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Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear
structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is
endowed with a large angular moment about the symmetry axis with I = Iz. The toroidal high-K isomeric states
at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock
method.

Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin
isomers in the superheavy nucleus 304120184.

Method: Our method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-
Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these
toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular
momentum I = Iz about the symmetry z-axis and search for the energy minima of the system as a function of
the deformation. In the last step, if a local energy minimum with I = Iz is found, we perform at this point the
cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal
high-spin isomeric state in free convergence.

Results: We have theoretically located two toroidal high-spin isomeric states of 304120184 with an angular mo-
mentum I=Iz=81~ (proton 2p-2h, neutron 4p-4h excitation) and I=Iz=208~ (proton 5p-5h, neutron 8p-8h) at
the quadrupole moment deformations Q20 = −297.7 b and Q20 = −300.8 b with energies 79.2 MeV and 101.6
MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin
isomers 304120184(Iz=81~ and 208~) have the maximum density close to the nuclear matter density, 0.16 fm−3,
and a torus major to minor radius aspect ratio R/d = 3.25.

Conclusions: We demonstrate that aligned angular momenta of Iz=81~ and 208~ arising from multi-particle-
multi-hole excitations in the toroidal system of 304120184 can lead to high-spin isomeric states, even though the
toroidal shape of 304120184 without spin is unstable. Toroidal energy minima without spin may be possible for
superheavy nuclei with higher atomic numbers, Z &122, as reported previously [7].

PACS numbers: 21.60.Jz, 27.90.+b

I. INTRODUCTION

The landscape of the total energy surface of a nucleus
in the deformation degrees of freedom is central to our un-
derstanding of the equilibrium shapes and the evolution-
ary paths in nuclear dynamics. In Fig. 1 one can see the
total energy surface for the superheavy nucleus 304120184

as a function of the quadrupole and octupole degrees
of freedom calculated in the constrained Hartree-Fock-
Bogoliubov (HFB) approach with the Skyrme energy
density functional. In addition to the spherical ground
state minimum, the landscape contains the symmetric-
elongated-fission (sEF) and asymmetric-elongated-fission
(aEF) paths leading to fission. These features have im-
portant experimental implications in the multimodal fis-
sion decay properties of heavy and superheavy nuclei (cf.
Refs. [1–3]).

The potential energy surface in Fig. 1 pertains to
reflection-symmetric and reflection-asymmetric prolate
shapes. How does the energy surface look like in the
oblate deformation region? What kinds of the nuclear
(equilibrium) shapes may there be in this oblate defor-
mation region?

To gain the proper perspective, it is informative to dis-

cuss some general features of our results in the prolate
and oblate regions and then examine in details in this
paper how oblate region results are obtained. The total
HFB energy of 304120184 as a function of the quadrupole
moment Q20 is shown in Fig. 2. On the prolate deforma-
tion side, the pre-scission density configurations for the
sEF and aEF paths are shown at the ends of both paths
(at Q20 ≈ 360 b for sEF and Q20 ≈ 650 b for aEF).
The effects of triaxiality on the change of the inner and
outer axial-symmetric barriers are shown in the insert of
Fig. 2. On the oblate deformation side with a negative
Q20, one starts from the energy minimum for a spheri-
cal ground state to go to the higher energies for oblate
spheroids. As the oblate Q20 magnitude increases, the
oblate spheroidal density changes into a biconcave disc
with flattened center density. At Q20 ≈ −200 b, the bi-
concave disc energy surface reaches an energy about 72
MeV above the spherical ground state. Upon a further
increase in the oblate deformation a sudden shape tran-
sition from a biconcave disc to a torus takes place with a
reduction of the total energy of the nucleus by 10.8 MeV.

The geometry of the toroidal nuclear densities can be
characterized by the aspect ratio R/d, where R is the
major radius, the distance from the center of the torus
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hole to the center of the torus tube, and d is the minor
radius, the radius of the tube. As is shown in Fig. 2
for Q20 ≤ -158 b, the aspect ratio R/d of the toroidal
solution of the Skyrme-HFB model increases as the oblate
Q20 magnitude increases.

FIG. 1. (Color online) Total HFB energy surface of 304120184

as a function of the quadrupole Q20 and octupole Q30 mo-
ments. The HFB energy is normalized to the ground state en-
ergy. The dashed lines show the symmetric (sEF) and asym-
metric elongated fission (aEF) paths along different valleys.

With regard to the emergence of toroidal nuclear mat-
ter densities, Wheeler suggested long ago that under
appropriate conditions the nuclear fluid may assume a
toroidal shape [4]. Conditions that are favorable for the
formation of nuclei with a toroidal shape are the cases
of excess charge, excess angular momentum, and nuclear
shell effects [5, 6]. In the semi-classical liquid-drop model,
nuclei with a toroidal shape begin to develop as the fis-
sility parameter x exceeds 0.964. However, the toroidal
nucleus is plagued with various instabilities [5], and the
search for toroidal nuclei continues [7]. When a toroidal
nuclear system is endowed with an angular momentum
along the symmetry axis, I=Iz, the variation of the ro-
tational energy of the spinning nucleus can counterbal-
ance the variation of the toroidal bulk energy to lead
to toroidal isomeric states at their local energy minima,
when the angular momentum I=Iz is beyond a thresh-
old value [6]. A rotating liquid-drop toroidal nucleus can
also be stable against sausage instabilities (know also as
Plateau-Rayleigh instabilities, in which the torus breaks
into smaller fragments [8, 9]), when the same mass flow is
maintained across the toroidal meridian to lead to high-
spin isomers within an angular momentum window [6].

The rotating liquid-drop model is useful as an intu-
itive, qualitative guide to point out the essential balance
of forces leading to possible toroidal figures of equilib-
rium. The quantitative assessment of toroidal high-spin
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FIG. 2. (Color online) Total HFB energy curve of 304120184

as a function of the quadrupole moment. The thick solid
(blue color) and gray dashed (orange) lines show the symmet-
ric (sEF) and asymmetric (aEF) elongated fission pathways
along different valleys, respectively. The effect of triaxiality
on the inner and outer barrier is shown in the inset, where the
axially symmetric sEF (γ = 0◦) fission pathway is marked by
solid thin (black) line. The nuclear matter density distribu-
tions with toroidal shapes appear at the region of large oblate
deformation Q20 6 −158 b dark gray (red) solid circles.

isomer (THSI) relies on microscopic descriptions that in-
clude both the bulk properties of the nucleus and the
single-particle shell effects in self-consistent mean-field
theories, such as the Skyrme-Hartree-Fock (Skyrme-HF)
approach. Self-consistent mean-field theories are needed
because non-collective rotation with an angular momen-
tum about the symmetry axis is permissible quantum me-
chanically for an axially symmetric toroid only by making
single-particle particle-hole excitations to align the an-
gular momenta of the constituents along the symmetry
axis [10–15]. As a consequence, only a certain discrete,
quantized set of total angular momentum I=Iz states is
allowed. We shall adopt the simplified notation that all
spins and angular momenta are implicitly in units of ~
except otherwise explicitly indicated to resolve ambigui-
ties.

It was recently found that the THSI with I=60 may be
in the local energy minimum in the excited states of 40Ca
by using a cranked Skyrme-HF method starting from the
initial ring configuration of 10 alpha particles [16, 17].
Using a cranked Skyrme-HF approach, it was found that
toroidal high-spin isomeric states have actually a rather
general occurrence for an extended region of even-even
light nuclei with 286A652 [18]. With different rings of
alpha particles as initial states, it was also subsequently
confirmed that there are THSIs solutions in the extended
region of 366A652 [19]. The particle-hole nature of the
light high-spin toroidal isomers has been examined in
Ref. [20], the toroidal high-spin isomers with N 6= Z
have been located [21], and the THSIs in 56Ni have been
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described in Ref. [22]. For the nucleus 24Mg, a toroidal
diabetic excited state without spin has also been found
[23].

In addition to the high-spin toroidal isomers in the
light mass region, the superheavy nuclei with large
atomic numbers provides another favorable region for
toroidal nuclei formation, because the large Coulomb
repulsion tends to push the nuclear matter outward to
make it energetically advantageous to assume a toroidal
shape. A previous work in the superheavy region in
the self-consistent constraint Skyrme Hartree-Fock+BCS
(Skyrme-HF+BCS) framework indicates that toroidal
energy minima are present at various energies as the
atomic number increases beyond Z & 122 [7]. For ex-
ample, the superheavy nuclei 316122194, 340130210, and
352134218 have toroidal local potential energy minima
lying at about 50, 25, and 12 MeV above their corre-
sponding deformed oblate ground state energy minimum,
respectively. The superheavy nucleus 364138226 has a
toroidal local potential energy minimum that lies even
below the oblate spheroidal energy minimum.

Our purpose in the present manuscript is to explore the
closed-shell superheavy nucleus 304120184 which is local-
ized close to the center of the “island of stability”(cf.
Refs. [3, 24]). Toroidal system of 304120184 without a
spin may not be stable [25]. It is of interest to find out
whether the superheavy nucleus 304120184 with a toroidal
density may become stabilized by the addition of a large
nuclear spin.

This manuscript is organized as follows. In Secs. II A-
C, we describe the theoretical model. In Sec. III A, we
examine properties of the toroidal system of 304120184

without spin and study the single-particle states in the
constrained Skyrme-HFB calculations as a function of the
quadrupole moment. In Sec. III B, we present results of
the cranked Skyrme-HF calculations for 304120184 with a
toroidal density and a spin. The properties of 304120184

toroidal high-spin isomers are presented in Sec. III C.
Finally, we summarize our studies in Sec. VI.

II. DESCRIPTION OF THE MODEL

A. The Skyrme energy density functional

In the local density approximation the Skyrme energy
density functional (EDF), up to second-order in deriva-
tives of the density (i.e., the most general quadratic
EDF), can be expressed in terms of seven proton and neu-
tron local densities: the particle (scalar) density ρq(r),
kinetic energy (scalar) density τq(r), spin-current (pseu-
dotensor) density Jq(r), current (vector) density jq(r),
spin (pseudovector) density sq(r), spin-kinetic (pseu-
dovector) density T q(r), and tensor-kinetic (pseudovec-
tor) density F q(r), where q = {p, n}, see Refs. [26–29].

The above local densities are all real, and ρq(r), τq(r),
and Jq(r) are time-even, whereas jq(r), sq(r), T q(r),
and F q(r) are time-odd. The spin-current pseudotensor

density Jq(r) can be decomposed into trace, antisymmet-
ric and symmetric parts, giving the pseudoscalar Jq(r),
vector Jq(r), and (traceless) pseudotensor Jq(r) densi-
ties, respectively.

The time reversal and spatial symmetries impose re-
strictions on the local densities [30, 31]. In spherical
nuclei (the rotational and mirror symmetry, O(3)) the
pseudoscalar Jq(r), all the pseudovector (sq(r), T q(r),
F q(r)) and the pseudotensor Jq(r) local densities van-
ish. In the case of axial- and reflection-symmetry only the
pseudoscalar component Jq(r) vanishes. For the descrip-
tion of static properties in even-even nuclei, all the time-
odd densities must vanish to preserve the time-reversal
invariance of the density matrix in the particle-hole chan-
nel.

The standard proton-neutron separable Skyrme EDF
can be divided into two parts, built of the seven isoscalar
(t=0) and seven isovector Tz=0 component (t=1) single-
particle densities [30]

ESk =
∑
t=0,1

∫
d3r

(
Hevent (r) +Hoddt (r)

)
, (1)

where the isoscalar densities are the total (n + p) den-
sities, while the isovector densities are the differences of
the neutron and proton (n − p) densities. The energy
densities Hevent (r) and Hoddt (r) are the real, time-even,
scalar, and isoscalar functions of local densities and their
derivatives. The time-even part of Skyrme EDF

Hevent (r) = Cρt [ρ0]ρ2
t + C∆ρ

t ρt∆ρt + Cτt ρtτt

+CJ0
t J 2

t + CJ1
t J

2
t + CJ2

t J2
t

+C∇Jt ρt∇ · J t, (2)

is expressed as a bilinear form of the time-even densities
and their derivatives. The time-odd Skyrme EDF

Hoddt (r) = Cst [ρ0]s2
t + C∆s

t st ·∆st + CTt st · T t + Cjt j
2
t

+C∇jt st · (∇× jt)
+C∇st (∇ · st)2 + CFt st · F t, (3)

contains all time-odd densities and their derivatives writ-
ten in a bilinear form. The terms proportional to the cou-
pling constants C∇st and CFt occur for tensor force only
and both are equal zero in the standard parametrizations
of the Skyrme effective interactions.

Invariance under local gauge transformations of the
Skyrme energy density (1) links pairs of time-even and
time-odd terms in the energy functional provided that
the coupling constants fulfill the constraints [32]:

Cτt = −Cjt ,
CJ0
t = − 1

3C
T
t − 2

3C
F
t ,

CJ1
t = − 1

2C
T
t + 1

4C
F
t , (4)

CJ2
t = −CTt − 1

2C
F
t ,

C∇Jt = C∇jt .
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The spin-orbit terms are proportional only to C∇Jt =C∇jt
in the standard Skyrme functionals. However, with the
generalized spin-orbit interaction (with the full isovector
freedom in the spin-orbit term [33])

C∇J0 = −b− 1
2b
′,

C∇J1 = − 1
2b
′, (5)

where b and b′ are the new parameters.
Four zero-order coupling constants of the Skyrme EDF

(Cρt [ρ0], Cst [ρ0]) can be expressed in terms of the Skyrme
force parameters [34] (t0, x0, t3, x3, α) and the rest
(24 second-order) coupling constants can be expressed in
terms of the other seven Skyrme force parameters (t1, x1,
t2, x2, W0, te, to), and therefore, the time-odd coupling
constants in the Skyrme EDF are linear combination of
the time-even ones [32], see also Ref. [26, 28, 29] for fur-
ther discussion.

The total energy in the Skyrme-HFB approach is

Etot[ρ̄] ≡ Etot [ρ, τ, J; s,T , j,F ; ρ̃]

=

∫
d3r (Ekin(r) + ESk(r))

+

∫
d3r

(
EdirCoul(r) + EexCoul(r)

)
+

∫
d3rEpair(r) + Ecorr, (6)

where Ekin = τ0(r)(~2/2m) is a kinetic energy density of
both protons and neutrons (for the neutron and proton
masses being approximated by their average value), ESk
is the Skyrme EDF, Eq. (1), and EdirCoul, EexCoul is a direct
and an exchange Coulomb energy density, respectively.

The Epair is the isovector |Tz| =1 pairing energy den-
sity, corresponding to a density-dependent delta interac-
tion

Epair =
∑
q=p,n

V 0
q

4

[
1− V 1

(
ρ0(r)

ρst

)β]
ρ̃2
q(r), (7)

where ρst is the saturation density of nuclear matter that
approaches the density inside the nucleus, β = 1 (usu-
ally), and V 1 = 0, 1, or 1/2 for volume-, surface-, or mix-
type pairing, and ρ̃q(r) is the paring density for protons
and neutrons [35]. The volume pairing interaction acts
primarily inside the nuclear volume, while the surface
pairing acts on the nuclear surface. A correction term,
Ecorr, includes corrections for spurious motions caused
by symmetry violation in the mean-field approximation
[36].

B. The method of Lagrange multipliers

The constrained and/or cranked Skyrme-HF(B) ap-
proach is equivalent to minimization of the Etot EDF,
Eq. (6), with respect to the densities and currents. Using

the method of Lagrange multipliers we solve an equality-
constrained problem (ECP) for the objective function
Etot: 

min
ρ̄
Etot[ρ̄]

subject to: 〈N̂q〉 = Nq, (q = p, n),

〈Q̂λµ〉 = Qλµ,

〈Ĵi〉 = Ii, (i = x, y, z),

(8)

where the constraints are defined by average values
Np/n = Z or N for the proton and neutron particle-

number operator N̂p/n, the constrained values Qλµ for

the mass-multiple-moment operators Q̂λµ, and the con-

strained value Ii for the angular momentum operator Ĵi
along the i-axes.

To solve the above ECP one can use the standard
method of Lagrange multipliers, e.g., the quadratic
penalty method, or the augmented Lagrangian method.
A comparison of both methods can be found in Ref. [37].

The augmented Lagrangian functional (or Routhian)
associated with ECP is defined as

E
′

c[ρ̄,λ,Λ,ω] = Etot[ρ̄]−
∑
q=p,n

λq〈N̂q〉

+
∑
λµ

Cλµ

(
〈Q̂λµ〉 −Qλµ

)2

+
∑
λµ

Λλµ

(
〈Q̂λµ〉 −Qλµ

)
−
∑

i=x,y,z

ωi〈Ĵi〉 (9)

where λp, λn, Λλµ, and ωi are the Lagrange multipliers,
and Cλµ >0 are the penalty parameters. In the ALM the
Lagrange multipliers Λλµ are iterated according to

Λk+1
λµ = Λkλµ + 2Ckλµ

(
〈Q̂λµ〉 −Qλµ

)
, (10)

see, Ref. [37] and references cited therein.
In an adiabatic approximation nuclear collective and

intrinsic degrees of freedom can be decoupled and the
collective motion of nucleus can be described in terms
of a few collective variables describing shape evolution.
Using a primal function of ECP

Etot(Qλµ; I) = min
〈Q̂λµ〉=Qλµ, 〈Ĵi〉=Ii

Etot[ρ̄], (11)

one can characterize these shapes by the mean values of
external fields represented by the multipole-moments and
angular momentum operators.

C. The Skyrme-HFB calculations

The Hartree-Fock wave function is the Slater determi-
nant of single particle orbitals. Thus the orbitals depend

on the single particle Hamiltonian ĥ, which depends on
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the densities and currents. The densities and currents
in turn depend on the orbitals, so we must solve ECP,
Eq. (8), self-consistently (by iteration until convergence).

The above ECP was solved using the augmented La-
grangian method with the symmetry-unrestricted code
HFODD [38] which solves the Skyrme-HFB equations in
the Cartesian deformed harmonic-oscillator (h.o.) basis.
In the particle-hole channel the Skyrme SkM* force [39]
was applied and a density-dependent mixed pairing [1, 40]
interaction with the parameters V 0

n = −268.9 MeV fm3

and V 0
p = −332.5 MeV fm3 in the particle-particle chan-

nel was used.
The code HFODD calculates parameters of the h.o.

basis using geometrical consideration [41]. The relative
values of the frequencies of the deformed h.o. in the
three Cartesian directions are defined by the condition
ωxRx = ωyRy = ωzRz, while the overall factor is given

by (ωxωyωz)
1/3 = ω0, where ~ω0 = f × 41 MeV/A1/3

is the spherical h.o. frequency and f=1.2 is a scal-
ing factor [41]. In the above condition, Rx=R(π/2, 0),
Ry=R(π/2, π/2), and Rz=R(0, 0) are the lengths of prin-
cipal axes of a sharp-edge reference body surface, defined
by deformation parameters αλµ in terms of multipole ex-
pansion

R(θ, φ) = c(α)
(

1 +

λmax∑
λ=0

λ∑
µ=−λ

αλµYλµ(θ, φ)
)
, (12)

where c(α) is a function of αλµ such that the volume
enclosed by the surface does not depend on α. In the
present study, we have used the axially deformed h.o.
basis with the deformation parameter α20 chosen to be
equal to the mean-field value calculated in the code for
a given value of 〈Q̂20〉, cf. Eq. (1.35) of Ref. [12] and
Ref. [42]. For example, this procedure for the quadrupole
moment constraint Q20 = −200 b gives α20 = −0.70
which corresponds to ~ω⊥=~ωx=~ωy = 5.96 MeV and
~ωz = 11.03 MeV. We keep this deformed h.o. basis
when we examine toroidal shapes with the large oblate
deformation Q20 < −200 b. The basis was composed of
the 1140 lowest states taken from the N0=26 h.o. shells.
With this basis size, our tests show that we can properly
describe toroidal shapes up to Q20 & −600 b deforma-
tion.

Our objective is to locate local toroidal figures of equi-
librium, if any, in the multi-dimensional search space of
{A,Q20, I}. We first use the quadrupole moment Q20

constrained Skyrme-HFB approach to search for the nu-
clear density distributions with toroidal shapes. Next,
using as starting configurations the toroidal solutions we
apply the constrained and cranked around the symme-
try z-axis Skyrme-HF approach to map out the energy
landscape for axially-symmetric toroidal shapes under
Q20 and I=Iz constraints. If the states with I=Iz as
a function of Q20 deformation reveal a local energy min-
imum then the quadrupole constraint is removed at that
minimum and symmetry-unrestricted free-convergence is
tested to ensure that the non-collectively rotating toroid

nucleus is indeed a figure of equilibrium. It is worth not-
ing that in the unconstrained and symmetry-unrestricted
cranked Skyrme-HF calculations we do not impose the
axial and reflection symmetries to the toroidal system to
ensure its stability with respect to these modes.

D. Pairing correlations

As mentioned above, in the present calculations we use
the constrained Skyrme-HFB approach only during the
first stage of our method, when we try to establish the
region of Q20 deformation with the toroidal solutions. In
the following calculations we apply the cranked Skyrme-
HF model (neglecting the pairing correlations) trying to
locate the THSIs.

A quantal system such as axially symmetric toroid can-
not rotate around a symmetry axis. In the cranking ap-
proach the Lagrangian multiplier ωz allows one to solve
the ECP (8) with a supplementary condition on an an-

gular momentum 〈Ĵz〉 = Iz, where the z-axis is choose as
the symmetry axis. The total angular momentum I=Iz,
in a case when ωx= ωy=0, is built up by selecting nu-
cleonic orbitals that are most favorable in creating the
states with required angular momentum and with the
lowest energy, the so-called optimal configurations (cf.
Refs. [10–15]). This non-collective rotation around the
symmetry axis is permissible quantum mechanically only
by particle-hole excitations with respect to the uncranked
state, leading to aligned single-particle angular momenta
along the symmetry axis

Iz = 〈Ĵz〉 =

A∑
i=1

〈ĵz〉i =

A∑
i

(Ωz)i

=
∑
i exc

(
Ωpartz − Ωholez

)
i
, (13)

where Ωz = Λz±1/2 denotes the projection of the single-
particle angular momentum onto the symmetry z-axis
and in the second equation the sum runs over the particle-
hole excitations.

The Cooper pairs in a nucleus are composed of the
pairs of nucleons in the time-reversal conjugate orbitals
with Ωz = ±Ω. The pairing correlation diminishes with
each particle-hole excitation which successively breaks
down the Cooper pairs. When the seniority of a configu-
ration increases, the blocking effect [12, 15] is effective in
reducing the pairing correlations in the toroidal high-spin
states. We neglect the pairing in the present study of the
THSIs. It would certainly be interesting to examine the
effect of weak pairing correlations on toroidal high-spin
isomers, but that will be left for a future study.
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III. RESULTS AND DISCUSSIONS

A. Toroidal system of 304120184 without spin

Using the above self-consistent Skyrme-HFB mean-
field theory, we study first the nucleus 304120184 under
the constraint of a fixed Q20 without spin. We obtain
the total energy of the system with a toroidal density as
a function of the constrained Q20, as shown in Fig. 2. It
indicates that even though 304120184 without spin may
have a toroidal density for Q20 ≤ -158 b, its total energy
curve as a function of Q20 lies on a slope. This implies
that the toroidal system of 304120184 without spin is un-
stable against the tendency to return to a sphere-like
geometry, cf. Ref. [25]. For future exploration of possi-
ble superheavy toroidal nuclear system without spin, it
will be necessary to go to systems with a greater charge
numbers with Z ≥ 122 as in Ref. [7] or alternatively to
find single-particle “shells” in proton and neutron num-
bers in regions of sparse single-particle level densities at
the top of the Fermi surface, for which the shell effects
may provide a sufficiently shell correction [43] to stabilize
a toroidal nuclear system.
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FIG. 3. (Color online) Proton single-particle levels in the
canonical basis for 304120184 in the toroidal configuration as
a function of the constraining quadrupole moment Q20, ob-
tained in the Skyrme-HFB calculations. The levels with pos-
itive parity are drawn with solid (black) lines, while those
with negative parity are drawn with gray dashed (blue color)
lines. The circled numbers denote the occupation numbers at
regions of spare single-particle energy level density (“shells”).

To study the shell effects in superheavy toroidal nu-
clear system without spin, we examine the single-particle
states of 304120184 with a toroidal density as a function
of the quadrupole moment Q20 in self-consistent Skyrme-
HFB calculations. The self-consistent single-particle po-
tential will also assume a toroidal shape. The proton
and neutron single-particle energy levels (in the canoni-
cal basis) for 304120184 are shown in Fig. 3 and in Fig. 4,
respectively. Each single-particle state is labeled by the

Nilsson quantum numbers [N,nz,Λ]Ω of the dominant
component, and is twofold degenerate, with Ωz = ±Ω.
Solid and dashed curves are used to distinguish positive
and negative parity levels, respectively. We find from
Figs. 3 and 4 that the densities of neutron and proton
single-particle states are far from uniform. There are re-
gions of sparse single-particle level densities which can be
identified as the “shells” associated with enhanced stabil-
ity [43]. For brevity of notation, we shall call these shells
associated with a toridal nuclear density and potential
the toroidal shells.
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FIG. 4. (Color online) The same as in Fig. 3, but for the
neutron single-particle levels.

For the nucleus 304120184 in the toroidal configuration
at Q20 ≈ −300 b, Figs. 3 and 4 show that the proton
Fermi surface for Z = 120 resides in the low single-
particle level density region of a proton shell at Z = 120,
but the neutron Fermi surface for N = 184 resides in a
region of high single-particle level density. The stabiliz-
ing effects for the toroidal proton shell at Z = 120 with
a negative proton shell correction is counter-balanced
by the destabilizing effect for N = 184 with a positive
neutron shell correction, in the region of deformation
Q20 ≈ −300 b. Furthermore, the bulk Coulomb inter-
action in 304120184 nucleus is just below the threshold to
open up a hole for a toroidal system, as it is for a nucleus
with Z ≥ 122 [7]. As a consequence, in the Skyrme-HFB
approach which takes into account both the bulk prop-
erties and the shell effects, the combined total energy of
304120184 without spin in the toroidal configuration does
not possess an energy minimum as a function of Q20.

Even though Figs. 3 and 4 pertain to the self-consistent
single-particle states for 304120184, we expect that as the
mean-field potential varies only slightly as a function of
the atomic number and the neutrons number, and it de-
pends more sensitively on the spatial shape of the nu-
clear density distribution, the single-particle state dia-
grams in Figs. 3 and 4 can therefore be approximately ap-
plied as single-particle states for the deformations Q20 in
the toroidal configuration in an extended region around
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304120184. One can therefore read out various toroidal
shells for protons and neutrons at various deformations
Q20 in Figs. 3 and 4. One finds proton shells at Z=116,
118, 120, 132, 134, and neutron shells at N=180, 182,
186, 194, and 198. In our future work, we will exploit
the property of the extra stability of superheavy nuclei
for which the toroidal proton and neutron shells are lo-
cated at the same deformation.

B. Construction of toroidal configurations of
304120184 with high spin

As the toroidal configurations of 304120184 nucleus are
unstable without spin, we like to examine here whether
toroidal 304120184 may be stabilized when it possesses
an angular momentum aligned along the symmetry axis
such that I=Iz. Following Bohr and Mottelson [11], we
can construct a nucleus with an aligned angular momen-
tum Iz by particle-hole excitations. Specifically, refer-
ring to the single-particle states in Figs. 3 and 4 for
toroidal system of 304120184 at Q20 = −300 b without
spin, we can make a hole at a state with angular momen-
tum component −|Ωholez | and place it at a particle state
with angular momentum Ωpartz . The particle-hole pair
will generate an aligned angular momentum Iz of mag-
nitude Ωpartz + |Ωholez |, see, Eq. (13). By making many
such particle-hole excitations, a nucleus with a very high
spin, I=Iz, can be constructed, especially when the num-
ber of particle-hole excitations and the magnitudes |Ωz|
of these participating particle and hole states are large.
Because Iz depends on Ωz and the number of particle-
hole excitations, it assumes quantized non-trivial values
that can only be obtained from a detailed examination of
the structure of the single-particle state energy diagram
of the nucleus of interest.

There are two equivalent ways to construct a high-
spin state with the spin aligned along the symmetry axis:
(i) the method of employing the tilted Fermi surfaces,
and (ii) the plots of the single-particle Routhians e′i =
ei − ~ω(Ωz)i as a function of ~ω.

The single-particle energy level diagram at a fixed
quadrupole moment, say Q2 = −300 b, can be expanded
out to include the additional dependence of Ωz as the
horizontal axis, as shown in Figs. 5 and 6. The Fermi
surface for this case without spin shows up as a hori-
zontal line and all levels below it are occupied, see, an
inset in Fig. 5. A high-spin state can be constructed by
tilting the Fermi level in the expanded single-particle di-
agram, cf. Ref. [13]. The degree of tilt can be specified in
the Skyrme-HF calculations by the Lagrange multiplier

~ω which describes the constraint Iz=〈Ĵz〉=
∑A
i=1(Ωz)i,

with each I=Iz spanning a small region of ~ω [12].
We collect in Table I the particle-hole excitation config-

urations leading to the states of 304120184 with Iz = 81
and 208. They are particle-hole excitations relative to
the Skyrme-HFB states without spin, as labeled by the
quantum numbers [N,nz,Λz]Ωz for the optimal toroidal

configurations of 304120184 at Q20 = −300 b in Figs. 5
and 6.

- 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0- 8

- 6

- 4

- 2

0

2
3 0 4 1 2 0 1 8 4  ( S k M * )
Q 2 0 =  - 3 0 0  b

λ 2

I z= 7 9 �

[ 1 1 , 1 , 8 ]  1 5 / 2

[ 1 2 , 0 , 1 2 ]  2 5 / 2

[ 1 2 , 0 , 8 ]  1 7 / 2

[ 1 1 , 0 , - 1 1 ]  - 2 3 / 2
[ 1 0 , 1 , - 7 ]  - 1 3 / 2

[ 1 1 , 0 , - 7 ]  - 1 3 / 2 I z = 0 �

[ 1 1 , 1 , - 4 ]  - 7 / 2
[ 1 1 , 1 , 8 ]  1 7 / 2

[ 1 1 , 0 , 1 1 ]  2 1 / 2

Sin
gle

-pr
oto

n e
ne

rgi
es

 e i (M
eV

)

2 Ω z  =  2 ( Λ z  ±  Σ)

λ

λ 1 = λ+ � ω 1  Ω z  [ 1 2 , 1 , - 3 ]  - 7 / 2

I z = 2 6 �
- 3 0 - 2 0 - 1 0 0 1 0 2 0 3 0

- 3 0

- 2 0

- 1 0

0

e i (M
eV

)

2 Ω z

λ

FIG. 5. (Color online) The proton single-particle energy levels
of 304120184 in the toroidal configuration at Q20 = −300 b, as
a function of 2Ωz. The thin gray dashed (red color) lines give
the tilted proton Fermi surfaces which lead to the proton spin
value Iz=26 for ~ω1≈0.1 MeV, and Iz=79 at ~ω2≈0.28 MeV.
In the case of Iz=79, the occupied states are shown as solid
circular points, and the unoccupied states as open circles.

TABLE I. The particle-hole excitation configurations
leading to the states of 304120184 with Iz=Iz(proton)
+Iz(neutron)=26+55=81 and Iz=79+129=208.

Hole states Particle states
[11,1,-4] -7/2 [11,0,11] 21/2

Iz(proton)=26 [12,1,-3] -7/2 [11,1,8] 17/2
[11,0,-7] -13/2 [12,0,8] 17/2
[10,1,-7] -13/2 [12,0,12] 25/2

Iz(proton)=79 [11,0,-11] -23/2 [11,1,8] 15/2

[10,2,-4] -7/2 [13,0,5] 9/2
[11,1,-4] -7/2 [13,0,9] 17/2
[10,1,-9] -17/2 [13,1,6] 13/2

Iz(neutron)=55 [13,0,-13] -27/2 [10,2,6] 13/2
[12,0,-12] -23/2 [9,2,5] 11/2
[13,0,-9] -19/2 [13,1,10] 21/2
[12,1,-9] -19/2 [14,0,10] 21/2

Iz(neutron)=129 [10,2,-4] -9/2 [13,0,13] 25/2

In addition to the tilted Fermi surface method, there is
another equivalent method using the diagrams of single-
particle Routhians vs. ~ω. Upon using a Lagrange mul-
tiplier ~ω to describe the constraint of an aligned an-
gular momentum I=Iz along the symmetry z-axis, the

constrained single-particle Hamiltonian becomes ĥ′ =

ĥ − ~ωĵz, where ĵz is the z-component of the single-
particle angular momentum operator along the symme-
try axis with eigenvalue Ωz. The single-particle Routhian
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FIG. 6. (Color online) The neutron single-particle energy lev-
els of 304120184 in the toridal configuration at Q20 = −300 b,
as a function of 2Ωz. The thin dashed lines give the tilted
neutron Fermi surfaces which lead to the neutron spin value
Iz=55 for ~ω1≈0.1 MeV, and Iz=129 for ~ω2≈0.28 MeV. In
the case of Iz=129, the occupied states are shown as solid
circular points, and the unoccupied states as open circles.

e′i is the eigenvalues of ĥ′ for the single-particle state i.
A nucleus in the state with a total aligned angular mo-
mentum Iz along the symmetry axis can be constructed
by populating states below the Fermi level in the single-
particle Routhian level diagram. As the Routhian e′i(~ω)
for the state Ωz is shifted from the corresponding single-
particle energy without spin e′i|~ω=0 by a term propor-
tional to−~ω(Ωz)i, different Lagrange multipliers ~ω will
result in different ordering of the single-particle Routhi-
ans and different Iz, for a given occupation number Z
or N . In Figs. 7 and 8, we give the proton and neutron
single-particle Routhians as a function of the constraining
Lagrange multiplier ~ω, for a toroidal system of 304120184

with Q20 = −300 b, obtained in self-consistent cranked
Skyrme-HF calculations.

We can use single-particle Routhians in Figs. 7 and
8 to determine Iz as a function of the nucleon occupa-
tion number Np/n and ~ω. For a given Np/n and ~ω,
the aligned Iz angular momentum can be obtained by
summing Ωz over all states below the Fermi surface, cf.
Eq. (13). For the occupation numbers of Z = 120 and
N = 184 in Figs. 7 and 8, there are shells, regions of low
Routhian energy level density, for different Iz configura-
tions at different values of ~ω. They represent configura-
tions with relative enhanced stability [5, 43]. In the corre-
sponding Skyrme-HF calculation, they may lead to local
energy minima for various allowed angular momenta.

Figure 7 shows that for the proton occupation num-
ber Z = 120, possible shells are located at Iz(proton)=0,
26, 41, 60, and 79 at different values of ~ω. Figure 8
shows that for the neutron occupation number N = 184,
possible shells are Iz(neutron)=0, 20, 55, 92, 112, and

129 at various values of ~ω. For a nucleus to have a
local minimum with a total aligned angular momentum
Iz=Iz(proton)+Iz(neutron), the ~ω locations of the pro-
ton and neutron shells, need to be close to each other. We
find that by combining the proton and neutron spins, the
total spin of the system can be Iz= 81 at ~ω≈0.1 MeV,
and Iz=208 at ~ω≈0.28 MeV, for Q20 = −300 b.
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FIG. 7. (Color online) Proton single-particle Routhians of
304120184 in the toroidal configuration with Q20=−300 b, as
a function of the cranking frequency ~ω. The states are la-
beled by the Nilsson quantum numbers [N,nz,Λ]Ω. Solid
(black) and dark gray dashed (red color) curves are used to
distinguish even and odd principal quantum number states,
respectively. The aligned angular momenta Iz for Z = 120
protons are shown at various ~ω locations.

Referring to the proton single-particle Routhians di-
agram at ~ω≈0.1 MeV in Fig. 7, the proton spin of
Iz(proton)=26 for the 2p-2h excitation arises by emp-
tying the [11,1,-4]-7/2 and [12,1,-3]-7/2 states, and oc-
cupying [11,0,11]21/2 and [11,1,8]17/2 states. This re-
sult in the alignment of Iz=7 from the holes, Iz=19
from particles, and Iz(proton)=7+19=26, cf. Eq. (13).
In Fig. 8, the neutron spin of Iz(neutron)=55 arises
by emptying [10,2,-4]-7/2, [11,1,-4]-7/2, [10,1,-9]-17/2,
and [13,0,-13]-27/2 states, and populating [13,0,5]9/2,
[13,0,9]17/2, [13,1,6]13/2, and [10,2,6]13/2 states. This
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results in Iz(neutron)= 29+26=55 for which the neu-
tron holes provide 29 units, and the neutron particles
26. The total spin of the toroidal system of 304120184 at
~ω≈0.1 MeV is Iz=Iz(proton)+Iz(neutron)=26+55=81.

For the nuclear total spin of Iz=208 at ~ω≈0.28 MeV,
one observes from Fig. 7 that the proton spin of
Iz(proton)=79 from the 5p-5h excitation arises by
emptying the proton states [11,1,-4]-7/2, [12,1,-3]-7/2,
[11,0,-7]-13/2, [10,1,-7]-13/2, and [11,0,-11]-23/2, and
occupying proton states [11,0,11]21/2, [11,1,8]17/2,
[12,0,8]17/2, [12,0,12]25/2, and [11,1,8]15/2. This result
in the alignment of IZ=(63/2) from the holes, and
IZ=(95/2) from particles. The proton 5p-5h excitation
gives Iz(proton)=(63/2)+(95/2)=79. In Fig. 8, the
neutron spin of Iz(neutron)=129 arises from the 8p-8h
excitation by emptying [10,2,-4]-7/2, [11,1,-4]-7/2,
[10,1,-9]-17/2, [13,0,-13]-27/2, [12,0,-12]-23/2,
[13,0,-9]-19/2, [12,1,-9]-19/2, [10,2,-4]-9/2 states,
and populating [13,0,5]9/2, [13 ,0 ,9 ]17/2, [13,1,6]13/2,
[10,2,6]13/2, [9,2,5]11/2, [13,1,10]21/2, [14,0,10]21/2,
and [13,0,13]25/2 states. The neutron 8p-8h excitation
gives Iz(neutron)=64+65=129.
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FIG. 8. (Color online) The same as in Fig. 7, but for the
neutron single-particle Routhians of 304120184 in the toroidal
configuration. The aligned angular momenta Iz for N = 184
neutrons are shown at various ~ω locations.

The self-consistent single-particle Hamiltonian ĥ′ un-
der an aligned angular momentum constraint depends

on the Hamiltonian operator ĥ that is a self-consistent
function of the nuclear density and nuclear current. The
latter nuclear current depends on the aligned angular
momenta Iz, which depends in turn on the Lagrange
multiplier ~ω. Therefore, the single-particle Routhian,

e′i, which is the eigenvalue of ĥ′, can acquire an ad-
ditional self-consistency dependence on ~ω, in addition
to the explicit dependency on −~ωΩz. We find that
the self-consistent Skyrme-HF single-particle Routhians
e′NnzΛzΩz

(~ω) in Figs. 7 and 8 can be approximately rep-
resented by

e′NnzΛzΩz (~ω) ≈ e′NnzΛzΩz |~ω=0 + a~ω − ~ωΩz, (14)

where the additional term a~ω with a parameter a ≈ 0.5
arises from the effect of self-consistency of the single-

particle Routhian Hamiltonian ĥ′. It affects mostly those
states with a small value of Ωz and is un-important for
states with large Ωz. In the present case for proton oc-
cupation number at Z = 120, an Ωz =1/2 state occurs
by chance at the top to the Fermi surface, as in Fig. 7.

C. The toroidal high-spin isomers in 304120184

The tilted Fermi surface method or the Routhian
single-particle method in the last subsection deals only
with the construction of a state with an aligned angu-
lar momentum along the toroidal symmetry axis. The
question of the stability for such a nucleus needs to be
examined by studying the dependence of the total energy
as a function of Q20 and Iz. The investigation can be
carried out by extending the Skyrme-HFB calculations
further to include both the quadrupole moment Q20 con-
straint and the angular momentum constraint, I=Iz us-
ing a Lagrange multiplier ~ω as the cranking frequency.
As stated in Sec. II D we have carried out the cranking
calculations without the pairing interaction, using the
cranked Skyrme-HF approach.

Applying an additional constraint of an angular mo-
mentum I = Iz about the symmetry z-axis in the cranked
Skyrme-HF calculations, we search for the energy minima
of 304120184 in the toroidal configuration as a function
of the deformation Q20 and aligned angular momentum
Iz. If a local energy minimum with I = Iz is found, we
perform at this point the cranked symmetry-unrestricted
and deformation unconstrained Skyrme-HF calculations
to locate a stable THSI state in free convergence.

The results of such calculations for 304120184 are pre-
sented in Fig. 9, where we plot the deformation energy
(relative to the spherical ground state energy) of the high-
spin toroidal states as a function of the constrained Q20,
for different quantized Iz. For each point (Q20, Iz) on an
Iz curve, it was necessary to adjust ~ω to ensure that
the total aligned angular momentum of all nucleons in
the occupied states gives the quantized Iz value of inter-
est.
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FIG. 9. (Color online) The deformation energies of 304120184

in the toroidal configuration as a function of the quadrupole
moment Q20 for Iz=0, 71, 81, 126, 144, and 208. The loca-
tions of the toroidal high-spin-isomers (THSIs) for Iz=81 and
208 are indicated by star symbols. All deformation energies
are measured relative to the energy of the spherical ground
state.
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FIG. 10. (Color online) Neuron, proton and total density
profiles of the THSIs 304120184(I=81 and 208) as a function
of x for a cut in y = 0, and z = 0.

From the energy surface of 304120184(Iz=81) in the
toroidal configuration in Fig. 9, we find that when we
vary the constrained Q20 with ~ω≈0.1 MeV, the defor-
mation energy of the nucleus in the toroidal configuration
as a function of Q20 has a minimum. Similarly, from the
energy surface of 304120184(Iz=208), we find that when
we vary the constrained Q20 with ~ω≈0.28 MeV, the de-
formation energy of the nucleus as a function of Q20 has a
minimum. Thus, we have theoretically located two THSI
states of 304120184 with an angular momentum I=Iz=81
(proton 2p-2h, neutron 4p-4h excitation) and I=Iz=208

(proton 5p-5h, neutron 8p-8h) at Q20 = −297.7 b and
Q20 = −300.8 b with energies 79.2 MeV and 101.6
MeV above the spherical ground state energy, respec-
tively. In Fig. 9, deformation energies for I=Iz=126 at
Q20 ∼ −275 b and I=Iz=144 at Q20 ∼ −280 b are also
exhibited. As there are no energy minima for these Iz
states, there are no toroidal high-spin isomers with these
aligned angular momenta.

After the THSIs 204120184 with I=Iz=(81 and 208)
have been located, we can examine their properties.
Their density profiles as a cut in the plane of positive
x is shown in Fig. 10, and as density contours in Fig. 11.
The corresponding density profile for the superheavy nu-
cleus in the spherical ground state is also exhibited in
Fig. 10. It is interesting to note that the density profiles
of the two THSIs with Iz=81 and Iz=208 are nearly the
same, as shown indistinguishably in Fig. 10.
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FIG. 11. (Color online) Contours of the total nuclear densities
of 304120184(Iz=81) in cuts: x− y (a), and x− z (b).

One observes in Fig. 10 that the maximum magnitude
of the total densities in the 204120184 THSIs with I=81
and 208 are about the same as those of the nucleus with
a spherical shape. This is in contrast to the case of
THSI nuclei in the light mass region where the maxi-
mum density of the THSI nuclei are only about half of
the equilibrium nuclear matter density of the nuclei in
the ground state [18]. This arises because the occurrence
of THSI nuclei in the light-mass region is dominated by
the nuclear shell effect and the occupation of the low-
est displaced harmonic oscillator states with nρ=nz=0.
For the superheavy nuclei region, the Coulomb repulsion



11

dominates and there are many states involved. Hence,
the nuclear density is not greatly affected by the change
from a spherical shape to a toroidal shape.

The density contours in Figs. 10 and 11 indicate a well-
developed hole in the density of the nucleus. One can
characterize the THSI 304120184(Iz =81) by the average
geometry parameters of

ρmax = 0.161/fm3, R = 9.76 fm, d = 3.00 fm, (15)

which yields R/d =3.25. They have the maximum den-
sity close to the nuclear matter density, 0.16 fm−3. The
density profile for the THSI at Iz=208 is very similar and
will not be exhibited.

IV. SUMMARY

Because of the strong Coulomb repulsion, there is a
tendency for the shape of a nucleus with excess charge to
bifurcate from a spheroidal into a toroidal shape in the
superheavy region. We examine the case of 304120184.
Without spin, the Coulomb repulsion and shell effects
are not sufficient to allow an equilibrium toroidal shape
for 304120184. Toroidal minima without spin are possible
for superheavy nuclei with greater atomic numbers as
reported earlier [7].

The spin of a nucleus with an angular momentum
about the toroidal symmetry axis has a stabilizing ten-
dency. We have theoretically located two toroidal high-
spin isomeric states of 304120184 with an angular mo-
mentum I=Iz=81 (proton 2p-2h, neutron 4p-4h excita-
tion) and I=Iz=208 (proton 5p-5h, neutron 8p-8h) at
Q20 = −297.7 b and Q20 = −300.8 b with energies 79.2
MeV and 101.6 MeV above the spherical ground state en-
ergy, respectively. The nuclear density distribution of the

THSIs 304120184(Iz=81 and 208) have the maximum den-
sity close to the nuclear matter density, 0.16 fm−3, and
a toroidal major to minor radius aspect ratio R/d =3.25
with R=9.76 fm.

Our search to locate the THSIs in 304120184 was fo-
cused on the region -320 b < Q20 < -265 b of de-
formation and it is hard to predict whether two found
toroidal isomers are yrast states. Figure 9 shows that
the 304120184(Iz=81) THSI may appear to lie on the yrast
line as there is no energy minimum with a lower spin lying
below this state. Whether the higher 304120184(Iz=208)
THSI state is an yrast state is not known as it depends on
the energies of the band of collective states built on the
toroidal intrinsic high-spin state of 304120184(Iz=81), by
rotating about an axis perpendicular to the toroidal sym-
metry axis. A further investigation is required to study
this question.

The results of the single-particle state diagrams and
Routhian diagrams obtained in the present calcula-
tions as a function of deformation Q20 and the La-
grange multiplier ~ω indicate that there are shells in
the toroidal shape and the spin degrees of freedom. Ex-
tra stability can be maintained at appropriate occupa-
tion numbers, deformations, and spin. Hence, there
may be many toroidal superheavy nuclei as a function
of (Z,N,Q20, and Iz) that need to be uncovered. The
region of toroidal superheavy nuclei may provide an in-
teresting area for further explorations. Future investiga-
tions on ways to produce and to detect these states with
toroidal densities will be of great interest.
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