are very
small (see Refs. [3, 15]). However, the ∆EB spreads
drastically increase in the Z = 112− 120, N = 170− 186
region where they range from 3.5 MeV up to 5.5 MeV.
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FIG. 3. (Color online) The spreads ∆EB of the heights of inner fission barriers as a function of proton and neutron number.
∆EB(Z,N) = |EB

max(Z,N)−EB
min(Z,N)|, where, for given Z and N values, EB

max(Z,N) and EB
min(Z,N) are the largest and

smallest heights of inner fission barriers obtained with the set of functionals NL3*, DD-ME2, DD-MEδ, DD-PC1, and PC-PK1.
Panel (a) shows the results for all five functionals, while DD-ME2 and DD-MEδ are excluded in the results shown on panel (b).

To a large extent this region coincides with the region
where the uncertainties in the predictions of the ground
state deformations are substantial (see Fig. 8 in Ref. [3]).
This clearly suggests that in this region the uncertainties
in the fission barrier heights are strongly affected by the
uncertainties in the ground state deformations. A simi-
lar enhancement of the ∆EB spreads is seen in the nuclei
around Z ∼ 98, N ∼ 174. However, the differences in the
predictions of the ground state deformations play here a
minor role since they are almost the same for all func-
tionals (see Fig. 8 in Ref. [3]). Theoretical ∆EB spreads
decrease for N ≥ 186; here they are typically less than
3 MeV with only a few nuclei characterized by higher
spreads of around 4 MeV.

The above discussed impact of the uncertainties in the
calculated deformations on the spreads of inner fission
barrier heights can be understood in the following way.
The inner fission barrier height is the difference between
the energies of the saddle and ground state. However,

these two points in the potential energy curve have differ-
ent deformations and thus substantial differences in the
underlying shell structure. This leads to different spreads
of the binding energies in the ground states and saddles
which are compared in Fig. 4. Minimum spreads in these
energies appear in the band of the nuclei which is shown
in yellow and red colors (Figs. 4a and b). These spreads
increase on going away from this band of the nuclei; this
is caused by different isovector properties of employed
functionals (see discussion in Ref. [19] for more details).
Let focus our discussion on this yellow/red band of the
nuclei. Due to different underlying shell structure at the
ground state and saddle point, the minima of the spreads
(shown by red/reddish colors) in the binding energies are
localized in different (Z,N) regions at the ground state
and saddle point. Indeed, at the ground state the increase
of the spreads in binding energies takes place near neu-
tron numbers which correspond to the shell gaps in the
single-particle spectra, namely, near deformed N = 162
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FIG. 4. (Color online) The spreads in the binding energies of the ground states (panel (a)) and the energies of saddle points
(panel (b)) as obtained with five employed CEDFs. Panels (c) and (d) show the same results but with the energy colormap
used in Fig. 3.

shell closure and especially near N ∼ 184 which corre-
sponds to spherical shell closure in some functionals (Fig.
4a). The situation is different at the saddle point where
the increase of the spreads in binding energies appears in
wide regions near N ∼ 168 and ∼ 196 (Fig. 4b). These
effects become even more visible when the colormap of
Fig. 3 is used in Figs. 4c and d; this is done for simplicity
of the comparison of these two figures. The features of
the fission barrier spreads which are visible in Fig. 3 (and
especially their increase near N ∼ 184) are consequences
of the ones seen in Fig. 4.

The benchmarking of the functionals to experimentally
known fission barriers in the actinides allows to reduce
theoretical spreads in their heights for unknown nuclei.
This is illustrated in Fig. 3b where only the NL3*, DD-
PC1 and PC-PK1 functionals are used in the definition
of the theoretical spreads. Again the source of this re-
duction could be traced back to the reduction of the fluc-
tuations in binding energy spreads for the ground states
and saddles in the direction along the direction of mini-
mum spreads [compare Figs. 5 and 4]. These functionals
successfully describe experimental fission barriers in the
actinides [11, 12, 38, 51, 52]. One can see that the use
of only these functionals reduces theoretical uncertainties
in the inner fission barrier heights for the N ≤ 180 nuclei
typically to less than 2 MeV; only in few nuclei around

Z = 110, N ∼ 164 and Z ∼ 110, N ∼ 176 these uncer-
tainties are higher reaching 4 and 5.5 MeV respectively.
However, these uncertainties increase by roughly 1 MeV
for the nuclei with N ≥ 182. It is also important to
mention that theoretical spreads in the inner fission bar-
rier heights do not form a smooth function of proton and
neutron numbers; there is always a random component
in their behavior.

IV. STATISITICAL UNCERTAINTIES IN THE

DESCRIPTION OF FISSION BARRIERS AND

POTENTIAL ENERGY CURVES

As discussed in the introduction, there are statistical
uncertainties in the description of physical observables in
addition to the systematic ones which for the saddles of
inner fission barriers are quantified in the previous sec-
tion and in Secs. V and VI below. The description of
the statistical uncertainties for fission barriers and po-
tential energy curves follows the formalism presented in
Ref. [14]. Its major details are shortly outlined below.

For a model having Npar adjustable parameters p =
(p1, p2, ..., pNpar

) the normalized objective function is de-
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FIG. 5. (Color online) The same as Fig. 4 but for the case when DD-ME2 and DD-MEδ CEDFs are excluded from consideration.

fined as

χ2

norm(p) =
1

s

Ntype
∑

i=1

ni
∑

j=1

(

Oi,j(p)−O
exp
i,j

∆Oi,j

)2

(2)

where

s =
χ2(p0)

Ndata −Npar

(3)

is a global scale factor (Birge factor [53]) defined at the
minimum of the penalty function (optimum parametriza-
tion p0) which leads to the average χ2(p0) per degree of
freedom equal to one [14] and

Ndata =

Ntype
∑

i=1

ni (4)

is the total number of data points of different types.
Here, Ntype stands for the number of different data types.
The calculated and experimental/empirical values of the
physical observable j of the i−th type are represented
by Oi,j(p) and O

exp
i,j , respectively. ∆Oi,j is the adopted

error for the physical observable Oi,j .
The acceptable functionals are defined by the condition

[14, 36]

χ2

norm(p) < χ2

norm(p0) + 1. (5)

This condition specifies the ’physically reasonable’ do-
main around the minimum p0 in which the parametriza-
tion p provides a reasonable fit and thus can be consid-
ered as acceptable. For a given original functional the set
of the M functional variations [p1,p2, ...,pM ] has been
defined in Ref. [20]; note that this set also includes the
original functional.
For this set of the functional variations the potential

energy curves of the 296112 nucleus have been calculated
in the axial RHB framework in the deformation range
β2 = 0.0 − 1.05 with a step of ∆β2 = 0.02. Then, the
energies of these potential energy curves were redefined
with respect of the energy of their spherical or near spher-
ical minimum. As a result, the energy of the minumum
becomes equal to zero. Finally, the mean values of the
energy

Ē(β2,i) =
1

M

M
∑

k=1

Ek(β2,i) (6)

and their standard deviations

σE =

√

√

√

√

1

M

M
∑

k=1

[Ek(β2,i)− Ē(β2,i)]2 (7)

have been calculated for this set of potential energy
curves at the i-th value of the deformation. Note that
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the standard deviations serve here as a measure of the
statistical uncertainty.

The set of the M functional variations defined by the
condition of Eq. (5) is represented by two thousand “rea-
sonable” functionals [20]. Note that they are defined
with respect of the ground state experimental data on
12 spherical nuclei and some empirical data on nuclear
matter properties. However, because of numerical re-
strictions we use the subset of 500 randomly selected
functionals in the calculations of potential energy curves
and quantities defined in Eqs. (6) and (7). This number
of the functionals is sufficient for a reliable definition of
the mean values of the energy and their standard devi-
ations. Indeed, the comparison of the results obtained
with 250 and 500 functionals reveals very little difference
which strongly suggests that fine details related to statis-
tical properties of the quantities of interest are already
imprinted in relatively small number (few hundred) of
the functional variations.

The selection of the 296112 nucleus has been guided
by the requirement to avoid large shape changes in the
ground state with the variation of the functional. Indeed,
this nucleus is spherical in the ground state with a well
pronounced minimum in the parabola-like potential en-
ergy surface. As a consequence, with exception of a few
functional variations, the ground state is spherical in the
RHB calculations. On the contrary, larger shape changes
in the ground state with the variation of the functional
are expected in many nuclei of the region of interest since
they are transitional in the ground state with soft po-
tential energy surfaces (see Refs. [3, 11]). In such nuclei,
statistical theoretical uncertainties in the evolution of the
energy with deformation in potential energy curves are
expected to be polluted by the variations in the ground
state properties.

Statistical uncertainties in the deformation energy
curves are shown in Fig. 6. One can see that in the case
of the NL3* functional they are small in the vicinity of
the spherical minimum but then increase with increasing
deformation. They become especially pronounced in the
vicinity of the inner and outer saddles and in the region of
the superdeformed (SD) minimum. The σE values have a
maximum at the inner saddle where they are close to 0.7
MeV. They are smaller at the superdeformed minimum
and the outer saddle where they are close to 0.5 MeV. It
is interesting that statistical uncertainties decrease sub-
stantially above the outer fission barrier; here σE values
are around 0.35 MeV.

Their behavior is quite different for DD-ME2. For this
functional the statistical uncertainties in the deforma-
tion range β2 = 0.0− 0.6 are by approximately factor 1.5
smaller than those obtained with NL3*. However, they
increase with increasing deformation and reach a maxi-
mum at β2 ∼ 0.85. With further increase of deformation,
they decrease and finally stabilize above β2 ∼ 0.95.

It is likely that the increased theoretical uncertainties
in the region of quadrupole deformations β2 = 0.1−0.8 in
the case of NL3* and around β2 ∼ 0.85 in the case of DD-
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FIG. 6. (Color online) Statistical uncertainties in the defor-
mation energy curves of the 296112 nucleus. The mean po-
tential energy curve is shown by a solid line. The red colored
region shows the standard deviations in energy.

ME2 are due to the underlying single-particle structure.
The variations of the functional lead to modifications
of the single-particle energies as well as to changes in
the sizes of the superdeformed shell gaps and the single-
particle level densities at the saddles and the SD min-
imum. This in turn leads to substantial variations in
the shell correction energies. The DD-ME2 functional
provides a clear example. Indeed, the increase of sta-
tistical uncertainties around β2 ∼ 0.85 is due to the fact
that an additional hump develops in the potential energy
curve at this deformation in a number of the functional
variations. This fact could only be explained by the un-
derlying shell structure. In addition, the reduced statis-
tical uncertainties at larger deformations and their sta-
bilization strongly support the impact of the underlying
single-particle structure on the statistical uncertainties.
This is because the shell gaps at hyper- and higher defor-
mations are smaller than at superdeformation (see Refs.
[54, 55] and references quoted therein). As a consequence,
the changes in the single-particle structure caused by the



10

functional variations have a smaller impact on the shell
correction energy.

So far the statistical uncertainties in the deformation
energy curves have been investigated only in Skyrme
DFT. They have been studied in Ref. [56] for the nu-
cleus 240Pu with the functional UNEDF1 functional and
in Ref. [6] for the nucleus 266Hs with the functionals SV-
min and SV-bas. In 240Pu, the statistical uncertainties
increase on going from the normal deformed minimum to
higher deformations and they become especially large af-
ter the second fission barrier. The later observation is in
contradiction with our results which show a decrease and
a stabilization of statistical uncertainties after the second
fission barrier. The reasons for such a difference are not
clear. They may be related to a different choice of the nu-
clei. Differences in the analysis also contribute. To avoid
the use of the emulator, we restricted our consideration to
axially symmetric shapes. On the contrary, the authors
of Ref. [56] replace the exact DFT model by a Gaus-
sian process response surface (GPPS) which they ‘train”
to a restricted set of 200 DFT computations. Although
this simplified approach allows to take into account also
triaxiality and octupole deformation, it is not clear how
well GPPS reproduces the energies for very complicated
topologies of the potential energy surfaces (see for ex-
ample, Figs. 8 and 7 below) for functional variations not
included into the “training” set. The analysis of 266Hs
in Ref. [6] is restricted to the vicinity of the inner fission
barrier. Statistical uncertainties obtained with the SV-
bas (SV-min) functional are close to (larger than) those
obtained in our analysis of 296112.

V. SYSTEMATIC THEORETICAL

UNCERTAINTIES IN THE DESCRIPTION OF

INNER FISSION BARRIERS FOR TRIAXIAL

RHB CALCULATIONS.

Not in all cases the axial saddle is the lowest in energy.
The systematic investigation of the heights of inner fis-
sion barriers in superheavy nuclei performed within the
RMF+BCS approach with the NL3* CEDF in Ref. [11]
has revealed that triaxial deformation lowers the heights
of the inner fission barriers in a number of nuclei; this is
especially pronounced in the vicinity of particle numbers
Z = 120 and N = 184 (see Table V in Ref. [11]). Thus,
the axial RHB calculations provide an upper limit for the
inner fission barrier heights.

In general, triaxial deformation has to be included
into the calculations for a more realistic estimate of the
heights of inner fission barriers which can be used for the
comparison with experiment. However, such a study re-
quires tremendous computational power. This is also il-
lustrated by the fact that within the covariant and Gogny
DFTs, so far, only a limited set of superheavy nuclei has
been studied in the triaxial Hartree-Bogoliubov frame-
work [12, 37, 57]. The computational challenge becomes
especially large in the case of the analysis of systematic

theoretical uncertainties because the same nucleus has
to be calculated within the TRHB framework for several
CEDFs. Thus, a full global analysis of theoretical un-
certainties similar to the one presented in Sec. III in the
axial RHB framework is, at present, beyond the reach of
available computational facilities. As a result, we con-
centrate here on the selected set of the Z = 112 − 120
superheavy nuclei which will be in the focus of experi-
mental studies within the next decades. They are shown
in Fig. 10 below. In the selection of nuclei we focus on
the nuclei in which the triaxial saddle is expected to be
the lowest in energy in the region of interest. Accord-
ing to systematic studies in the RMF+BCS framework
with the CEDF NL3* of Ref. [11], these are the nuclei in
the vicinity of the Z = 120 and N = 184 lines. On the
contrary, the axial saddles are the lowest in energy in the
nuclei which are away from these lines. For example, this
takes place for N ≤ 174 in the Z = 112, 114, 116 nuclei
(see Ref. [11]). Triaxial RHB calculations for the (Z =
112, N = 164), (Z = 112, N = 172), (Z = 114, N = 166)
and (Z = 114, N = 172) nuclei (these nuclei are seen on
the left side of Fig. 10a) confirm this observation of Ref.
[11] for all CEDFs employed in the present manuscript.
We will try to establish (i) how theoretical systematic
uncertainties obtained in axial RHB calculations will be
modified when triaxiality is included and (ii) to what
extent theoretical uncertainties obtained in axial and tri-
axial RHB calculations are correlated.

The dependence of the potential energy surfaces on
the CEDF is illustrated in Figs. 7 and 8. These PES are
characterized by a complicated topology which, however,
reveals some typical triaxial saddles.

For example, in the nucleus 300120 they are located at
(β2 ∼ 0.32, γ ∼ 21◦), (β2 ∼ 0.43, γ ∼ 33◦), and (β2 ∼
0.49, γ ∼ 24◦) for the functionals DD-ME2, PC-PK1,
NL3* and DD-PC1 (see Fig. 7). The later two are also
visible in the CEDF DD-MEδ. However, the first one
is shifted to smaller β2 and γ deformations, namely, to
(β2 ∼ 0.20, γ ∼ 15◦).

For all functionals except DD-MEδ the axial saddle is
higher in energy by roughly 0.5 MeV than the triaxial
saddle at (β2 ∼ 0.32, γ ∼ 21◦) and by approximately 1.5
MeV than the triaxial saddles at (β2 ∼ 0.43, γ ∼ 33◦) and
(β2 ∼ 0.49, γ ∼ 24◦) (Fig. 7). The PES of the DD-MEδ
functional has a completely different topology. Although
the (β2 ∼ 0.20, γ ∼ 15◦) saddle is lower in energy than
the axial saddle by approximately 1 MeV, the axial saddle
is located only ∼ 0.2 MeV below the triaxial saddles at
(β2 ∼ 0.33, γ ∼ 25◦) and (β2 ∼ 0.45, γ ∼ 33◦).

The presence of these saddles leads to several fission
paths which have been discussed in detail in Ref. [11].
Although this discussion is based on RMF+BCS results
with NL3*, we found that it is still valid for the TRHB re-
sults with DD-ME2, PC-PK1, NL3* and DD-PC1. This
is because for a given functional the topology of PES ob-
tained in triaxial RMF+BCS and RHB calculations is
similar. The situation is different for DD-MEδ which has
an axial saddle located at β2 ∼ 0.13 (Fig. 7). Thus, the
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fission path will proceed from the oblate minimum via
the triaxial saddle at (β2 ∼ 0.20, γ ∼ 0.15) which has a
low excitation energy of only 3 MeV.

As shown in Ref. [11], the axial saddle becomes ener-
getically more favored as compared with triaxial saddles
on moving away from the particle numbers Z = 120 and
N = 184. This is clearly seen in the nucleus 284112, in
which the axial saddle at β2 ∼ 0.32 is lower in energy
than the triaxial saddles located around (β2 ∼ 0.38, γ ∼
34◦) and (β2 ∼ 0.47, γ ∼ 26◦). This feature is also seen in
Fig. 4 of Ref. [11] which compares the results for selected
Z = 112, 114, and 116 nuclei obtained in the RMF+BCS
calculations with NL3*.

To simplify the further discussion we follow the nota-
tion of Ref. [11] and denote the axial saddle as ’Ax’, the
triaxial saddle with (β2 ∼ 0.3, γ ∼ 10◦) as ’Ax-Tr’, the
triaxial (β2 ∼ 0.4, γ ∼ 35◦) saddle as ’Tr-A’ and the tri-
axial saddle with (β2 ∼ 0.5, γ ∼ 22◦) as ’Tr-B’. Although
the positions of these saddles move somewhat in the de-
formation plane with the change of proton and neutron
numbers, they appear in the majority of nuclei under
study.

Fig. 9 summarizes the results of the calculations for
the inner fission barrier heights. The DD-ME2 and DD-
MEδ functionals provide the highest and the lowest fis-
sion barriers among those obtained in the calculations
with five CEDFs. The results of the calculations with
the CEDFs NL3*, DD-PC1 and PC-PK1 are located in
between of these two extremes. Note that these three
functionals have been benchmarked in the actinides in
Refs. [11, 12, 38, 52] where they provide a good descrip-
tion of experimental data.

Fig. 9 clearly shows that different functionals are char-
acterized by different isotopic and isotonic dependencies
for the inner fission barrier heights. As a result, the
functionals, which give similar results in one part of the
(Z,N) plane, could provide substantially different results
in another. This leads to the spreads in the predictions
of the inner fission barrier heights which are presented
in Figs. 10 and 11. The strongest correlation between
these spreads is observed for the ’Ax’ and ’Ax-Tr’ sad-
dles; this is seen both for the set of five (Figs. 10a and b)
and the set of three (Figs. 11a and b) functionals. This
is because these saddles are closely located in the defor-
mation plane so that the change in the energy of the ’Ax’
saddle affects in a similar way the energy of the ’Ax-Tr’
saddle. The correlations in the spreads of the energies of
the ’Ax’ saddle on one hand and the ’Tr-A’ and ’Tr-B’
saddles on the other hand depends on how many func-
tionals are used in the analysis. On average, they are
strongly correlated for the set of the DD-PC1, NL3* and
PC-PK1 functionals (compare Figs. 11a, c and d) which
have large similarities in the topology of PESs (see Figs. 7
and 8) and for which the ∆ES spreads are typically below
2 MeV (see Fig. 11). Note that these three functionals
successfully describe experimental fission barriers in the
actinides [12, 51, 52]. These correlations decrease with
the addition of the functionals DD-MEδ and DD-ME2;

the ∆Es spreads are typically smaller for the ’Tr-A’ and
’Tr-B’ saddles as compared with the ’Ax’ one (compare
Figs. 10a, c and d).
It is important that the spreads for the axial ’Ax’

saddles and the lowest in energy saddles are strongly
correlated (compare Figs. 10a and d and Figs. 11a and
d). This suggests that also for other regions of nuclear
chart, not covered by the present TRHB calculations,
the spreads in inner fission barrier heights obtained in
the axial RHB calculations could be used as a reasonable
estimate of the spreads which would be obtained in the
calculations with triaxiality included.

VI. COMPARISON OF FISSION BARRIERS IN

DIFFERENT MODELS

It is necessary to recognize that the CDFT represents
only one of the classes of nuclear structure models. Other
classes are represented by non-relativistic DFTs based on
zero-range Skyrme and finite range Gogny forces as well
as microscopic+macroscopic approaches based on phe-
nomenological folded Yukawa and Woods-Saxon poten-
tials. As it can be seen for instance in Refs. [11, 60],
these models accurately reproduce the inner fission bar-
riers in the actinides. This is in part due to the fact that
the heights of fission barriers and/or the energy of the
fission isomers have been used in their fitting protocols.
Thus, it is important to understand how these models

extrapolate to the edge on the known region of super-
heavy nuclei and its vicinity. This is because the dif-
ferences in their predictions define the systematic uncer-
tainties. Fig. 12 shows the heights of inner fission barri-
ers of the Z = 112 − 120 superheavy nuclei for various
relativistic and non-relativistic models. While providing
similar predictions in the actinides, they do extrapolate
in very different ways to the superheavy region. Their
predictions vary significantly and the inner fission bar-
rier heights found within these models can differ by up
to 6 MeV. The substantial differences in the predictions
of the two macroscopic+microscopic (MM) are in partic-
ular surprising. Unfortunately, at present, there are only
very few experimental data available on fission barriers in
superheavy elements and they are not reliable enough to
distinguish between theoretical predictions of the various
models (see discussion in Ref. [11]).
Fig. 12 also compares the energies of the lowest in-

ner fission barriers obtained in triaxial RMF+BCS (Ref.
[11]) and RHB (present manuscript) calculations with the
CEDF NL3*. Pairing correlations are treated in these
two calculations in a very different way. Monopole pair-
ing with a finite pairing window is used in the RMF+BCS
calculations of Ref. [11]. Its strength is adjusted to the
“empirical” pairing gaps of Ref. [61]. In the RHB calcu-
lations, the separable form of the finite range Gogny pair-
ing interaction [47] is used. As discussed in Sec. II, this
pairing well reproduces physical observables sensitive to
pairing in the actinides. The differences in the calculated
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FIG. 7. (Color online) Potential energy surfaces of the 300120 nucleus as obtained in the calculations with indicated CEDFs.
The energy difference between two neighboring equipotential lines is equal to 0.5 MeV. The Ax, Ax-Tr, Tr-A and Tr-B saddles
are shown by blue/red circles, diamonds, triangles, and squares, respectively. The PES are shown in the order of decreasing
height of inner fission barrier.
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FIG. 8. (Color online) The same as in Fig. 7 but for the 284112 nucleus.

inner fission barriers seen in Fig. 12 are (i) due to differ-
ent extrapolation properties of these two types of pairing
on going from actinides to the superheavy region and (ii)
due to the dependence of fission barrier heights on the
pairing window used for the monopole force [62]. Be-
cause of these reasons the inner fission barriers are found

to be roughly 1 MeV higher in the RHB results than in
the RMF+BCS calculations for N ≤ 174 (N > 176).
For these neutron numbers, the RHB results come closer
to the mic-mac model predictions ’MM (Kowal)’. How-
ever, the difference between the TRHB and RMF+BCS
results decreases at higher N . Note that for the Z = 118
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FIG. 9. (Color online) The heights of inner fission barriers in selected nuclei as obtained in the TRHB calculations with
indicated CEDFs. The style of the symbol filling indicates the type of the lowest in energy saddle. Note that the TRHB results
in a few N ∼ 166 and N = 172 nuclei (see Fig. 10 below) and the trends of the evolution of PES with particle number allow to
firmly establish the axial symmetric nature of the lowest saddle in the Z = 112 and 114 nuclei (as well as in Z = 116 nuclei for
the NL3* and DD-ME2 functionals) for neutron numbers between 164 and approximately N = 172. For some of these nuclei,
we use axial RHB results when the TRHB results are not available.

and 120 nuclei the TRHB results are close to the ’MM
(Kowal)’ results.
Of course, it is very difficult to measure the fission bar-

riers. On the other hand, one can consider also the spon-
taneous fission half-lives τSF which are directly measur-
able quantities. Their calculations, however, represents
a real challenge. The values of spontaneous fission half-
lives depend strongly on the underlying theory used to
describe the collective motion, such as the generator co-
ordinate method (GCM) or the adiabatic time-dependent
HFB (ATDHFB) theory (for details see Refs. [63, 64])
and the corresponding collective Hamiltonian, in partic-
ular, on the inertia parameters. Typical differences be-
tween the τSF values calculated with ATDHFB and GCM
can reach many orders of magnitude [65].
In addition, the uncertainties (both systematic and

statistical) in the calculated heights of inner fission barri-
ers discussed above will also have a profound effect on the
calculated spontaneous fission half-lives. For example, it
is well known that the change of fission barrier height by
1 MeV leads to a change of the calculated spontaneous
fission half-lives τSF by 6 orders of magnitude [65]. It
is more difficult to quantify the impact of the change of
the topology of the PES on τSF , but it is reasonable to
expect that it is substantial.
As a result, the absolute values of calculated sponta-

neous fission half-lives τSF cannot be used with confi-
dence since they have extremely large theoretical uncer-

tainties spanning many orders of magnitude. However, it
is frequently argued that isotopic and/or isotonic trends
in the description of spontaneous half-lives are expected
to be reproduced with much higher accuracy [65]. How-
ever, such arguments are usually based on a single func-
tional. On the contrary, the current analysis based on a
set of the state-of-the art CEDFs as well as the compar-
ison with other models shown in Fig. 12 indicates sub-
stantial theoretical uncertainties in isotopic and isotonic
trends for the inner fission barriers, even for the function-
als which are benchmarked in the actinides. In addition,
these uncertainties have a “chaotic” component which
randomly changes from nucleus to nucleus. These uncer-
tainties will definitely affect the calculated spontaneous
fission half-lives by many orders of magnitude. This fact
is important not only for our understanding of SHEs but
also for fission recycling in neutron star mergers [66]. The
later process will be definitely affected by the increased
(as compared with the actinides) uncertainties of the in-
ner fission barrier heights seen in neutron-rich nuclei (see
Fig. 3).

VII. CONCLUSIONS

Theoretical uncertainties in the predictions of inner
fission barrier heights in SHEs have been investigated
for the first time in a systematic way for covariant en-
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FIG. 10. (Color online) The spreads ∆ES of the energies of axial (panel (a)), triaxial (panels (b,c,d)) and the lowest in
energy (panel (d)) saddles for a selected set of the Z = 112 − 120 nuclei as a function of proton and neutron number.
∆ES(Z,N) = |ES

max(Z,N) − ES
min(Z,N)|, where, for given Z and N values, ES

max(Z,N) and ES
min(Z,N) are the largest and

smallest energies of the saddles obtained with the set of functionals NL3*, DD-ME2, DD-MEδ, DD-PC1, and PC-PK1. Note
that the same colormap as in Fig. 3 is used here.

ergy density functionals. The analysis is based on the
state-of-the-art functionals NL3*, DD-ME2, DD-MEδ,
DD-PC1, and PC-PK1 which represent major classes of
CEDFs with different basic model assumptions and fit-
ting protocols. These functionals have been used ear-
lier in the assessment of theoretical uncertainties in the
description of various ground state observables in Refs.
[3, 15, 16, 18, 20]. The following results have been ob-
tained:

• Systematic theoretical uncertainties in the predic-
tions of inner fission barriers and their propaga-
tion towards unknown regions of higher Z values
and of more neutron-rich nuclei have been quanti-
fied. These uncertainties are substantial in SHEs.
Statistical uncertainties are smaller than system-
atic ones. It is clear that the differences in the
basic model assumptions such as a range of the in-
teraction and the form of the density dependence
together with the different fitting protocols based

only on nuclear matter and bulk properties data
lead to these uncertainties.

• Systematic theoretical uncertainties in the inner fis-
sion barrier heights do not form a smooth function
of proton and neutron numbers; there is always a
random component in their behavior. This is a con-
sequence of the fact that fission barrier height is the
difference of the energies between the ground state
and saddle point. Any differences in the predictions
of their energies, which are not acting coherently as
a function of proton and neutron numbers, will lead
to this random component.

• Benchmarking of the functionals to the experimen-
tal data on fission barriers in the actinides allows
to reduce the theoretical uncertainties for the inner
fission barriers of unknown SHEs. However, even
then they increase on moving away from the region
where benchmarking has been performed. This
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(b)

Spreads of the inner fission barrier heights [MeV]

without DD-ME2 and DD-MEδ

Triaxial (Ax-Tr)
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(c)

without DD-ME2 and DD-MEδ
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(d)
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(e)

without DD-ME2 and DD-MEδ

Lowest saddle
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FIG. 11. (Color online) The same as in Fig. 10 but for the case when the DD-ME2 and DD-MEδ CEDFs are excluded from
consideration.

feature is seen not only for different CEDFs but
also for different classes of the models such as mi-
croscopic+macroscopic and non-relativistic DFTs.
The resulting uncertainties in the heights of inner
fission barriers will result in uncertainties of many
orders of magnitude for spontaneous fission half-
lives. The increased theoretical uncertainties in the
fission barriers of neutron-rich SHEs could have a
substantial impact on fission recycling modeling in
r-process simulations of neutron-star mergers.

• Comparing different functionals one can see that
the results (including the topology of the PES) ob-
tained with DD-MEδ differ substantially from the
results of other functionals. The heights of the in-
ner fission barriers obtained with this functional
are significantly lower than the experimental esti-
mates in the Z = 112 − 116 nuclei and the values
calculated in all other models. In addition, this
functional does not lead to octupole deformation
in those actinides which are known to be octupole
deformed [18]. Thus, this functional is not recom-
mended for future investigations in the actinides

and superheavy nuclei in spite of the fact that it
provides a good description of masses and other
ground state observables in the Z ≤ 82 nuclei [15].

The analysis of the description of fission barrier heights
is frequently performed in terms of the parameters which
are related to bulk properties (see, for example, the dis-
cussion in Ref. [6]). However, this is only part of the
physics which affects the heights of fission barriers. In-
deed, it is well known that in actinides the lowering of
the inner and outer fission barriers due to triaxial and oc-
tupole deformations is caused by relevant changes in the
single-particle density which affect the shell correction
energy [11, 58]. Substantial differences in the predictions
of the ground states deformations by the state-of-the-art
CEDFs along the Z = 120 and N = 184 lines (see Ref.
[3]) are also caused by the differences in the underly-
ing single-particle structure. The differences among the
models in the single-particle structure of superheavy nu-
clei are substantially higher than in the region of known
nuclei [3, 67]. It is clear that this is one of the major
contributors to the systematic theoretical uncertainties
in the description of inner fission barriers. A further im-
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FIG. 12. Inner fission barrier heights Bf as a function of the neutron number N . The position of the inner fission barrier
saddle in deformation space varies as a function of particle number. Thus, the lowest saddles are labelled by ’Ax’, ’Ax-Tr’,
’Tr-A’ and ’Tr-B’ (see text for details). The results of triaxial RMF+BCS calculations are taken from Ref. [11]. The results of
Skyrme DFT calculations with SkM* have been taken from Ref. [40]. The results of the MM calculations are taken from Ref.
[58] (labeled as ’MM (Möller)’) and Ref. [59] (labeled as ’MM (Kowal)’). Note that the style of Fig. 1 is used here for easy
comparison between two figures.

provement in the description of the single-particle ener-
gies within DFT is needed in order to reduce the system-
atic theoretical uncertainties in the description of fission
barriers.
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