aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Equation of state and radii of finite nuclei in the presence
of a diffuse surface layer
V. M. Kolomietz, S. V. Lukyanov, A. I. Sanzhur, and S. Shlomo
Phys. Rev. C 95, 054305 — Published 8 May 2017
DOI: 10.1103/PhysRevC.95.054305


http://dx.doi.org/10.1103/PhysRevC.95.054305

Equation of state and radui of finite nuclei in
presence of diffuse surface layer

V.M. Kolomietz", S.V. Lukyanov", A.I. Sanzhur"
and
S. Shlomo™

Dnstitute for Nuclear Research, 03680 Kiev, Ukraine

ICyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

9Department of Elementary Particles and Astrophysics, the Weizmann Institute of
Science, Rehovot 76100, Israel

The definition of nuclear surface and nuclear radii is considered within
Gibbs-Tolman-Widom (GTW) approach. We demonstrate the non-monotonic behavior of the
nuclear equimolar radii which is due to the shell effects in the chemical potential of finite nuclei.
The direct variational method within the extended Thomas-Fermi approximation is used to
establish the equation of state for finite nuclei. We have studied the influence of the polarization
effect caused by the neutron excess on the particle density and the nuclear radii. This effect
increases with the asymmetry parameter X and can be responsible for the appearance of a large
neutron halo in nuclei well away from the beta stability line. We have performed new calculations
of the A-dependence of the radii R(A) of nucleon distribution which are based on the use the
experimental data for the nuclear binding energy. We demonstrate the presence of the quantum
shell effects in R(A). We have analyzed the value of the neutron-skin thickness Az, in the
isotopes of the Na, Sn and Pb nuclei within the GTW approach and show the appearance of

non-monotonic behavior of Az, as a function of the neutron excess. We discuss the relative

contributions to the neutron-skin thickness Ar,,, from the skin and the halo effects.
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I. INTRUDUCTION

The nucleon distribution in finite nuclei possess a surface diffuse layer which occurs due to
the quantum penetration of particles into the classically forbidden region. This fact creates the
problem of the unambiguous definition of the nuclear surface and thereby of the nuclear size [1].
In particular, a strict definition of the nuclear surface and volume is needed to derive the surface
tension o, the incompressibility coefficient K, etc. Moreover, in a small finite system like a
nucleus, the derivation of the equation of state (EOS) meets also some difficulties because of the
uncertainty for the pressure in a system with finite surface layer. In a classical liquid, the problem
of the proper derivation of the surface of the finite drop in presence of diffuse interface was studied
by Gibbs-Tolman-Widom (GTW) [2,3,4] where the concept of the equimolar dividing surface was
used.

In the present paper we will apply the classical GTW approach to the nucleus as a quantum
liquid drop focusing on the presence of the diffusive surface of the nucleon spatial distribution.
The averaged characteristic of nucleon distribution is given by the root mean square (rms) radii for
neutron and proton, respectively. Evaluating the values of rms radii and the corresponding
neutron-skin thickness, we adopt the extended Thomas-Fermi (ETF) and the direct variational
method [5,6]. The nucleon densities p,(r) and p,(r) are generated by the profile functions
which are determined by the requirement that the energy of the nucleus should be stationary with
respect to variations of these profiles. The GTW concept is employed by the introducing a dividing
surface into the profile functions. We study also the problems of the nucleon redistribution within
the surface region (nuclear periphery), in particular, the neutron coat and the neutron excess for
nuclei far away from the beta stability line as well as the influence of the skin and halo effects on
the value of the neutron-skin thickness.

This paper is an extension of our previous work [7] where the general equimolar GTW
concept was adopted for nuclei with finite surface layer. In present paper we apply the GTW
approach to realistically determine the EOS for finite nuclei and some nuclear characteristics such
as the nuclear size, the surface tension, the pressure, etc. Taking into consideration the presence of
finite diffuse interface and applying the GTW approach, we redefine the surface and symmetry
energies. The use of the GTW approach allows us to present a more realistic procedure for the
extraction of the nuclear surface tension coefficient from the experimental data. In contrast to the
previous work [7], we avoid the leptodermous approximation and improve the evaluation of the
Coulomb energy taking into consideration the finite diffuse layer of the proton distribution.

Following the GTW equimolar concept, we derive the curvature as well as the halo and skin



effects on the surface energy and the surface component of symmetry energy.

This paper is organized as follows. In section II we adopt the GTW model of equimolar
dividing surface for the two-component liquid drop with finite surface layer. The application of
GTW model to some nuclear problems is considered in sections III, IV and V. We conclude and

summarize in section VI.

II. EXTENSION OF GIBBS-TOLMAN-WIDOM CONCEPT TO
FINITE NUCLEI

Considering a nucleus which possess the finite surface diffuse layer, we will follow the
GTW concept of the equimolar dividing surface. We introduce the formal dividing surface of
radius R, the corresponding volume V = 47R3/3 and the surface area § = 4mR?. The dividing
surface is arbitrary but located within the nuclear diffuse layer. The energy of a nucleus E, as well
as its mass number A = N + Z and the neutron excess A_ = N — Z, are split into the volume
(bulk) and surface parts,
E=Eyw+Es +E;, A=Ay+As, A_=A_p+A_gs. (1)
Here the Coulomb energy E. is fixed and does not depend on the dividing radius R. The bulk
energy Ep,i is identified with the energy E,, of the homogeneous nuclear matter:
Epuik = Eo (2)
and Ejs is the surface energy [4,8]
Es = (0 + ups + p_p_s)S, 3)
with o being the surface tension coefficient. The considered nuclear matter is two-component one
with isotopic asymmetry X = (N — Z)/(N + Z) and chemical potentials

OBpui|  _ 0Epuik
oN |y, '™ TaN

= W 4)
V,N

where n and p refer to a neutron and a proton, respectively.
The central assumption of the Gibbs-Tolman-Widom approach is that the nuclear matter

inside the specified volume V is chosen to have the chemical potentials u, and p, equal to the
experimental values 4, and A, of the corresponding nucleus, see also [9]:

Un(Pns Pp) = An = Aner Mp(PrsPp) = Ap = Apc) (5)
where p, and p,, are the r-independent bulk densities of neutrons and protons, respectively. The
Coulomb contribution A, to the nucleon chemical potential 4, is subtracted in Eq. (5) because

the derivation of p, in Eq. (4) is written for an uncharged nuclear matter. Here,
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We will also use the isoscalar, u = (u, + u,)/2, and isovector, u_ = (4, — pip)/2, chemical
potentials and the corresponding densities p = p, + p, and p_ = p, — p,. In agreement with

the definition of the dividing surface adopted above, both densities p and p_ include the volume

and surface parts

pv=Ay/V, p_y =A_y/V and ps = As/S, p-s=A_5/S. (7)

The bulk energy Ep,x in Egs. (2) and (4) can be evaluated using the Skyrme effective

nucleon-nucleon (NN) interaction for the nuclear matter

Epat = f dr e(r) = f AT eilpn (), pp()] ®)

The total energy density functional (EDF) of a nuclear matter €¢o¢[0n, pp] in Eq. (8) includes the
kinetic energy density, €yin[pn,pp], the potential energy density associated with Skyrme

interaction, €sy[pn, Ppl

€tot [pru pp] = €kin [pnr pp] + ESk[pn' pp]' )

Considering an asymmetric nuclear matter with X < 1, the bulk energy per particle can be written

as 3],

p_\2
Euui/4 = ea(p) +e2(0) () (10)
where
h?2 3t t
[ J— 2/3 _0 _3 v+1
o =gm P T g PP an
a
+1g [3t; + t,(5 + 4x,)]p5/3
and
5 h? t t
= —— 2/3 _ ) _3 v+1
e, 3 Zma 3 (1 + 2xy)p 23 (1+ 2x3)p

(12)
S5a 5/3
+ ﬁ(t2(4 + 5x2) - 3t1x1)p / .
Here a = (3/5) (3m?/2)?/3 and t;, x; and v are the Skyrme force parameters. The isoscalar
and isovector chemical potentials are obtained from,
0Epuik _ 0Epuik

0A lya_ - 0A_ VA — (=)

The bulk equations (10), (11) and (12) allow us to derive the equimolar radius of nuclei.
4



Using the experimental data for the separation energy s, for each kind of nucleons, we obtain the

corresponding chemical potentials A, = —s,, and 4, = —s,,. Applying then Egs. (5), (10) and
(13), we evaluate the bulk densities py, and p_1,, and the surface densities ps[R] and p_s[R].
Note, that the square brackets in ps[R] and p_s[R] denote a formal dependence on the dividing
radius R which is arbitrary and may not correspond to the actual physical size of a nucleus. To
derive the actual (equimolar) radius R, of a nucleus an additional condition on the location of
dividing surface should be imposed. In general, the surface energy Es[R] for an arbitrary dividing
surface includes the contributions from the surface tension ¢ and from the binding energy of
particles within the surface layer (see term ~ (psu + p_su—) in Eq. (3)). In agreement with
Gibbs-Tolman-Widom concept, the actual equimolar radius R, of the droplet is determined by
the requirement that the contribution to Es[R] from the bulk term in Eq. (3) should be excluded

from the surface energy Eg[R]. The last requirement can be satisfied if the following condition is

fulfilled

(pst+ postt-)pp =0, (14)
where p and p_ are taken under the condition of Eq. (5). Eq. (14) represents the derivation of the
equimolar radius R, for an asymmetric nucleus with N # Z.

In the case of finite nuclei, we will adopt the extended Thomas-Fermi approximation for

the kinetic energy density [10]

h? [3 (Vpg)?

1
€xinglPq] = el (3m?)*/3 PZ/B + B 5

3

72p, (15)
q

and the effective Skyrme interaction for the potential energy. The total energy of charged nucleus
is given by

Eot{pg VPq} = Exin{Pg, VPq} + Esi{pg, Vpg} + Eclpp}, (16)
where Esi{p,, Vpq} is the potential energy of Skyrme interaction which includes the gradient

dependent terms ~ Vpg:

Egi{pe, Vpo} = f dr esilp, Voql (17)

€sk[Pq Vpg] is the density of the potential energy of Skyrme interaction and Ec{p,} is the
Coulomb energy. In our consideration, the potential energy Esi{pq, Vp,} also includes the energy
due to the spin-orbit interaction.

Following the direct variational method, we choose a trial function for p,(r) as a power

of the Fermi function for p,(r) given by, see also Ref. [6],



r—R, ~Ma
Pq(1) = pog [1 + exp ( " )] , (18)

q

where pg 4, Rg, a4 and 7, are the unknown variational parameters. Considering the asymmetric
nuclei with X = (N — Z)/A < 1, we will introduce the isotopic particle densities, namely the
total density pg 4+ = Pon + Pop and the neutron excess density po_ = pon — Pop With py_ K
Po,+-

The profile functions p,(r) and p_(r) have to obey the condition that the numbers of
neutrons and of protons are conserved. For the ground state of nucleus, the unknown parameters
Po,+Rq, a4 and 1, and the total energy Ey itself can be obtained from the variational principle

S(E — AN —2,2) =0, (19)
where the variation with respect to all possible small changes of pg +, Ry, a4 and 7, is assumed.
The Lagrange multipliers A,, and A,, are the chemical potentials of the neutrons and the protons,

respectively, and both of them are fixed by the condition that the number of particles is conserved.

III. EQUATION OF STATE OF FINITE NUCLEI AND
POLARIZATION EFFECT

The introduction of a sharp (non-diffuse) equimolar surface obviates the ambiguities in the
derivation of the pressure, the incompressibility and the equation of state for finite systems with a
finite diffuse layer of the surface. In particular, using the concept of equimolar radius R,, the total
energy (1) of a finite nucleus can be written in the following form of Weizsidcker mass formula,

Eiot(po, 4, X)/A
= eg(po) + bs(po)A~'/3
+ [by,sym(Po) + bs sym(po) A™/3]X?
+ Ec(po, 4, X)/A4,

where ey(py) is the bulk energy of a symmetric nuclear matter, bs(p,) is the surface energy

(20)

coefficient, by gym(po) is the volume part of symmetry energy, bgsym(Po) 1s its surface part and

po(R.) = A (3/4m)R:°. 2h
The Coulomb energy E-(pg, 4, X) can be written as
Ec(po, A, X) = ac(po)(1 — X)2A%% + 0(A4*/?), (22)

3 r4mpo\t3
ac(po) = 55¢” () .

The structure of the total energy given by Eq. (20) is similar to the semiempirical mass formula
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which describes the average changes in nuclear binding energy with the mass number. However,
in contrast to the mass formula, the bulk density p, and the asymmetry parameter X are not
necessarily at equilibrium. The asymmetry term ~ X? includes both the volume, by sym(po), and
the surface, bgsym(po), contributions. The surface symmetry term bg sym (0o) A~Y3X? appears
in the advanced mass formula by Myers and Swiatecki [11,12] and it is currently employed in the
description of surface properties and isovector excitations in finite nuclei, see e.g. Refs. [13,14].
Similarly to a classical liquid, the particle density p, in Eq. (20) is r-independent and the
evaluation of the pressure P(p,) and thereby the equation of state can be obtained as in classical
case [8]. In the two-component nuclei, the form of the EOS is different for the isobaric case (fixed
A and different X) and isotopic case (fixed Z and different X). In the isobaric case, the EOS is

derived as

0Eot(Po, 4, X) _ pz 0Eot(po, A, X) /A
av AX 0 apo ’

AX

Py(po, X) = — (23)

where Eiot(pg, 4, X) is given by Eq. (20) with fixed A. In isotopic case, the EOS is given by

0Eot(po, Z, X) _ 5, 0Bt (p0, Z,X) /A

v zZ,X P a:DO Z,X’

Pz (po, X) = — (24)

where Eio(po, Z, X) is given by Eq. (20) with A =2 Z (1 — X)~! and fixed Z.
For a given bulk density p,, one can derive the isobaric beta-stability line X = X*(4, py) by the

condition

aEtot(pm A' X)
0X

= 0. (25)

AX=X"
Near the beta-stability line, the total energy (20) is written up to the order (X — X*)? as
Eiot(po, A, X) = Etor(po, 4, X7)
+ [by sym(Po)A + bs sym(po) A%/ (26)
— ac(Po) AT (X — X2
The isotopic beta-stability line X = X*(Z, po) is obtained from,

0Eot(po, Z, X)

T =0 27)

ZX=X"

The derivation of non-equilibrium py(R,), Egs. (20) and (21), and the corresponding EOS
requires model assumptions. One of the appropriate models is the semiclassical ETF

approximation which allows us to evaluate the nucleon density distribution p,(r) with a finite
diffuse layer and the corresponding chemical potential A, [5]. The calculation of the bulk density

po and the equimolar radius R, can be then performed by using the procedure described in Sect.



II. In Fig. 1 we show the isobaric equation of state P,(p,, X) for the nucleus **Pb. Note, that in
agreement with the general definition of Eq. (20), the pressure P,(po, X) includes (i) the A- and
X-independent bulk pressure Py,(pg) caused by the bulk energy of a symmetric nuclear matter

-1/3

eo(po), (ii) the surface (capillary) pressure, Py capii(0o, X) ~ A , (ii1) the contribution from the

symmetry energy, Pysym(00,X) ~ X % and (iv) the Coulomb force contribution Py (po, X)

Py(po, X) = Pyo1(po) + PA,capil(pOIX) + PA,sym(pOJ X)

(28)
+ Py c(Po, X)-

S
~

e
b

O

P(p) (IMeV fm~)

S
~

<
o

| | | | | | | | r | | | |

L | L
0 0.05 p 0.1 0.15 0.2
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Fig. 1. Equation of state for the nucleus ** Pb . The calculation was performed for SKM* interaction [15].
Dashed line is the EOS for the symmetric nuclear matter Pyo(pg), solid line 1 is for Pyg(pg) +
P capit(Po, X), solid line 2 is for Pye1(pg) + Pc(Po, X) and solid line 3 is the total pressure P4(pg, X) of
Eq. (28).

In agreement with Eq. (23) and the equilibrium condition
0E¢ot(po, A, X)

=0,
2p (29)

Po=Po,eq

the ground state of the nucleus is achieved at P,(pg = pgeq,X) = 0. Using the SkM* [15]
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nucleon-nucleon interaction we present the results for the equation of state (EOS) for the nucleus
**Pb in Fig. 1. As seen from Fig. 1, the inclusions of the surface (capillary) term Pg,pi1(09, X)
shifts the equilibrium point to a larger values of pgeq (point B in Fig.1) with respect to the one in
a nuclear matter (point A in Fig.1). Note that the capillary pressure Py c,pi1(09, X) is connected to
the surface tension coefficient o (4, X) by the Laplace relation [16]

20(4,X)

= (30)

PA,capil (pOr X) =

where Rj is the radius of tension (Laplace radius). The value of Py c,pi1(0o, X) is manifested by
the straight dotted line BC in Fig. 1. The action of the Coulomb pressure P4 ¢(pg, X) is opposite to
the capillary pressure Py capii(0o, X) and shifts the equilibrium point to the smaller values of
Po,eq-

The radius R is shifted with respect to the equimolar radius R, by a small value
¢ = R, — R, (Tolman length [3]) which is caused by the finite diffuse layer in a nucleus [4,7,9].
Note also that the Tolman length ¢ regulates the approach of the surface tension coefficient

0(A,X) to the planar limit o, [4,17] in a semi-infinite system,

2§

o(R,) = 0, (1 — 2+ O(R;Z)) . 31)

The use of the Gibbs-Tolman equimolar radius R, allows us to provide a more realistic procedure
for the extraction of the nuclear surface tension coefficient from the experimental data. Note, that
the equimolar radius R, determines the equimolar surface area S, = 4mR? in absence of a
diffuse layer. This fact gives the possibility to evaluate both the surface energy Eg, and the
surface tension coefficient o(4,X) = Es, /S,. The surface energy Eg, is obtained by use the
experimental value of nuclear binding energy Eey,, and the earlier derived bulk energy Epy of
nuclear matter, see Eq. (10). Namely,

Es, = Eexp — Ec — Epulk- (32)
The Coulomb energy E. is subtracted from the value of binding energy E,p, because of the
derivation of the nuclear matter energy Ey,x does not include the Coulomb energy contribution.
Using the experimental data within the wide interval of mass number 40 < A < 220 and the
corresponding values of equimolar radii, one can establish the following A-expansion for the
surface tension coefficient

Ese 01
I TVEL

0o = (0.98 + 0.03) MeV fm™2, gy = (0.75 + 0.16) MeV fm™2.

o(A,X") =

(33)

The numerical result of Eq. (33) leads to the following value for the Tolman length ¢ in nuclei

9



§=(—-04140.07) fm. (34)

Note that both values of o, and g; can be derived also from the capillary pressure Py capii(0o, X)
in Fig. 1. The corresponding values of g, and g are close to those given in Eq. (33).

In Fig. 1, the minimum of the pressure P,(py,X) is located at py = pg crit. The nucleus

becomes unstable within the spinodal instability region py < pg.crit» Where the incompressibility

coefficient

JoP ’X aZE ,X A
KA(A,X) = 9% — 9'03 tOt(pg )/

(35)

is negative K, (4, X) < 0. In accordance with Egs. (28) and (35), the incompressibility coefficient
K, (A, X) includes the volume (nuclear matter) contribution Ky, the surface term K, .¢(4, X),
the term Kgyr, (4, X) due to the symmetry energy and the Coulomb force contribution term,
Kc(4,X). Namely,

K4(A, X) = Kym + Ksure(A, X) + Ksym (4, X) + Kc (4, X). (36)

The equimolar radius R, is A-dependent. In general, the variation of the equimolar radius
R, with the nucleon number A is caused by two factors. There is the simple variation term of
R, « A'/3 (see Fig. 5) and an additional term which occurs due to the polarization effect in nuclei
away from the beta-stability line because of the neutron excess N — Z. Considering the
polarization effect, we will expand the total energy of Eq. (20), Eioi(09,A4,X)/A, around the
equilibrium bulk density pgeq. By keeping only terms quadratic in §py = pg — pgeq We rewrite
Eq. (20) as,
Eior(Po, A, X) /A = Eior(Poeqr A, X*) /A + M (Po — Poeq)? (37)

180§ o4

PA,sym (pO,eq' X*)

+
Pl eq

(X - X*)Z(po - pO,eq)-
where

Pasym(90) = 8~ [y syen (90 + b ym(00) A7
A,sym Po Po 3,00 V,sym Po S,sym Po

(38)
- “c(Po)A2/3]-
For an arbitrary fixed value of X, the equilibrium density p, x is derived by the condition
0
= Etot(Po, 4, X )/A| = 0. (39)

dpo

Apo=pPox
Using Egs. (37) and (39), one obtains the polarization effect on the particle density beyond the
beta-stability line

10



PA,sym (pO,eqr X*)
K, (A, X*)

Pox = pO,eq(X*) -9 X - X*)Z- (40)

In Fig. 2 we have plotted the partial pressure Py gym(po, X*) versus the bulk density pj

(partial equation of state) for the nucleus **Pb, obtained using the SkM* [15], Sly230b [18] and
KDEOv1 [19] Skyrme interactions. The dashed vertical line shows the position pg/pg crit = 0.6
of the spinodal instability border. On the left side of this line the nucleus is unstable with respect to

the bulk density variations.

2.5 ! ! ! ! ! . 1 1 !

[
W
w N

P, (MeV fm?)

0.5

ko ———— — —— —— e — ——

R/R.,

Fig. 2. The partial pressure P gy for the nucleus *®Pb  calculated for different parametrization of the
Skyrme interactions: KDEOv1 [19] - solid line 1, SLy230b [18] - solid line 2 and SkM" [15] - solid line 3.
The dotted vertical line is the mark for the spinodal instability border and the dashed line is for the
equilibrium density.

As seen from Fig. 2, the equilibrium value of the partial pressure Py gym(0geq) 1S positive
and thereby pgx < pgeq» se€ also Refs. [20,21]. The partial pressure Py gy 18 rather sensitive to

the Skyrme interaction parametrization (see results for the SkM*, SLy230b and KDEOv1 in Fig.

2). The polarization effect influences the equimolar radius R, also. The final result reads
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1PAsym(pOeq'X*)
R.(A,X) =R;(A,X") <1 +=-— = (X — X*)? 41
€ € 3 KA(ArX )po,eq

The magnitude of the polarization effect on the equimolar radius R, can be also seen in Fig. 3
where we compare the A-dependence of the equimolar radius R, = R;(4,X™) for the nuclei on

the beta stability line in the presence of the partial polarization pressure, Py cum (00 en, X*) (solid

l- 15 ! I I I I I I I I I I I 1 1 1 1 1 1 1 1

e

= | e
E _ /’T..’..T.T.’..T ............. |
= == =T
gg 11 i /,x/'(‘/". _|
(] | > _
m — X=X*
_ - |
_____ =
| | | | | | | | | | | | | | | | | | | | \ . I I
- > 100 150 200 250

Fig. 3. Dependence of equimolar radius R, = R;(A4,X™) on the mass number A on the beta-stability line
in presence of the polarization effect (solid line). The dashed line is the equimolar radius R.(4,X = 0)
where the polarization effect is absent. The dotted line is obtained by elimination of the Coulomb force
polarization effect, see Eq. (46). The calculations were performed for the SkM’" [15] interaction.

Considering the symmetric nuclei, with X = 0, one can estimate the polarization effect

due only to the Coulomb interaction. Using Eq. (20) for the symmetric case N = Z, we write
Eeot(po, A, X = 0)/A = ey(po) + bs(pg)A™3 + ac(py)A*3, (42)
where p, is related to the equimolar radius R, as in Eq. (21). Assuming that ggeq is the

equilibrium density for the uncharged liquid drop, we will expand the total energy of Eq. (42)
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around the equilibrium density fgeq as

Eot(p0, A, X = 0)/A = Etot(ﬁo,eq'X

= 0)/a+ =D (o i
18050, 0 O @)
Pac(Poed) . .
+ Teq (Po - pO,eq)'
pO,eq
where,
a
Pyc(po) = I aaC(PO)AZB, (44)

is the Coulomb force pressure. The equilibrium density pgeq of a symmetric nucleus in presence
of Coulomb forces is obtained from the condition
0
——Etot(p0, A, X = 0)/A| = 0. (45)
ap() A,po=Po,eq
Using Egs. (37), (39) and (45), one obtains the polarization effect on the particle density caused by
Coulomb forces for symmetric nuclei with N = Z

PA,C (ﬁo,eq)

K,(A X = 0) (46)

Poeq = Poeq — 9

The Coulomb force pressure is positive P, c(po) > 0, see Egs. (22) and (44), and thereby

the polarization effect, which is caused by the Coulomb forces, decreases the bulk density pg eqs
i.e., increases the nuclear equimolar radius R, of Eq. (21). The corresponding numerical result is

shown in Fig. 3 as the dotted line.

IV. NUCLEAR RADII

Using the experimental values [22] of the chemical potentials 1 and A_ for the arbitrary
dividing radius R and the fixed asymmetry parameter X, one can evaluate the volume part of
equilibrium energy E;, from Eq. (10), and the particle numbers in the volume, Ay, = 4mpR3/3
and A_y =4mp_R3/3, and in the surface, As = 4mpsR* and A_gs = 4mp_sR?, particle
numbers. All these evaluated values depend on the radius R of the dividing surface and the

asymmetry parameter X.
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Fig. 4. Specific surface particle density F(R) = —(@sp + @_ sp—) versus dividing radius R for nuclei
with A = 208 and A = 120. The calculation was performed using the SkM " interaction [15]. R, denotes
the equimolar radius where F(R) = 0.

As noted above, the actual physical radius R, of the nucleus is determined by the
condition (14), i.e., by the requirements that the contribution to Es from the bulk binding energy
(term ~ (psA + p_sA_) in Eq. (3)) should be excluded from the surface energy Es. In Fig. 4 we
represent the results of the calculation of the specific surface particle density F(R) = —(psd +
p—_sA_) as a function of the radius R of the dividing surface. The equimolar dividing radius R,
in Fig. 4 defines the physical size of the sharp surface droplet and the surface at which the surface
tension is applied, i.e., the equimolar surface where Eq. (14) is fulfilled.

The evaluated equimolar radius R, does not necessary obey the saturation condition
R, ~ AY/3. This reflects the fact that the experimental data for the chemical potentials A and A_
used in our calculations includes the quantum shell effects, the pairing correlation effects, etc. In
Fig. 5 we have plotted the evaluated equimolar radii R, for some nuclei. The solid line shows the

average behavior R, = r,A%/3.
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Fig. 5. A-dependence of equimolar nuclear radius R,(A). Solid points were obtained within the
Gibbs-Tolman procedure where the experimental values for the nucleon chemical potential were used and
the dashed line is for the corresponding averaged values of equimolar radii R,. Dotted line is for R, =
1.13 A3 fm. The SkM* interaction [15] was used.

We point out that the average interparticle distance 1y, is slightly A-dependent (see dashed
line in Fig. 5)

0.04
1o ~ | 1.14 — — | fm. 47)
A3
The non-monotonic behavior of the nuclear equimolar radii R,(A) is caused by the quantum shell

fluctuations, the pairing effects, etc., which are manifested in the experimental values of the

chemical potentials A, and A,.

V.  SKIN AND HALO EFFECTS - ISOVECTOR SHIFT OF RADII

The above described procedure can be used to derive the partial equimolar radii R, 4 (A)

separately for neutrons, g = n, and for protons, g = p, and the corresponding nucleon rms radii
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/(rqz). Using the experimental values of the chemical potentials 4, and 4, of actual nuclei and

Egs. (10) - (13), one can derive the partial bulk densities p,, and p,. Evaluating then the partial

surface nucleon densities

N 1 VA 1 43
Pn,s[R]=W—§PnR, Pp,s[R]=W—§PpR (48)

and applying the condition of Eq. (14), we find the partial equimolar radii R, 4(A). Considering

)= j [arrz gy [ ar g ) (49)

in presence of the finite diffuse layer, we will introduce the dispersion of the surface layer [1]

the rms radii

bg = \/f dr ga(r)(r —74)%, (50)
0
where

gq(r) = —d fq(r)/dr, Tq = fo drrgqe(r)

and f, (1) = pg(r)/poq is the profile function of the nucleon density.

In the case of the Fermi- like profile function f(r) of Eq. (18), one obtains

by = aq\/[2K1(nq) — 15 (Mg, (51)

where the coefficients k;(n) are given by [6]

k;(n) = fmdxxi[(l +eX)T— (-1 -1+e™)™M)]. (52)
0

5/b,\
1+=({=—L]) |
+2<R€.Q>

Note that the surface layer correction ~ bZI to the rms radii in Eq. (53) can exceed the value of

Finally, the nucleon rms radii read, see also [1],

(r2) = J3/5Req (53)

about 10% in light and middle nuclei. We point out also that the rms radii (rq2> of Eq. (53) as

well as the equimolar radii R 4(A) contain the shell fluctuations, see Fig. 5.

The partial equimolar radius R., and the corresponding rms radii (rq2> can be

evaluated numerically from Egs. (10) - (13) and (53) using the chemical potentials 4,, and 4, of

actual nuclei. As an example we will show the result for the **Pb nucleus. In this case, using the

variational procedure of Eq. (19) and trial function for p,(r) of Eq. (18), we obtain for the SkM"
16



interaction a,, = 0.723 fm, a, = 0.618 fm, n,, = 4.048 and 7, = 5.158. Using the average
interparticle distance 1, from Eq. (47) and Eq. (53), one obtains for the mass rms radius

V{r?) = 5.447 fm which agrees with experimental data /(r?)|exp = (5.579 £ 0.025) fm [27].

In Fig. 6, we show also the evaluated values of the proton rms radius /(rpz) for the Na isotopes.

Fig. 6. The rms radius of proton distribution in Na isotopes obtained by use of Eq. (53). The dotted line
with open circels was obtained with surface layer correction ~ bg and the dashed line with open squares is
for btzl = 0. Here and below the experimintal data were taken from Ref. [24]. The SkKM* interaction [15]

was used.
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Evaluating the isovector shift of particle density p_, one can determine the neutron-skin
— [

Fig. 7. Isovector shift of nuclear rms radius Ar,, = f(r?,) - /(r,z,) in Na isotopes. The solid points are

the experimental data [24], the open circles (connected by dotted line) have been obtained using the
Gibbs-Tolman approach described in text and the solid line is obtained using the extended Thomas-Fermi
approximation with the SKM* Skyrme interaction [15], see Ref. [6].

As seen from Figs. 7, 8 and 9, the Gibbs-Tolman-Widom concept of the sharp equimolar

surface allows one to describe the fine non-monotonic structure of the nucleon rms radius and

18



Fig. 8. The same as in Fig. 7 but for Sn isotopes. The data were taken from Refs. [23,25,26].
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Fig. 9. The same as in Fig. 7 but for Pb isotopes. The experimental data were taken from Refs. [27,28,29].

In general, the value of the isovector shift Ar,, is the sum of two contributions: the one,

ATy g, 1s due to the different radii (skin effect) and the other, Ary,, ,, is due to the different shape
(surface layer) of neutron and proton distributions (halo effect) , see also Refs. [25,26,30,31,32],

Aty = ATyp g + ATy 4 (54)

Both values of Ary,, g and Ar,, , can be obtained from Eq. (53) and are given by following

3 5/b\°
Arypr ~ £[1 _§<R_e) ]AR_e (55)

expressions

and

3b
Mppa =5 \/;R—Ab. (56)
e
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Here, Age = Rey — Repp, b = (b + byp)/2 and A, = b, — by, are the parameters of neutron
skin.

Expressions (54), (55) and (56) dissect the structure of the neutron-skin thickness Ar,,. In

Fig. 10 we have plotted the values of y = Ar,, /A%y, (the value Ary, . is taken on the

hntn ~dalillide, Tian At V  VH\ crnvennnn 4lha Aacilintinae AV _ VYV V¥ Lunican 4hhn hatn ~dalililie., 1A

Na

=3¢ -

. | . | . | .
1O 0.1 0.2 0.3 0.4
AX

Fig. 10. The ratio ¥ = Aryyp o/ATyp, versus the deviation AX = X — X* from the beta-stability line
for isotopes of nuclei Na, Sn and Pb. The calculations have been performed performed using the SkM*
interaction [15] and the Weizsecker’s parameter f = 1/9 (see Eq. (15)). The crosses at the end of lines

denote the neutron drip-line which is derived by the condition 4, =0.

The numerical results for A7, , are sensitive to the choice of the gradient corrections to
the kinetic energy density €yin q[pq] (see the term with the parameter £ in Eq. (15)). In Fig. 10,
we have used the empirical value for the Weizsicker’s parameter f = 1/9. Note also that

evaluating the skin parameter Ag , in Eq. (55) we have used the Gibbs-Tolman-Widom procedure
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which is described in Sec. II. As can be seen from Fig. 10, the relative contribution of the shape
(halo) effect, i.e. Aty 4, to the isotopic shift of radii Ar,,, is more evident in the light nuclei. As it
can be expected, the ratio Ary, o /Ary), , increases for nuclei away from the beta-stability line, i.e.,

for the neutron rich isotopes.

VI. CONCLUSIONS

We have applied the approach proposed earlier by Gibbs-Tolman-Widom for a classical
liquid drop in presence of the liquid-vapor interface to the derivation of actual size of a nucleus in
presence of finite surface diffuse layer. The basic idea of the Gibbs-Tolman-Widom approach is
the introduction of a sharp dividing surface S [2,3,4]. The dividing surface is arbitrary but located
within the surface diffuse layer. The actual (physical) equimolar surface and thereby the actual
nuclear surface are fixed by the requirement that the contribution to the surface energy Es[R] ~
A?/3 from the bulk energy Epyx ~ A should be eliminated, see Eq. (14). The bulk density p, of
neutrons and protons inside the sharp equimolar surface is obtained using the experimental data for
the separation energy s, for each kind of nucleons.

The Gibbs-Tolman-Widom conception of sharp equimolar surface allows one to derive the
nuclear volume and, as a consequence, the pressure P(p,) and the equation of state for finite
nuclei. In our consideration, we have performed the calculations of well-defined equation of state
for spherical nuclei and some nuclear characteristics such as the nuclear radius, the surface
tension, the pressure, etc. Our numerical calculations are based on the direct variational method,
the extended Thomas-Fermi approximation and the effective Skyrme nucleon-nucleon interaction.
Applying the Gibbs-Tolman-Widom approach, we redefine the surface and symmetry energies.
Note that we do not use the traditional leptodermous approximation and evaluate the Coulomb
energy taking into consideration the finite diffuse layer of the proton distribution.

Performing the analysis of the equation of state P = P(p,), we have extracted from P(p,)
the partial contributions which occur due to the different sources: the A- and X-independent bulk
pressure P,(pg) caused by the bulk energy of a symmetric nuclear matter; the surface (capillary)
pressure, Py capil(Po, X) ~ A™*/3; the contribution from the symmetry energy, Pasym (0o, X) ~
X? and the Coulomb force contribution P, ¢(po, X). The corresponding numerical results are
shown in Fig. 1 for the **Pb nucleus. The inclusion of surface (capillary) term Pe,pi(po, X)

shifts the equilibrium point pg ¢4 to larger values with respect to the ones in a nuclear matter. Note

also that the capillary pressure Py capii(0o, X) is connected to the surface tension coefficient
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o(A,X) by the classical Laplace relation. The action of the Coulomb pressure P, c(pg,X) is
opposite to the capillary pressure Py capii(Po, X) and shifts the equilibrium point to the smaller
values of pg eq.

The use of the Gibbs-Tolman-Widom equimolar radius R, allowed us to give a more
realistic procedure for an extraction of the nuclear surface tension coefficient from the
experimental data. The equimolar radius R, determines the equimolar surface area S, in absence
of a diffuse layer. This fact allows us to evaluate both the surface energy Eg, and the surface
tension coefficient (4,X) = Es_/S,. Using the experimental data within the wide interval of mass
number 40 < A < 220 and the corresponding values of equimolar radii, we have established the
following A -expansion for the surface tension coefficient o(4,X*) = 0, + 0,A™Y/3 with
0o = (0.98 + 0.03) MeV fm~2 and o; = (0.75 + 0.16) MeV fm~2. The obtained result for the
curvature correction gy A~1/3

& =(—0.41+ 0.07) fm.

allows one to estimate the Tolman length ¢ in nuclei which is

We have evaluated the partial pressure Py gym(po, X) caused by the symmetry energy. The
partial pressure Py sym(po, X) induces the polarization effect on the particle density po x beyond
beta-stability line. We have shown that the partial pressure Py gym(Po,eq) 18 positive and reduces
the particle density pox with respect the corresponding equilibrium density pgeq on the
beta-stability line. The partial pressure P,y and the polarization effect are rather sensitive to the

Skyrme interaction parametrization (see results for the SkM*, SLy230b and KDEOv1 in Fig. 2).
We point out that the evaluated equimolar radius R, of the nuclei does not necessary obey the
saturation condition R, = r,A'/3. That is caused by the fact that we use the experimental data for
the chemical potentials to derive the bulk density within the equimolar surface in agreement with
the Gibbs-Tolman-Widom method. The corresponding experimental chemical potentials
(separation energy of nucleons) include the quantum shell effects, the pairing correlation effects,
etc., and give rise to the non-monotonic behavior of the nuclear equimolar radii R.(4) in Fig. 5.
Note also that the average interparticle distance r, becomes slightly A-dependent (see dashed
line in Fig. 5).

Using the partial equimolar radii R, ,(A) separately for both kind of nucleons, we have

evaluated the corresponding nucleon rms radii (rq2> and the neutron-skin thickness Ar,, =
V{2 — /(rpz). The evaluated values of the proton rms radius (rpz) for the Na isotopes (see Fig.

6) show a slightly non-monotonic behavior of (rp2> which is caused by the above mentioned
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fluctuations of R, ,. Note also the presence of the significant shift up of the proton rms (rpz)

(compare dashed and dotted lines in Fig. 6) caused by the surface layer corrections. The influence
of the pairing and shell effects on the neutron-skin thickness A, is illustrated in Figs. 7, 8 and 9
for Na, Sn and Pb isotopes. As seen from Figs. 7, 8 and 9, the Gibbs-Tolman-Widom concept of
the sharp equimolar surface allows one to describe a fine non-monotonic structure of the isovector
shift Ar,,. The saw-like behavior of Ar,, (see the open circles which connected by the dotted line
in these figures) reflects the even-odd and shell effects in the nuclear binding energy and thereby in
the nuclear radii. In general, the value of the isovector shift A, is the sum of two contributions:
the one, Ary,), g, 1s due to the different radii (skin effect) and the other, Ar,, 4, is due to the
different shape (surface layer) of neutron and proton distributions (halo effect). The presence of
the halo effect is illustrated in Fig. 10. One can expect that the neutron halo effect appears more

significantly in light nuclei far away the stability line.
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FIGURE CAPTIONS

Fig. 1. Equation of state for the nucleus ***Pb . The calculation was performed for SKM*
interaction [15]. Dashed line is the EOS for the symmetric nuclear matter Py, (pg), solid line 1 is
for Pyo1(Po) + Pcapit(Po, X), solid line 2 is for Pyg1(po) + Pc(Po, X) and solid line 3 is the total
pressure P4(po, X) of Eq. (28).

Fig. 2. The partial pressure Pjgym for the nucleus **Pb  calculated for different
parametrization of the Skyrme forces: KDEOv1 [19] - solid line 1, SLy230b [18] - solid line 2 and
— SkM" [15] - solid line 3. The dotted vertical line is the mark for the spinodal instability border

and the dashed line is for the equilibrium density.

Fig. 3. Dependence of equimolar radius R, = R,(A,X") on the mass number A on the
beta-stability line in presence of the polarization effect (solid line). The dashed line is the
equimolar radius R,.(A4,X = 0) where the polarization effect is absent. The dotted line is obtained
by elimination of the Coulomb force polarization effect, see Eq. (46). The calculations were

performed for the SkM’ [15] interaction.

Fig. 4. Specific surface particle density F(R) = —(@sp + @_ sp_) versus dividing radius R for
nuclei with A = 208 and A = 120. The calculation was performed using the SkM" interaction
[15]. R, denotes the equimolar radius where F(R) = 0.

Fig. 5. A-dependence of equimolar nuclear radius R,.(A4). Solid points were obtained within the
Gibbs-Tolman procedure where the experimental values for the nucleon chemical potential were
used and the dashed line is for the corresponding averaged values of equimolar radii R,. Dotted

line is for R, = 1.13 A3 fm. The SKM* interaction [15] was used.

Fig. 6. The rms radius of proton distribution in Na isotopes obtained by use of Eq. (53). The dotted
line with open circles was obtained with surface layer correction ~ bf, and the dashed line with
open squares is for bczl = 0. Here and below the experimintal data were taken from Ref. [24]. The

SkM* interaction [15] was used.

Fig. 7. Isovector shift of nuclear rms radius Ary,, = 4/ (rz) — ’(rzz,) in Na isotopes. The solid

points are the experimental data [24], the open circles (connected by dotted line) have been
obtained using the Gibbs-Tolman approach described in text and the solid line is obtained using

the extended Thomas-Fermi approximation with the SKM* Skyrme interaction [15], see Ref. [6].
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Fig. 8. The same as in Fig. 7 but for Sn isotopes. The data were taken from Refs. [23,25,26].

Fig. 9. The same as in Fig. 7 but for Pb isotopes. The experimental data were taken from Refs.
[27,28,29].

Fig. 10. The ratio ¥ = Arp,q/Arn,, versus the deviation AX =X — X" from the
beta-stability line for isotopes of nuclei Na, Sn and Pb. The calculations have been performed
performed using the SKM™ interaction [15] and the Weizsecker’s parameter f = 1/9 (see Eq.

(15)). The crosses at the end of lines denote the neutron drip-line which is derived by the condition

,=0.
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