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We derive the charged current absorption rate of electron and anti-electron neutrinos in dense
matter using a fully relativistic approach valid at arbitrary matter degeneracy. We include mean
field energy shifts due to nuclear interactions and the corrections due to weak magnetism. The
rates are derived both from the familiar Fermi’s Golden Rule, and from the techniques of finite
temperature field theory, and shown to be equivalent. In various limits, these results can also be
used to calculate neutral current opacities. We find that some pieces of the response have been left
out in previous derivations and their contribution at high density can be significant. Useful formulae
and detailed derivations are presented and we provide a new open source implementation of these
opacities for use in radiation hydrodynamic simulations of core-collapse supernovae and neutron
star mergers.

I. INTRODUCTION

Neutrino opacities in dense matter are of paramount importance to the evolution of core-collapse supernovae and
the remnants of compact object mergers. They impact the properties of the neutrino signal of these events [e.g. 1, 2],
are integral to the rate of energy transport [e.g. 3], and can strongly alter the composition of matter ejected in these
events [e.g. 4, 5]. Recent work on modeling core-collapse supernovae has shown that three-dimensional models are
close to explosion, but the results are sensitive to small changes in the neutrino opacities and other simulation inputs
[6–9]. Therefore, it is important to provide accurate expressions for the neutrino opacities required for these numerical
models.

In dense matter many-body effects can modify the neutrino mean free paths. The inclusion of the nucleon self
energies and effective masses in the medium can significantly alter electron neutrino and anti-neutrino emission.
These effects were first realized in [10] and have been the focus of recent work because of its implications for neutrino
spectra and nucleosynthesis [11–15]. In addition, earlier studies have shown that neutrino interactions in dense matter
are influenced by matter degeneracy, and strong and electromagnetic correlations between nucleons and leptons in
the dense medium [16–21]. These effects can suppress the neutrino opacity at and above nuclear saturation density
[19, 20, 22] and significantly accelerate protoneutron star cooling at late times [2, 23]. Multi-particle excitations
[13, 24] and coherent scattering from a mixed phase [25–27] may also strongly impact neutrino interaction rates and
neutrino emission in supernovae. The strength of all of these effects depend on the assumed form of the nuclear
interaction which also influences the nuclear equation of state (EoS). These effects on the EoS and neutrino opacities
are correlated [16–21] and they should be calculated from the same nuclear interaction.

Charged current neutrino interaction rates, such as νe + n → e− + p are particularly sensitive to changes in the
dispersion relations of nucleons because the potential energy difference between the proton and neutron can alter the
lepton kinematics, which are often frustrated by final state blocking due to degeneracy [10, 11, 13, 15]. Although there
has been significant focus on including these effects in neutrino interaction rates, there is still no complete, relativistic
formalism available. The work of [21] completely neglects the impact of the potential energy difference of neutrons
and protons on the vector and axial response of the nuclear medium. While the work [20] includes some impacts of the
potential difference, it also neglects some aspects: 1) It does not include the impact of the potential difference on the
hadronic part of the weak interaction matrix element. At high densities and/or large neutrino energies, these missing
terms may impact neutrino charged current mean free paths. 2) It assumes that the nucleon weak charged vector
current is conserved, but is not the case because of differences between neutron and proton masses and their dispersion
relations in dense matter [28]. This will result in a different structure for the charged current mean field polarization
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tensor. The correct inclusion of these extra terms is likely to impact the response of the medium when correlations
are included through the RPA (see below). 3) They neglected weak magnetism corrections, which can be important
for predicting the difference between electron neutrino and electron anti-neutrino spectra and nucleosynthesis in the
neutrino driven wind, as well as the deleptonization rates of protoneutron stars [29].

As a base line for future studies that would include correlations, we derive for the first time the charged current
absorption rates for electron neutrinos which include all of the following effects: 1) different mean-field potential
energy shifts for neutrons and protons in neutron-rich matter; 2) relativistic contributions to the nucleon charged
currents; 3) weak magnetism; and 4) effects due to the violation of the isospin symmetry, and consequently the lack
of conservation of the nucleon charged current in asymmetric matter [28]. We provide derivations of these results
both from the perspective of Fermi’s Golden Rule, and in the language of finite temperature quantum field theory.
In the neutral current limit, these expressions reduce to those given in [22] (up to a sign in one part of the tensor-
tensor polarization function). A library for calculating neutrino interaction rates based on this work is available at
https://bitbucket.org/lroberts/nuopac.

The paper is structured as follows: In section II, we derive the general form of the charged current opacity from
Fermi’s Golden Rule. In section II A, we calculate the full charged current polarization tensor and show that its
imaginary part agrees with the Fermi’s Golden Rule results. We then present practical representations of the response
in section II B. We also discuss some approximations to the charged current absorption rate in section II C. In section
III, we present limiting forms of the rates and assess the impact of the new terms. Throughout, we set ~ = c = kB = 1
and use a metric with signature (+−−−).

II. CHARGED CURRENT OPACITY

The charged current interaction at low energies is described by the Fermi weak interaction Lagrangian

L =
CGF√

2
lµ j

µ
cc , (1)

where lµ = l̄γµ(1− γ5)ν is the lepton charged current, C = cos θc is the cosine of the Cabibbo angle, and

jµcc = Ψ̄p

(
γµ(gV − gAγ5) + F2

iσµαqα
2M

)
Ψn (2)

is the nucleon charged current which includes the vector, axial vector, and weak magnetism contributions, characterized
by coupling strengths gV = 1, gA = 1.26, and F2 = 3.71, respectively, and M = (Mn + Mp)/2 = 938.9 MeV and
Mp,Mn are the proton and neutron masses, respectively. Here, the currents are written using Dirac spinors Ψi, l and
ν and the γ matrices are in the Dirac basis with γ5 = iγ0γ1γ2γ3 and σµν = i(γµγν − γνγµ)/2. The cross-section for
the two-particle process, l1 + N2 → l3 + N4, where l1 and l3 are the initial and final state leptons, and N2 and N4

are the initial and final state nucleons, respectively, can be calculated from Fermi’s Golden Rule. In the relativistic
formalism, the differential cross-section for the process 1 + 2→ 3 + 4 is given by

dσ =
1

(2E1)(2E∗2 ) vrel

〈
|M |2

〉
dΦ34(2π)4δ4(pµ1 + pµ2 − pµ3 − pµ4 ) , (3)

where vrel is the relative velocity between particles in the initial state,

dΦ34 =
d3p3

(2π)32E3

d3p4
(2π)32E∗4

(1− f3)(1− f4) , (4)

is the Lorentz invariant phase which includes effects due to Pauli blocking of the final states and 〈|M |2〉 is the
square of the matrix element – averaged over initial spin states and summed over the final spin states. Above,
E∗i =

√
p2i + (M∗i )2 and M∗i are the nucleon effective masses in the medium. The differential absorption rate for a

neutrino with energy E1 in the medium where the density of the particle 2 is n2 is given by

dΓ(E1) = 〈n2 vrel dσ〉 = 2

∫
d3p2
(2π)3

f2 vrel dσ , (5)

where f2 is the distribution of the particle 2 in the medium and the factor of 2 on the RHS accounts for its spin
degeneracy. The distribution functions fi are assumed to be Fermi-Dirac distributions characterized by chemical
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potential µi and temperature T . Using the standard decomposition of the square of weak matrix element for free
nucleons in terms of the lepton tensor and the baryon tensor, we find that〈

|M |2
〉

=
C2G2

F

4
LµνΛµν . (6)

The lepton tensor is

Lµν = Tr
[
(−6 p1 +m1)γµ(1− γ5)(−6 p3 +m3)γν(1− γ5)

]
, (7)

where qµ = pµ1 − pµ3 = pµ4 − pµ2 is the energy-momentum transfer from the leptons to the baryons. In our case since
particle 1 is a neutrino m1 ≈ 0 and m3 = ml where ml is the final charged lepton, ml = me for electrons and ml = mµ

muons, in the final state. The upper sign is for neutrinos while the lower sign is for antineutrinos, due to their left
and right handed character. We use the standard Feynman slash notation, where a slash denotes contraction of a
four-vector with the gamma matrices.

Inspecting the kinematics of the leptons gives the allowed range of values for the energy and momentum transfer
to the nucleons for given four-momentum of particle 1,

q =
√
p21 + p23 − 2p1p3µ13 (8)

q0 = E1 − E3 , (9)

where µ13 is the cosine of the angle between the momentum vectors of particles one and three and pi is the magnitude
of the momentum of particle i. The maximum and minimum values of this expression shows that the allowed range
of momentum transfers to be |p1− p3| < q < p1 + p3. When both particles one and three are massless, these relations
imply q2µ < 0 and |q0| < q < 2E1 − q0, but these constraints do not hold for charged current reactions in which the
final state lepton mass cannot be neglected.

The hadronic part of the matrix element is well known in the case of free nucleons, and including mean field
corrections in the nucleon spinors only slightly alters its structure. The necessary modifications to the spin-sums are
described in Appendix B. Then, the baryon contribution to the matrix element in the mean field approximation is
given by

Λµν = Tr

[
(−6 p̃2 +M∗2 )

{
gV γ

µ − gAγµγ5 + F2
iσµαq̃α
2Mp

}
(−6 p̃4 +M∗4 )

{
gV γ

ν − gAγνγ5 − F2
iσναq̃α
2Mp

}]
. (10)

Here p̃µ2 = (E∗2 , ~p2), p̃µ4 = (E∗4 , ~p4), and q̃µ = p̃µ4 − p̃µ2 . In the presence of background mean fields, the nucleon energies
E2 = E∗k +U2 and E4 = E∗k+q +U4, where U2 and U4 are mean field potentials for 2 and 4, respectively. The effective
masses of the nucleons 2 and 4 in the medium are M∗2 and M∗4 .

We can now recast the absorption rate in Eq. 5 as

dΓ(E1)

dE3dµ13
=

C2G2
F p3(1− f3(E3)) Lµν Iµν

32π2E1(1− exp (−(q0 + ∆µ)/T ))
(11)

as in [20]. The nuclear part is now factored and contained in the tensor

Iµν =

∫
d3p2

(2π)32E∗2

∫
d3p4

(2π)32E∗4
(f2(E2)− f4(E4)) Λµν(2π)4δ3(~p2 − ~p4 − ~q)δ(E2 − E4 − q0)

=
∫ d3p2

(2π)2
Λµν

f2(E2)− f4(E4)

4E∗2E
∗
4

δ(E2 − E4 − q0) ,

(12)

where E∗k+q =

√
(~k + ~q)2 + (M∗4 )2 and in the second line we have employed the momentum space Dirac delta function.

The detailed balance factor for charged current reactions, (1− exp (−(q0 + ∆µ)/T ))−1, comes from using the relation
f2(1− f4) = (f2 − f4)/(1− exp[−(E4 − E2 − µ4 − µ2)/T ]).

Eq. 11 together with Eq. 12 can be used to calculate the charged current opacity. This would include corrections
due to mean field potentials, relativistic kinematics and weak magnetism. We calculate Iµν in detail in section II B,
but first we show that the same result can be found from linear response theory.
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A. The Charged Current Polarization Tensor

The neutrino absorption rate in nuclear matter can be calculated using linear response theory because at leading
order in the weak interaction, the nucleonic and leptonic parts factorize. For the weak interaction Lagrangian in Eq. 1
linear response theory predicts [18, 30]

dΓ(E1)

dE3dµ13
=
C2G2

F

32π2

p3
E1

(1− f3(E3))Lµν Sµν(q0, q) , (13)

where Lµν is the lepton tensor defined earlier in Eq. 7,

Sµν(q0, q) =
−2 Im Πµν(q0, q)

1− exp (−(q0 + ∆µ)/T )
, (14)

is called the dynamic response function, and

Πµν(q0, q) = −i
∫
dt d3x θ(t) ei(q0t−~q·~x)〈 |[jµ (~x, t), jν(~0, 0)]| 〉 , (15)

is the retarded current-current correlation function or the polarization tensor where jµ is the weak charged current
defined in Eq. 2 and 〈| · · · |〉 is the thermodynamic average = Tr [exp(β(H −∑i µiNi)) · · · ]/Z where Z is the grand
canonical partition function. The relationship in Eq. 14 between the correlation function and the dynamic structure
factor is often called the fluctuation-dissipation theorem [31, 32].

This correlation function encodes all of the complexities associated with interaction between nucleons in the plasma
and is in general difficult to calculate. When nucleons are treated as non-interacting particles, the polarization tensor
can be calculated using the free single particle Greens functions. We use the imaginary time formalism [33], where
the free nucleon propagator at zero chemical potential is given by

GF (iωn,p) =
M −6 p

E2
p − (iωn)2

. (16)

where ωn is a Fermionic Matsubara frequency. The extension to non-zero chemical potential is straightforward and
is obtained by the replacement iωn → iωn + µ (see [33] equation 5.70). The effects due to a space-time independent
background mean field potential can also be similarly included since its contribution to the grand canonical Hamilto-
nian is proportional to

∫
d3xΨ̄γ0Ψ, similar to the chemical potential (see Appendix B). Additionally, the numerator,

which comes from a spin sum, should be replaced by the spin sums described in Appendix B. These considerations
imply that the propagator for nucleons in the dense medium is obtained by replacement iωn → iωn + νi, where
νi = µi − Ui, and −6 p+M → −6 p̃+M∗ which gives

Gi,MF (iωn + ν,p) =
M∗ −6 p̃

E∗p,i
2 − (iωn + νi)2

, (17)

where M∗ is the effective mass, p̃µ = (±E∗i,p,−~p), and E∗i,p =
√
p2 + (M∗i )2. Using these propagators, the imaginary

time polarization functions are given by

Πab(iωm −∆µ, ~q) =
iωm −∆µ, ~q

i(ωn + ωm) + ν4,~k + ~q

iωm −∆µ, ~q

iωn + ν2,~k

Γa Γb

= T
∑
n

∫
d3k

(2π)3
Tr
[
G2,MF (iωn + ν2,~k)ΓaG4,MF (iωm + iωn + ν4,~k + ~q)Γb

]
, (18)

where the Γa represent different interaction vertices (i.e. CV γ
µ, etc.), iωm is a Bosonic Matsubara frequency, and

∆µ = µ2 − µ4.
Using the Matsubara sum results from appendix C and the baryon tensor portion of the weak interaction matrix

element given above, we find that the imaginary time polarization tensor is
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Πµν(iωm −∆ν, ~q) =

∫
d3k

(2π)3
Λµν

4E∗2,kE
∗
4,k+q

[
f2(E∗2,k)− f4(E∗4,k+q)

iωm −∆ν + E∗2,k − E∗4,k+q
−

f̄2(E∗2,k)− f̄4(E∗4,k+q)

iωm −∆ν − E∗2,k + E∗4,k+q

+
1− f2(E∗2,k)− f̄4(E∗4,k+q)

iωm −∆ν + E∗2,k + E∗4,k+q
−

1− f̄2(E∗2,k)− f4(E∗4,k+q)

iωm −∆ν − E∗2,k − E∗4,k+q

]
, (19)

where ∆ν = ν2 − ν4.
When considering scattering and capture processes, we only require portions of the polarization that are non-zero

for q̃2α < (M∗2 −M∗4 )2 due to kinematic restrictions, so the last two pieces of the polarization can be ignored. The
piece of the polarization containing only anti-baryon distribution functions is only non-zero at very high temperatures
not encountered in supernovae and neutron star mergers. Therefore, the last three terms in Eq. 19 will be neglected
in the rest of the discussion, although we keep in mind the second term will be present when calculating scattering
rates from electrons and positrons.

For the linear response, we require the real-time polarization function. This can be found by analytically continuing
the imaginary-time polarization [30] via the replacement iωm−∆µ→ q0+iη. The need for this particular replacement
can be seen in the incoming and outgoing Bosonic lines in the bubble diagram above, which include a chemical potential
difference because the Bosonic frequencies carry isospin charge. Analytically continuing to real-time and using the
relation

1

ω ± iη = P 1

ω
∓ iπδ(ω), (20)

we then find the real and imaginary parts of the polarization tensor are given by

ImΠR
µν(q0, q) = −π

∫
d3kΛµν

(2π)34E∗2,kE
∗
4,k+q

δ(E∗2,k − E∗4,k+q + q̃0){f2(E∗2,k)− f4(E∗4,k+q)} (21)

ReΠR
µν(q0, q) = P

∫
d3kΛµν

(2π)34E∗2,kE
∗
4,k+q

f2(E∗2,k)− f4(E∗4,k+q)

E∗2,k + q̃0 − E∗4,k+q
, (22)

where q̃0 = q0 + U2 − U4. Note that we are not taking the imaginary part of Λ in this expression.
From this, it is clear that the mean field polarization function is just the free fermion polarization function with

the replacements

µi → νi (23)

qµ → q̃µ = (q0 + U2 − U4,−~q), (24)

where q̃µ is the kinetic energy and momentum transfer from the entrance channel nucleon to the final state nucleon.
Comparing Eq. 11 and Eq. 13 we see that linear response theory and the Fermi’s Golden Rule approach would yield
the same result when

Iµν(q0, q) = (1− exp (−(q0 + ∆µ)/T ))Sµν(q0, q) . (25)

Neglecting anti-particle and pair contributions in Eq. 21, we can verify the above equation to prove that these
approaches are equivalent when correlations are neglected. As we will find, projecting Iµν along and orthogonal to
q̃µ results in simple expressions for the polarizations analogous to the results found in the literature for the case of
neutral current polarization tensors.

The advantage of the linear response formalism is that it can be extended to included higher order corrections to
the medium response, which cannot be done systematically using the Fermi’s Golden Rule approach. For instance,
the approach above neglects effects due to screening of the weak interaction by particle-hole pairs in the medium
and collective excitations such as the giant isovector dipole resonance and the Gammow-Teller resonance, both of
which arise due to strong interactions between nucleons. To include these effects consistently with the mean field
ground state of the nuclear medium, the response should be calculated in the Random Phase Approximation (RPA)
as discussed earlier in [20]. The response functions in RPA can be formulated using the real and imaginary parts of
the polarization tensors derived here.
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B. Practical Expressions for Iµν and Lµν

The results described in preceding sections provide formulae to calculate the charged current absorption rates,
including weak magnetism and mean field contributions, but their forms are not amenable for use in numerical
simulations. Here, we derive simple expressions for the components of the differential absorption rate that can easily
be implemented for practical calculations.

1. Expressions for Iµν

First we consider the general for of the integrals given in equation 12. We employ the energy space delta function
in Eq. 12 to remove the integrals over the nucleon angle and leave a single integral over energy. Transforming the
energy space delta function to a delta function in the cosine of the angle between nucleons and enforcing momentum
conservation (with the momentum transfered assumed to be in the z-direction), we can write structure function as

Iµν =
1

(4π)2q

∫ ∞
M∗2

dE2

∫
dΩ2δ(µ− µ0)θ(E2 − em)(f2 − f4)Λµν , (26)

with µ0 = (q̃2µ + 2E∗2 q̃0 +M∗2
2 −M∗4 2)/2p2q. Here, β = 1 + (M2

∗,2 −M2
∗,4)/q̃2µ and

em = −β q̃0
2

+
q

2

√
β2 − 4M∗2

2

q̃2µ
. (27)

The physical meaning of this lower limit becomes clearer when it is expressed in terms of [28]

σ± = 1− (M∗2 ±M∗4 )2/q̃2α. (28)

The result is

em = −β q̃0
2

+
q

2

√
σ+σ−. (29)

The allowed range of q̃2α is then given by the range of values for which σ+σ− ≥ 0, which correspond to q̃2α < (M∗2−M∗4 )2

or q̃2α > (M∗2 +M∗4 )2. Clearly, the first condition enforces the impact of the mass difference in capture processes while
the second condition is the appropriate kinematic condition for pair production.

The only terms in the integrated baryon tensor Iµν that cannot be pulled outside of the integral are power of pµ2 ,
since pµ4 = pµ2 + q̃µ. Therefore, Iµν can be expressed in terms of the tensors

I{ak} =
8

(4π)2q

∫ ∞
em

dE2

∫
dΩ2Θ(µ− µ0)(f2 − f4)p̃a12 ...p̃

ak
2 . (30)

We include the extra factor of 8 for convenience, since Tr[Λµν ] contains a factor of 8.
Since the nucleons are on-shell, it is easy to show that

q̃µI
µ{ak} = −βq̃

2
µ

2
I{ak}. (31)

This relation comes in handy when trying to simplify the different parts of the polarization; when Λµν contains (p2 ·q),
it can be replaced with −βq2µ/2.

The expression for Iµν simplifies if decompose it relative to q̃µ. The set of projection tensors that describe this
decomposition are shown in Appendix A. This results in the expansion

Iµν = β2IQP
Q
µν + ILP

L
µν + ITP

T+
µν + βIMP

M+
µν , (32)
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where we have pulled out factors of β for convenience. The explicit form of these expansion terms are

IQ =
q̃2µ

4πq

∫ ∞
em

dE∗2 (f2 − f4) (33)

IL = − q̃2µ
4πq3

∫ ∞
em

dE∗2 (f2 − f4)(2E∗2 + βq̃0)2 (34)

IM = − q̃2µ
4πq2

∫ ∞
em

dE∗2 (f2 − f4)(2E∗2 + βq̃0) (35)

IT = −1

2
IL +

(
2m2

2

q̃2α
− β2

2

)
IQ. (36)

Using Eq. 31, we then find for the lower rank tensors

Iν = −2q̃νβ

q̃2α
IQ −

2nν

q̃2α
IM (37)

I =
4

q̃2α
IQ. (38)

We are now left with one dimensional integrals over E2 that can be expressed in terms of ultra-relativistic Fermi
integrals. We then find the basic pieces of Iµν are given by

IQ =
q̃2µT

4πq
Γ0 (39)

IL = − q̃
2
µT

3

4πq3
[
a2Γ0 + 4aΓ1 + 4Γ2

]
(40)

IM = − q̃
2
µT

2

4πq2
[aΓ0 + 2Γ1] (41)

IT = −1

2
IL +

(
2M2
∗,2

q̃2α
− β2

2

)
IQ (42)

where

a = (βq̃0/T + 2em/T ) (43)

δ1 = (µ2 − U2 − em)/T (44)

δ2 = (µ4 − U4 − q̃0 − em)/T. (45)

with

Γn(δ2, δ4) =

∫ ∞
0

dx xn (fFD(x− δ2)− fFD(x− δ4)) , (46)

where fFD(x) = 1/[exp(x) + 1]. The function Γ0 = ln[(exp δ2 + 1)/(exp δ4 + 1)] has a simple analytic form, while the
other Γn are related to polylogarithmic functions and can either be tabulated or calculated using the highly accurate
approximations given in [34].

All that is left to do is evaluate the trace in Λµν and then decompose the resulting imaginary part of the real-time
polarization tensor using the tensors described in Appendix A. We choose to split the baryon tensor into coefficients
of the various combinations of weak coupling constants, which defines the quantities

Iµν = g2V I
V
µν + g2AI

A
µν + F 2

2 I
T
µν + gV gAI

V A
µν + gV F2I

V T
µν + gAF2I

AT
µν . (47)

Each of these coefficient tensors are then decomposed in the form

Ii,µν = IiQP
µν
Q + IiLP

µν
L + IiT+P

µν
T+ + IiT−P

µν
T− + IiM+P

µν
M+ + IiM−P

µν
M−, (48)

where i denotes either the vector, axial, tensor or mixed portions of the weak interaction.
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Calculating the trace of Λµν is straightforward (we employ the Mathematica package [35]). Using Λµν in equation 21,
we find the non-zero components of the vector polarization are

IVQ =
(
λ2 + σ− − 1

)
IQ (49)

IVL = IL + σ−IQ (50)

IVT+ = IT + σ−IQ (51)

IVM+ = IMλ. (52)

Here, we have defined λ = β − 1 and ∆ = (M∗4 −M∗2 )/M∗2 .
The non-zero pieces of the axial polarization are

IAQ =
(
λ2 + σ+ − 1

)
IQ (53)

IAL = IL + σ+IQ (54)

IAT+ = IT + σ+IQ (55)

IAM+ = IMλ. (56)

The non-zero pieces of the tensor polarization are

ITL =
q2α

4m2
2

[(
σ− − β2 +

4m2
2

q2α

)
IQ − IL

]
(57)

ITT+ =
q2α

4m2
2

[(
σ− − β2 +

4m2
2

q2α

)
IQ − IT

]
. (58)

The mixed vector-tensor polarization is

IV TL = (2 + ∆β)IQ (59)

IV TT+ = (2 + ∆β)IQ (60)

IV TM+ = −∆

2
IM . (61)

The vector axial piece is

IV AT− = −i2IM . (62)

And finally the axial tensor piece is

IATT− = −i(2 + ∆)IM . (63)

These expressions are similar to those found in [10, 22], but they include extra terms depending on the mass and
potential differences of the nucleons. A detailed comparison between these results and previous results is made in
section III B.

2. The Lepton Tensor

The contraction of the lepton tensor with the imaginary part of the polarization is the last piece required to calculate
the differential neutrino cross-section. The easiest way to perform this contraction is to project the lepton tensor using
the same projectors we used for the polarization tensor. Performing these projections gives

LL = 8
q̃2α

[ −2(ñ · p1)2 + 2(ñ · p1)(ñ · q) + q̃2α(p1 · q)]
LQ = 8

q̃2α
[ 2(q̃ · p1)2 − 2(q̃ · p1)(q · q̃) + q̃2α(p1 · q)]

LM+ = 8
q̃2α

[ (q̃ · p1)(ñ · q) + (ñ · p1)(q · q̃ − 2q̃ · p1)]

LM− = 8i
q̃2α

εαβγδñαp1,β q̃γqδ

LT+ = 8
q̃2α

[
(ñ · p1)2 − (ñ · p1)(n · q) + (q̃ · p1)(q̃ · q − p1 · q̃)

]
LT− = 8i

q̃2α
[ (ñ · p1)(q̃ · q)− (ñ · q)(p1 · q̃)]. (64)
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The contractions appearing above are

p1 · q =
q2α −m2

3

2
p1 · q̃ = p1 · q + ∆UE1

p1 · ñ = −q
2
α

2q
[E1 + E3 −∆U + 2∆UE1q0/q

2
α + (q0 −∆U)m2

3/q
2
α]

ñ · q = −q∆U
q · q̃ = q2α + q0∆U. (65)

In general, the projections of the lepton tensor have relatively complicated forms since we are projecting the lepton
tensor relative to q̃µ rather than the more natural qµ. In the free gas limit and neglecting m3, these expressions reduce
to

LT = 8q2α (A+ 1) (66)

LL = −8q2αA (67)

LQ = 0 (68)

LM+ = 0 (69)

LT− = ±i16(n · p1), (70)

where

A =
4E1E3 + q2α

2q2
=
E1E3

q2
(1 + µ13), (71)

which agrees with expressions previously found in the literature [10, 22].
With these results, the contraction of the lepton tensor and the polarization tensor is quite simple (using the result

of Appendix A)

LµνIµν =
∑

i={V,A,T,V A,V T,AT}

Ci
[
LLI

i
L + LQI

i
Q − 2LM+I

i
M+ − 2LM−I

i
M− + 2LT+I

i
T+ + 2LT−I

i
T−
]
, (72)

where Ci = {g2V , g2A, F 2
2 , gAgV , . . .} and the differential neutrino cross section can be found using equations 11 and 47.

C. Opacities from a Limiting Form of the Matrix Element

Often, it is assumed that the nucleon masses dominate all other energy scales entering the averaged matrix element
[13]. In this approximation,

〈|M|2〉 = 16C2G2
F

[
(gV + gA)2(p1 · p̃2)(p3 · p̃4) + (gV − gA)2(p̃2 · p3)(p1 · p̃4)− (g2V − g2A)(p1 · p3)(p̃2 · p̃4)

]
≈ 16C2G2

FE1E3M
∗
2M

∗
4

[
(gV + gA)2 + (gV − gA)2 − (g2V − g2A)(1− µ13)

]
, (73)

where the second line is to leading order in the nucleon mass [36]. Following a similar set of steps to those for the full
matrix element, we find the approximate cross-section is given by

dΓ(E1)

dE3dµ13
≈ C2G2

F

4π2

p3E3

1− exp[−(q0 + ∆µ)/T ]

[
g2V (1 + µ13) + g2A(3− µ13)

] 4M∗2M
∗
4

q̃2α
IQ. (74)

This is similar in form to the non-relativistic cross-section given in [10, 20], except that non-relativistic kinematics
has not been assumed for the integrals over the nucleon momentum or in em. When non-relativistic kinematics are
enforced at all momenta, an upper limit in the nucleon energy integral is required to enforce momentum conservation
which is clearly spurious. This upper limit gives the second logarithmic factor shown in Eq. 48 of [20]. Additionally,
the form of em is different when it is calculated using non-relativistic kinematics.

A further approximation that is often assumed due to the large mass of the nucleons is ~q = 0 in the nucleon integrals
and E∗2,4 = M∗2,4 [11, 37]. In this case, the response function of the medium becomes

Iq=0 = 2πδ(E2 − E4 + q0)

∫
d3p2
(2π)3

(f2 − f4)

≈ πδ(M∗2 + U2 −M∗4 − U4 + q0)(n2 − n4). (75)
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FIG. 1: Contours of the νe + n→ e− + p double-differential absorption rate as a function of electron scattering angle µ13 and
energy transfer q0, normalized to the integrated absorption rate.

The second line follows from assuming p2/(2M∗2 ) = p2/(2M∗4 ). Then, the differential cross section is given by

dΓ(E1)

dE3dµ13
≈ C2G2

F

2π2

p3E3

1− exp[(∆M∗ + ∆U −∆µ)/T ]
Iq=0

[
g2V (1 + µ13) + g2A(3− µ13)

]
, (76)

which gives the standard integrated cross section per volume

σ

V
=
C2G2

F

π
(g2V + 3g2A)p3E3

n2 − n4
1− exp[(∆M∗ + ∆U −∆µ)/T ]

. (77)

These approximate forms of the cross section will be compared to the full results below.

III. RESULTS

Here, we present differential cross sections and comparison to previous results in the literature. In the charged
current rates, the potential energy difference between neutrons and protons can play a dominant role in the capture
mean free paths of neutrinos in the medium. This potential difference depends on the effective nuclear interaction
that is assumed and is therefore model dependent. For illustrative purposes in this section, we choose a very simple
density dependent potential energy given by

∆U = ∆U0
(n2 − n4)

nsat
, (78)

where nsat = 0.16 fm−3 and we choose a coupling value of ∆U0 = 40 MeV and keep the nucleon masses fixed at their
vacuum values for all densities. At very low and high densities, a linear model for the potential energy is unrealistic.
Therefore, we emphasize that the results using this model for the potential are only for illustrative purposes. We choose
this model only for its simplicity and because it prevents us from having to choose from the plethora of relativistic
mean field theories available. Additionally, we keep the nucleon masses fixed to their vacuum values for most of the
discussion for simplicity, although we consider the impact of varying the effective nucleon mass at saturation density
in section III C. It is important to note that the formalism presented above fully accounts for the impact of effective
nucleon masses on the neutrino absorption rate and the publicly available code associated with this paper can be used
to assess the impact of any variation in the nucleon effective masses.
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FIG. 2: The angle integrated cross section as a function of energy transfer q0 for νe + n → e− + p. The right panels show
νe + n → e− + p while the right panels show the reaction νe + n → ν′e + n. The dotted black lines shows the position of the
energy transfer peak when final state blocking is not included, U4 − U2 +M∗4 −M∗2 . The solid lines show our full expressions
for the cross section, the dot dashed lines show the full expressions neglecting tensor corrections, and the dashed lines show the
[10] prescription for the cross section.

A. Differential Cross Sections

The main results of this work are differential charged current neutrino cross-sections. In general, the electron
scattering angle and energy transfer are integrated over to give the mean free paths which are relevant to trans-
port calculations. Nevertheless, to give the reader a feeling for the structure of these results, we show here some
representative differential cross sections.

First, we consider the structure of the full double differential absorption. In figure 1, we show the this quantity at
low density and at high density. It is strongly peaked at the q0 expected for small momentum transfer. The variation
with scattering angle is given by the leading order 1/q = 1/

√
E1 + E3 − 2E1E3µ13 dependence of the baryon response

combined with the lepton kinematics. Based on the elastic limit of the cross section we expect a weak angular
dependence in the lepton kinematics of the form 1 + (C2

V − C2
A)/(4C2

V + 12C2
A)µ13 ≈ 1 − 0.11µ13. The combination

of these two factors gives the strongly forward peaked differential cross section with a more slowly varying backward
scattering tail. This leading order behavior only holds for neutrinos with energies small compared to the baryon mass.
At high density these limiting expressions for the scattering angle dependence also break down and the structure of
the differential cross section is altered. For the conditions shown in the right panel of 1, it is slightly backward peaked
and has strength at a much larger range of energy transfers.

Second, we consider the angle integrated differential cross section dσ/dq0, which encodes the energy transfer between
the leptons and baryons. For charged current reactions, we expect this quantity to be peaked at U4 −U2 +M∗4 −M∗2
when electron final state blocking is ignored, since this is the most favorable energy for small momentum transfer
[11, 13]. In figure 2, this cross section is shown. The left panel shows the charged current differential cross-section
at low density. Here, the electrons are not strongly degenerate and the peak of the differential cross section is at
the zero momentum transfer value for all but the smallest neutrino energies shown. In contrast, at the high density
shown in the right panel, the differential cross section peaks away from the zero momentum transfer value because
the term 1 − f3(E3) depends exponentially on q0. Therefore, there is significantly stronger dependence on the value
of the differential cross section away from the zero momentum transfer peak, which is often more poorly captured in
approximations to the charged current rates.

We can also start to see how the various corrections included in the rates derived above alter the differential cross
section. There, the tensor corrections impact the normalization of the cross-section significantly, increasing to a
correction of ∼ 25% for the highest energy neutrinos, but they do not impact the energy transfer. At high density,
where ∆U is larger and electron final state blocking can be significant, the variation between different approximations
to the charged current rates can be large. It is also clear that the expressions of [10] differ significantly from those
derived here. We consider these differences in detail in the next section.
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FIG. 3: Comparison of various approximations to the charged current cross section per nucleon as a function of density
in beta-equilibrated matter. The reference cross section, σRef is taken to be the full cross section without weak magnetism
corrections (i.e. F2 = 0.0). The neutrino energy is assumed to be πT . The left panel shows the reaction νe + n→ e− + p while
the right panel shows ν̄e + p→ e+ + n. The electron antineutrino cross sections are only shown up to threshold. Full denotes
the fully relativistic cross section including weak magnetism corrections, ~q = 0 is the cross section given by Eq. 76, RPL98
denotes the cross section given by the expressions in [10], and Constant Λµν refers to the cross section given by Eq. 74.

B. Comparison with earlier work

We now turn to compare our results for the charged current cross sections in neutron-rich nuclear matter including
weak magnetism to a number of other approximations for different ambient conditions. The comparisons are shown
in figure 3. We take the full expression with F2 = 0.0 (i.e. the full cross section without weak magnetism corrections)
as a baseline for comparison. The simplest approximation to the charged current rates including mean field effects is
given by equation 76. At low density, this approximation agrees with the full cross section without weak magnetism
at the percent level for νe+n→ e−+p. The deviation is somewhat larger for electron antineutrino capture. Once the
density becomes high enough for final state blocking to be important, this approximation starts to strongly deviate
from the full expression and drastically under predicts the cross section at saturation density and above for both
electron neutrinos and antineutrinos. These conclusions are likely to be impacted when the effective masses have a
more complex density dependence.

The second approximation we consider comes from assuming a constant hadronic portion of the matrix element
(see Eq. 74). This results in expressions that are very similar to the non-relativistic results given by [10, 19]. At
low density, this approximation agrees with our baseline result to a few percent. This is not surprising given that
this approximation should be accurate to order q/M . At higher densities, this approximation breaks down for the
antineutrino capture rate.

The inclusion of the full weak magnetism correction induces corrections of order 10% for the 22 MeV neutrinos
considered in the plot, with the correction going in opposite directions for neutrino and antineutrino capture. Near
saturation density, the weak magnetism corrections begin to become significantly larger than would be predicted by
the expansion given in [29].

A similar description of the relativistic charged current differential neutrino cross sections was given in [10]. We
find the following significant differences from that work:

1. The difference between neutron and proton masses and self-energies was not properly accounted for in the
calculation of the polarization tensor. Specifically, the integrals needed to calculate the polarization function
defined in eqns. 34, 35, 36, and 36 depend on β and q̃0. These dependencies were neglected in [10] where β = 1
and q̃0 = q0 was used 1.

1 This appears to be a typographical error because the code used to generate these results in [10] did account for corrections arising from
β 6= 1 and q̃0 6= q0.
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FIG. 4: The νe + n → e− + p mean free path as a function of total density for neutrino energies {3, 10, 33, 100}MeV. The
full cross section (solid lines), the full cross section neglecting weak magnetism (dashed lines), the [10] expression for the cross
section (dot-dashed lines), the non-relativistic elastic limit (dotted lines), and the constant Λµν matrix element limit (dot-
dot-dashed lines) of the cross section are all shown. The left panel shows the results for a free gas of protons and neutrons,
while the right panel shows the results for a gas with a mean field potential as described in the text. At low density, all of
the approximations agree reasonably well (although there are significant deviations for higher energy neutrinos), but at higher
density and for finite ∆U they diverge significantly.

2. Current conservation, which requires qµΠV
µ,ν = 0, was used to related different components of the polarization

tensor in [10]. Differences between the neutron and proton masses and self-energies violates this relation [28],
and contracting the vector piece of the polarization with the mean field corrected energy momentum transfer
gives

q̃µIVµν = IVQ q̃
ν + IVM+ñ

ν 6= 0 , (79)

and since IVµν ∝ ΠV
µν , qµΠV

µν 6= 0 in general. These corrections become significant when U2−U4 is large compared
to the neutrino energy.

3. There is typographical error in Eq. 69 and 70 of Ref. [10] where the lower limit of the energy integral was
defined. The correct expression defined here in Eq. 27 differs by a sign.

4. As discussed in II B 2, the lepton tensor in [10] was calculated by setting the charged lepton mass to zero because
it was assumed that their energies would be relatively large. The associated correction for reactions involving
electron neutrinos is typically negligible, since Ee � me but can be important for charged current reactions
involving muon neutrinos.

These differences significantly alter the charged current cross sections in regions where the ∆U is significant, as can
be seen in figure 3.

In figure 4, the absorption mean free path in beta-equilibrated matter is shown for a range of neutrino energies in
all of the approximations described above. In the left panel, we show the mean free path in a non-interacting medium.
At low density, all of the different expressions for the capture rate agree reasonably well, with deviations increasing
with increasing neutrino energy. At high density, the cross section per nucleon is suppressed due to final state electron
blocking. This causes the ~q = 0 cross section for higher energy neutrinos to be in error by factors of a few because of
its delta function distribution of allowed energy transfer, since the full nucleon response is broadly peaked in q0 for
these neutrinos (see above in section III A). All of the other approximations for the cross section agree at the few tens
of percent level across all densities for a non-interacting gas. The inclusion of weak magnetism corrections only has a
small impact, with the size of the correction increasing with neutrino energy [22].

When interactions are included, the differences between the various approximations become more substantial, as
was described above. Additionally, the inclusion of mean field potentials has a strong impact of the mean free paths
relative to the free gas case [11, 13]. This is shown in the right panel of figure 4. At high density and low neutrino
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FIG. 5: Variation of the charged current neutrino mean free path with the nucleon effective masses at saturation density. The
nucleon effective mass is assumed to be isospin independent and matter is assumed to be in beta-equilibrium. The neutrino
energy is taken to be Eν = πT . Full denotes the fully relativistic cross section including weak magnetism corrections, RPL98
denotes the cross section given by the expressions in [10], and Constant Λµν refers to the cross section given by Eq. 74.

energy, the largest deviations between the results in [10] and our results are seen. The density at which significant
deviations begin increases with increasing neutrino energy. For smaller neutrino energies, ∆U becomes the dominant
energy scale at lower density than for higher energy neutrinos. Similarly to the non-interacting case, the ~q = 0 results
strongly under predict the inverse mean free path at high density when final state blocking becomes larger. As we saw
above, constant Λµν approximation agrees with the full expression without weak magnetism quite well, although the
deviations between the two get larger with increasing neutrino energy. We expect the differences would also get larger
in models where the nucleon effective mass is significantly less than the nucleon rest mass and other energy scales
entering the response function become closer to the in-medium nucleon mass. Finally, it can be seen the corrections
from the inclusion of weak magnetism are similar to those in the non-interacting case.

C. Nucleon Effective Masses

In the illustrative calculations above, we kept the nucleon masses fixed at their vacuum values for simplicity. In
the nuclear medium, nucleon effective masses can be significantly different from their bare values. In non-degenerate
matter, we expect the dependence of the mean free path on the isospin independent effective mass to be weak [20].
On the other hand, in degenerate matter the leading order M∗2M

∗
4 dependence of the differential cross-section remains

after integration over q0 and µ13 [20]. Therefore, we expect that reducing the nucleon effective mass will reduce the
neutrino mean free path but at the a rate slower than M2. In figure 5, we show the impact of varying the nucleon
effective masses at saturation density in beta-equilibrium assuming the effective masses are isospin independent. The
expected reduction in the mean free path is seen in all approximations of the neutrino mean free path down to
M∗/M ≈ 0.6. Because the chemical potentials in beta-equilibrium depend on the effective mass, µ̂ decreases with
increasing effective mass in Figure 5. Therefore, the detailed balance factor gets larger for smaller effective masses and
eventually becomes more important than the leading order mass dependence in the response, causing the turnover in
the behavior of the mean free path with effective mass seen at the lowest effective masses considered here.

It is also likely that there is significant isospin dependence of the effective mass [38]. The formalism developed here
can fully account for this. To leading order, isospin splitting of the effective mass provides a similar effect to isospin
dependent potential energies, since the charged current response will be peaked around q0 = U4−U2 +M∗2 −M∗4 = 0.
Including this isospin dependence in the effective masses in a manner consistent with constraints on the nuclear
symmetry energy requires also choosing different values for the nucleon potential energies. A detailed investigation of
the impact of isospin dependent effective masses on neutrino opacities is beyond the scope of this work.
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D. The Neutral Current Limit

Since the neutral current interactions have the same mass and potential for the incoming and outgoing baryons, we
set β = 1, λ = ∆ = 0, σ− = 1, σ+ = 1− 4m2

2/q
2
α, and q̃0 = q0. With these replacements, only two pieces of the vector

polarization are non-zero

IV,ncL = IQ + IL

= − q2µ
4πq3

∫ ∞
em

dE2(f2 − f4)
[
(2E2 + q0)2 − q2

]
(80)

IV,ncT = IQ + IT

= − q2µ
4πq3

∫ ∞
em

dE2(f2 − f4)

[
q2/2 + 2M2

2

q2

q2α
+ (2E2 + q0)2/2

]
(81)

which has the same form as the results of [10] (although there is a factor of two difference, which is purely definitional).
For the neutral current reactions, vector current conservation holds for the polarization tensor, such that qµI

µν
V = 0,

which can be seen from substituting the neutral current expressions in Eq. 79. Therefore, the standard decomposition
of the vector part of the neutral current polarization tensor is

IV,ncµν = IV,ncL PLµν + IV,ncT PTµν , (82)

which gives IV,ncL = − q
2
µ

q2 I
V,nc
00 and IV,ncT = −Inc22 , which has been used in previous works [10, 14].

We can also see that

IA,ncµν = IV,ncL PLµν + IV,ncT PTµν + ηµνIA (83)

with

IA = −4M2
2

q2α
IQ = −M

2
2

πq

∫ ∞
em

dE2(f2 − f4), (84)

which also agrees with [10]. Our expression for the mixed vector-axial polarization is also in agreement.
The neutral current tensor polarizations were investigated in [22]. Our result is

ITL = IQ −
q2α

4m2
2

IL = − q2α
4m2

2

[
IVL + IA

(
1 +

q2α
4m2

2

)]
(85)

ITT = IQ −
q2α

4m2
2

IT = − q2α
4m2

2

[
IVT + IA

(
1 +

q2α
4m2

2

)]
(86)

This agrees with [22] up to a sign in front of IA in ITT .

IV. CONCLUSIONS

We have derived complete expressions for charged current neutrino interactions in the mean field approximation,
including weak magnetism, arbitrary degeneracy, and relativistic kinematics. We approach the problem both using a
Fermi’s Golden Rule and the linear response given by many-body perturbation theory to clarify the derivation and
provide a path to including correlations. Both approaches of course yield the same answer. We then investigated
the neutrino mean free paths predicted by these results and compared them to other results found in the literature.
These expressions can also be used to calculate neutral current cross sections and inelastic electron scattering. We
provide an open source library for calculating these opacities at https://bitbucket.org/lroberts/nuopac.

Our results extend and correct results previously presented in the literature. We find that vector current non-
conservation in charged current reactions [28] and the correct inclusion of neutron and proton potential energies, along
with weak magnetism corrections to all orders, introduces a number of new terms in the charged current opacities.
At low densities, the corrections to the old rates are modest and provide changes of a few to ten percent relative to
previous results in the literature for neutrino energies of order ten MeV. This is unlikely to make qualitative changes in
the results of core collapse supernova and compact object merger simulations, but in situations where computational
models are sensitive to small changes in microphysics these corrections can at least remove one source of uncertainty.

https://bitbucket.org/lroberts/nuopac
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At high density, especially when the neutron proton self-energy difference is large, they can alter the neutrino mean
free paths in the medium by factors of a few or greater. This is likely to impact the rate of lepton transport inside
proto-neutron stars.

Additionally, our derivation of the charged current polarization tensor provides a starting point for future calcu-
lations of RPA corrections to the charged current rates. Previous work has found that these corrections can change
rates by up to factors of a few at and above nuclear saturation density [20, 21]. At sub-nuclear density, more work is
warranted to assess the role of particle-hole screening and collective modes. Since the nucleon-nucleon interaction is
nearly resonant at low momentum, we are exploring the RPA correlations with large effective interactions that can
reproduce nucleon-nucleon phase shifts. This will be reported in a future publication. Additionally, because we find
a different tensor structure than was found in previous work [20, 21], the detailed form of the RPA equations will
be altered. It remains to be seen if this significantly impacts the resulting opacities. In the future, we also plan to
include RPA corrections in our publicly released opacity library.
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Appendix A: Polarization Tensor Decomposition

Here, we partially follow [33] on pages 113, 118, and 214. First, we choose to decompose the momentum transfer
as q̃µ = (q̃0, 0, 0, q) and build a second vector orthogonal to q̃µ in the time-z plane, nµ = (q, 0, 0, q̃0). We then define
the transverse projector

PT+
µν = ηµν −

q̃µq̃ν
q̃2µ
− nµnν

n2

= ηµν +
nµnν − q̃µq̃ν

q̃2µ
, (A1)

which picks out the portion of a vector orthogonal to q̃µ and nµ. We can also define the projectors along q̃µ and nµ as

PLµν =
nµnν
n2µ

= −nµnν
q̃2µ

(A2)

PQµν =
q̃µq̃ν
q̃2µ

. (A3)

It is also useful to define the quantities

PM±µν =
q̃µnν ± q̃νnµ

q̃2µ
(A4)

PT−µν = εµνλδ
q̃λnδ

q̃2α
(A5)

The only non-zero, complete contractions of these tensors with one another are

PLµνP
µν
L = 1 (A6)

PQµνP
µν
Q = 1 (A7)

PM±µν PµνM± = −2 (A8)

PT±µν P
µν
T± = 2. (A9)
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Any rank two tensor can be decomposed as

Aµν = AQP
Q
µν +ALP

L
µν +AM+P

M+
µν +AM−P

M−
µν + Ãµν . (A10)

If there are no other preferred directions that enter into Ãµν (which is the case with the polarization tensors as long
as the distribution function is isotropic), we have

Ãµν = AT+P
T+
µν +AT−P

T−
µν , (A11)

since PT is the only available transverse, symmetric tensor and the second piece is the only anti-symmetric tensor
that can be made from the Levi-Civita tensor. They can be recovered using

AQ = PµνQ Aµν (A12)

AL = PµνL Aµν (A13)

AM+ = −1

2
PµνM+Aµν (A14)

AM− = −1

2
PµνM−Aµν (A15)

AT+ =
1

2
PµνT+Aµν = −A22 (A16)

AT− =
1

2
PµνT−Aµν . (A17)

The last relation on the second to last line holds when nµ and qµ are in the 0-3 plane.

Appendix B: Spin Sums in RMF Theory

Here we derive the spin sums of Dirac spinors essential in defining the nucleon propagators in mean field theory
given earlier in Eq. 17. For Walecka type field theories, we generally have a Lagrangian of the the form

L =
∑
B

Ψ̄B(iγµ∂µ −MB + gσBσ − gωBγµωµ)ΨB + Lσω (B1)

where we have only included a single vector field ωµ for simplicity and the meson field self-interactions are subsumed
into Lσω. The addition of isospin dependent fields to this Lagrangian is a trivial extension of the results presented
below. In the mean field approximation, the scalar and vector fields behave classically and for homogeneous matter
the only non-zero component of the vector field is the time component. For this Lagrangian, the equations of motion

(iγµ∂µ −MB + gσBσ − gωBγµωµ)ΨB = 0 , (B2)

Ψ̄B(−iγµ ←−∂ µ −MB + gσBσ − gωBγµωµ) = 0 , (B3)

are the analog of the Dirac equation in the presence of classical background fields.
First, we can find the dispersion relations nucleons by noting that fields that satisfy the Dirac equation also satisfy

the Klein-Gordon equation. In standard notation, we then have

(i6 ∂ − gωB6ω −M∗B)(−i6 ∂ + gωB6ω −M∗B)ΨB =
[
(i∂µ − gωBωµ)(i∂µ − gωBωµ)−M∗B2

]
ΨB = 0 (B4)

which admits plane wave solutions ΨB ∝ exp(∓ip · x), and the dispersion relation is given by the equation for pµ

(pµ ∓ gωBωµ)(pµ ∓ gωBωµ)−M∗B2 = 0. (B5)

Similar to the free field case, the upper sign will correspond to particle while the lower sign will correspond to anti-
particles and from now on we will only consider the particles. The equation for Ψ̄B gives a similar result and if we
define the four-vector

p̃µ = pµ − gωBωµ = (E∗,−~p), (B6)
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the mean field theory will look almost exactly like the free field theory, just with the replacement pµ → p̃µ everywhere

except for in the exponent. Here E∗ =
√
p2 +M∗B

2 is the kinetic energy of the particle.

With this spatial dependence, we can expand the baryon fields in terms of Fourier modes and promote the expansion
coefficients to creation and annihilation operators as and bs and the standard four-component spinners us and vs as

ΨB(x) =
∑
s=+,−

∫
d3p

(2π)32E∗p

(
as(~p)us(~p)e

−ip·x + b†s(~p)vs(~p)e
ip·x) (B7)

Ψ̄B(x) =
∑
s=+,−

∫
d3p

(2π)32E∗p

(
a†s(~p)ūs(~p)e

ip·x + bs(~p)v̄s(~p)e
−ip·x) . (B8)

Enforcing the standard anti-commutation relations on the fields gives{
a†s(~p), as′(~p

′)
}

= (2π)3δ(3)(~p− ~p′)2E∗pδss′ , (B9)

where the E∗p normalization is consistent with the denominator of the Lorentz invariant phase space factor in the field
expansions.

It is easy to show that the Hamiltonian density is

H = Ψ̄B

(
iγj∂j +m+ g6ω

)
ΨB . (B10)

Integrating over space and using the field expansions gives the Hamiltonian

H =
∑
s

∫
d3p

(2π)32E∗p

[
E∗pa

†
p,sap′,s′

]
+ gω0Q+ anti-particles, (B11)

where

Q =

∫
d3p

(2π)32E∗p

[
a†p,sap′,s′

]
− anti-particles, (B12)

is the baryon number. This result is useful when considering the grand canonical Hamiltonian, which gets also gets
a contribution −µQ.

We also need to know how the presence of mean fields impacts the properties of the four-component spinors. Using
the field equation for the baryon fields with the above expansions results in

(6 p−M∗ − gωB6ω)us(~p) = 0 (B13)

ūs(~p)(6 p−M∗ − gωB6ω) = 0 (B14)

(−6 p−M∗ − gωB6ω)vs(~p) = 0 (B15)

v̄s(~p)(−6 p−M∗ − gωB6ω) = 0 (B16)

The equations for us(~p) can be expressed in terms of p̃µ, in which case they take the free field form. This allows us
to write down the spin sums ∑

s=±
ūs(~p)us(~p) = 6 p̃+M∗ (B17)∑

s=±
v̄s(~p)vs(~p) = 6 p̃−M∗, (B18)

which appear in the mean field propagator. Additionally, this implies that the Gordon identities and other properties
of the spinors are unaltered from the free field case aside from the aforementioned replacement.

We emphasize that the above analysis dealt only explicitly with particle states. The anti-particles get a potential
energy with the opposite sign from the mean field, so that the anti-particle kinetic four-momentum is given by
p̃µ = pµ + qωµ.
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Appendix C: Matsubara Sums

Here, we calculate the types of Matsubara sums necessary to evaluate the imaginary time polarization tensor. It is
easiest to consider the Matsubara sums directly. Using standard methods [e.g. 33], it is easy to show that

T
∑
n

g(iωn + α) =
∑

Res g(p0)f(p0 − α), (C1)

where g is an arbitrary function of a complex variable that converges more rapidly than 1/|p0| in all directions
(otherwise it is necessary to be careful about which convergence factor is chosen). The pair bubble will require
evaluating Matsubara sums of the form

Sl,j(iωm + ∆µ) = T
∑
n

(iωn + ν1)l(−i(ωm − ωn) + ν2)j

×∆(iωn + ν1, E1)∆(i(ωm + ωn) + ν2, E2), (C2)

where ∆(iω,E) = 1/(ω2 + E2
p) and Ei =

√
p2i +m2

i . We choose the energy of a particle of species 2 (rather than
an anti-particle), since we will primarily be interested in the particle-particle contribution to the polarization. This
results in a g of the form

g(p0) =
pl0(p0 − ω0)j

[E2
1 − p20][E2

2 − (ω0 − p0)2]
=

pl0(p0 − ω0)j

(E1 + p0)(E1 − p0)(E2 + ω0 − p0)(E2 − ω0 + p0)
, (C3)

where ω0 = −iωm + ∆ν and ωm is a Bosonic frequency. The relations

1

(a+ b)(a− b) =
1

2a

[
1

a− b +
1

a+ b

]
=

1

2b

[
1

a− b −
1

a+ b

]
(C4)

help define the properties of the poles found in g. The g function has four simple poles. Using the notation of equation
C4, we find.

1. p0 = E1, a = E2, and b = E1 − ω0

Res g(E1)f = −E
l
1(E1 − ω0)j

4E1E2

[
f(E1 − ν1)

ω0 − E1 + E2
− f(E1 − ν1)

ω0 − E1 − E2

]
2. p0 = −E1, a = E2, and b = E1 + ω0

Res g(−E1)f = − (−E1)l(−ω0 − E1)j

4E1E2

[
1− f(E1 + ν1)

ω0 + E1 − E2
− 1− f(E1 + ν1)

ω0 + E1 + E2

]
3. p0 = ω0 + E2, a = E1, and b = E2 + ω0

Res g(ω0 + E2)f = − (ω0 + E2)lEj2
4E1E2

[
− f(E2 − ν2)

ω0 − E1 + E2
+

f(E2 − ν2)

ω0 + E1 + E2

]
4. p0 = ω0 − E2, a = E1, and b = E2 − ω0

Res g(ω0 − E2)f =
(−E2 + ω0)l(−E2)j

4E1E2

[
1− f(E2 + ν2)

ω0 + E1 − E2
− 1− f(E2 + ν2)

ω0 − E1 − E2

]
Combining terms that have the same denominators and carefully accounting for signs, we then have (for l, j = {0, 1})

Sl,j(iωm + ∆µ) = − El1E
j
2

4E1E2

[
f1(E1)− f2(E2)

−iωm + ∆ν − E1 + E2
+ (−1)j

1− f1(E1)− f̄2(E2)

−iωm + ∆ν − E1 − E2

−(−1)l+j
f̄1(E1)− f̄2(E2)

−iωm + ∆ν + E1 − E2
− (−1)l

1− f̄1(E1)− f2(E2)

−iωm + ∆ν + E1 + E2

]
, (C5)

where fi(E) = [exp(βE − βνi) + 1]−1.
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