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I. INTRODUCTION

Neutron spin optics in polarized nuclear targets has become a very important topic

because of recent proposals for searches for time reversal invariance violation (TRIV) in

neutron-nucleus scattering (see, for example [1] and references therein). The proposed ex-

periments require a understanding of neutron spin dynamics during propagation through

polarized nuclear targets in the presence of multiple s-wave and p-wave resonances, since

the neutron spin rotation due to strong spin-spin interactions can reduce the values of TRIV

observables or, in some cases, mimic TRIV effects [2–10].

The phenomenon of neutron spin rotation, known as a pseudomagnetic effect, in the

propagation of polarized slow neutrons through a polarized target was predicted in ref. [11].

The phenomenon is related to the fact that, due to strong spin-spin interactions, the value

of the neutron wave index of refraction depends on the relative orientation of the neutron

spin relative to the direction of nuclear polarization,

n2
± = 1 +

4π

k2

∑

i

Nif
i
±. (1)

Here, Ni is the number of nuclei of type i per unit volume, k is the neutron wave number,

and f i
± is the neutron elastic forward scattering amplitude on an type-i nucleus for the

positive and negative projections of the neutron spin along the direction of the nuclear

polarization. Taking into account that the second term in the above equation is much

smaller than the unity, we can write the difference of the refractive indices with different

neutron spin orientation as

∆n = n+ − n− =
2π

k2

∑

i

Ni(f
i
+ − f i

−). (2)

This difference in refraction indices leads to a rotation of the neutron spin around the

direction of the nuclear polarization, through the angle of ϕ = k∆nz after the neutrons have

propagated through a target of thickness z. The corresponding frequency of the neutron

spin rotation is given [11] as

ωP = vn
dϕ

dz
=

2π~

Mn

∑

i

NiRe (f
i
+ − f i

−), (3)

where vn is the neutron velocity, and Mn is the neutron mass. For very low energy neutrons,

the scattering amplitudes do not depend on neutron energy, and as a consequence, the
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frequency ωP has a constant value, which depends only on the properties of the polarized

target. Therefore, it was suggested in [11] to consider an effective pseudomagnetic field,

which produces a precession of the neutron spin at the frequency ωP,

BP =
~ωP

2µn

, (4)

as a natural characteristic of the target. (Here µn is the neutron magnetic moment). Nu-

merically, BP/(1T) = 5.47ωP/(1GHz). This phenomenon has been studied mostly for the

case of very low energy (thermal) neutrons (see [12–15] and references therein). In paper

[16], the pseudomagnetic spin precession was studied in the presence of a low energy s-wave

neutron resonance. In that case, the parameters BP and ωP show very strong energy depen-

dencies in the vicinity of the resonance. In this paper we present a general formalism for

the pseudomagnetic phenomena and apply it for the multi-resonance case, involving neutron

resonances with different parities.

II. GENERAL FORMALISM FOR PSEUDOMAGNETIC [←MISSPELLED COR-

RECTED] FIELD

Let us consider the reaction matrix T̂ , which is related to the scattering matrix Ŝ and

the matrix R̂ as

2πiT̂ = 1̂− Ŝ = R̂. (5)

Thus a reaction amplitude f̂ can be written as f̂ = −π(kikf)−1/2T̂ , where ki,f are values

of initial and final momentum, respectively. Then, to describe the scattering of polarized

neutrons on a polarized target with the spin ~I, we need to calculate the corresponding

reaction matrix elements
〈

~kfµf

∣

∣

∣
T
∣

∣

∣

~kiµi

〉

, (6)

where µi,f is the projection of the neutron spin along the axis of quantization. For coherent

elastic scattering at zero angle, the initial and final values of neutron momenta and spin

projections are equal to each other, ~ki = ~kf = ~k and µi = µf = µ.

It is convenient to relate this matrix to the matrix R̂ in the integral of motion represen-

tation of the S-matrix [17]

〈

S ′l′α′
∣

∣S
J
∣

∣Slα
〉

δJJ ′δMM ′δ(E ′ − E), (7)

3



where J and M are the total spin and its projection, S is the channel spin, l is the orbital

momentum, and α represents the other internal quantum numbers. Taking into account

that the spin channel is a sum of the neutron spin ~s nucleus spin ~I

~S = ~s+ ~I, (8)

and the total spin is

~J = ~S +~l, (9)

one can write T -matrix elements as

2πi
〈

~kµ
∣

∣

∣
T
∣

∣

∣

~kµ
〉

=
∑

JMlml′m′SmsS′m′

s

Yl′m′(θ, φ) 〈sµIMI |S ′m′
s〉 〈S ′m′

sl
′m′|JM〉

×
〈

S ′l′α′
∣

∣RJ
∣

∣Slα
〉

〈JM |Smslm〉 〈Sms|sµIMI〉Y ∗
lm(θ, φ), (10)

where angles (θ, φ) describe the direction of the neutron momentum ~k. For the simplicity of

further formulae, let’s choose the quantization axis along the vector ~k. It should be noted

that, for the case of s-wave neutrons, all the expressions do not depend on the choice of

the quantization axis. The formulae for p-wave neutrons with an arbitrary choice of the

quantization axis are presented in Appendix A. Then, the amplitude for neutron elastic

scattering can be written as

fµ =
i

2k

∑

JlSS′MI

(2l + 1) 〈sµIMI |S ′m′
s〉 〈S ′m′

sl0|JM〉

×
〈

S ′l
∣

∣RJ
∣

∣Sl
〉

〈JM |Smsl0〉 〈Sms|sµIMI〉 . (11)

It should be noted that, in the above expression for the amplitude, the sum over MI must

be taken carefully to be consistent with the polarization state of the nuclear target. For

example, for the case of vector polarization, which we consider in details here, only the term

with MI = I is presented in the sum.

The matrix elements in Eq.(11) for slow neutrons can be written in the Breit-Wigner

resonance approximation with one s-resonance or p-resonance as

(

F J
S′Sl

)

K
≡
〈

S ′
KlK

∣

∣RJK
∣

∣SKlK
〉

= i

√

Γn
lK
(S ′

K)
√

Γn
lK
(SK)

E −EK + iΓK/2
ei(δlK (S′

K
)+δlK (SK)) − 2ieiδlK (SKS′

K
) sin δlK (SKS

′
K)

(12)
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where EK , ΓK , and Γn
lK

are the energy, the total width, and the partial neutron width of

the K-th nuclear compound resonance, E is the neutron energy, and δlK is the potential

scattering phase shift. For p-wave resonances we keep only the resonance term, because for

low energy neutrons δl ∼ (kR0)
2l+1 (where R0 is nucleus radius), and, as a consequence, the

contribution from p-wave potential scattering is negligible.

Now, following the definition in Eq.(3), one can obtain the frequency of neutron spin

rotation due to the pseudomagnetic field for a nuclear target with a single element as

ωP =
2πN~

Mn
Re (f 1

2

− f− 1

2

). (13)

One can see that for the case of s-wave neutron scattering on the vector polarized target,

the difference of the amplitudes in Eq.(13) is

f 1

2

− f− 1

2

=
i

2k

2I

2I + 1

(

F
I+ 1

2

I+ 1

2
I+ 1

2
0
− F

I− 1

2

I− 1

2
I− 1

2
0

)

. (14)

For the case of very slow neutrons one can neglect the resonance term contribution (the first

term in Eq.(12)) to the R-matrices in the above equation. Then the R-matrix can be written

in terms of the neutron scattering lengths a± for spin orientations parallel and antiparallel

to the direction of nuclear polarization as

〈(

I ± 1

2

)

0

∣

∣

∣

∣

RI± 1

2

∣

∣

∣

∣

(

I ± 1

2

)

0

〉

= −2ika±, (15)

which gives us the well known expression [11] for the pseudomagnetic frequency for thermal

neutrons

ωP =
4πN~

Mn

I

(2I + 1)
(a+ − a−). (16)

For the low energy resonance region we need to take into account not only potential scatter-

ing, but also the contributions from each resonance. Thus, for example, with the presence

of s-wave resonances with total spins J = I ± 1/2, the pseudomagnetic frequency becomes

neutron energy dependent and is given as

ωs
P =

4πN~

Mn

I

(2I + 1)

(

a+ − a− −
∑

K, lK=0

Γn
K

2k

(E − EK)

(E − EK)2 + (ΓK/2)2
βK

)

, (17)

βK =







1 (JK = I + 1
2
)

−1 (JK = I − 1
2
)

(18)
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where the subscripts ± for resonance parameters corresponds to resonances with total spins

J = I ± 1/2, respectively. One can see that the pseudomagnetic frequency has a a sharp

oscillation with the sign changing at the position of each s-wave resonance [16].

For the case of p-wave resonances the corresponding difference of amplitudes in Eq.(13)

is

f 1

2

− f− 1

2

= (19)

=







































0 (J = I − 3
2
)

−3i
k

I
(2I + 1)2

(

(2I − 1)F J
I− 1

2
I− 1

2
1
+ 2

√
2I − 1√
I + 1

F J
I− 1

2
I+ 1

2
1
+ 1

I + 1
F J
I+ 1

2
I+ 1

2
1

)

(J = I − 1
2
)

−3i
k

I
(2I + 1)2

(

2F J
I− 1

2
I− 1

2
1
− 2 2I−1√

I(2I+3)
F J
I− 1

2
I+ 1

2
1
− (5 + 4I)(I + 1)

2I + 3 F J
I+ 1

2
I+ 1

2
1

)

(J = I + 1
2
)

3i
k

I
(2I + 3)(I + 1)

F J
I+ 1

2
I+ 1

2
1

(J = I + 3
2
)

which leads to the pseudomagnetic frequency from p-resonances

ωp
P =

6πN~

Mnk

I

(2I + 1)

∑

K, lK=1

γK
E − EK

(E − EK)2 + (ΓK/2)2
(20)

γK =























































































0 (JK = I − 3
2
)

1
2I + 1

(

(2I − 1)Γn
K(I − 1

2
)

+2
√

2I − 1
I + 1

√

Γn
K(I +

1
2
)
√

Γn
K(I − 1

2
)

+2Γn
K(I +

1
2
)
)

(JK = I − 1
2
)

1
2I + 1

(

2Γn
K(I − 1

2
)

−2
√

2I − 1
I(2I + 3)

√

Γn
K(I +

1
2
)
√

Γn
K(I − 1

2
)

−5 + 4I(I + 1)
2I + 3 Γn

K(I +
1
2
)

)

(JK = I + 1
2
)

− 2I + 1
(2I + 3)(I + 1)

Γn
K(I +

1
2
) (JK = I + 3

2
)

(21)

It should be noted that the signs of the amplitudes of the neutron decay widths
√

Γn
K(I ± 1

2
)

must be obtained from experiments. This expression looks complicated; however, since p-

wave resonances are very weak in low energy region, usually only the closest resonance

contribution needs to be taken into account. Therefore, at most three terms in the above

expression will actually contribute to p-wave dependent part of the pseudomagnetic fre-

quency. Moreover, for the case of TRIV searches only resonances with J = I − 1/2 and

J = I + 1/2 are of interest, since only these resonances can be mixed with s-resonances

(which have spins J = I − 1/2 and J = I + 1/2) by weak and TRIV interactions. One
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can see also that in contrast to s-wave resonances this pseudomagnetic frequency depends,

in general, not on total neutron widths, but on the partial neutron widths for different

spin channels. (For the relation of the spin channel formalism with the spin-orbital scheme

formalism see Appendix B.)

Up to now we considered the case of pure vector polarized mono isotopic target. Based

on the coherent nature of the pseudomagnetic effect, it is easy to generalized all the above

expressions for the case of a composite target with an arbitrary polarization. Thus, for

composite (multi isotope) target, the total pseudomagnetic frequency is a linear sum of

frequencies from all isotopes presented in the target. The case of arbitrary polarization of

each isotope is accounted by a summation of differences of amplitudes of Eq.(11) taken with

the corresponding weights w(MI) for each spin projection quantum number MI , which is the

weight in the density operator used for the description of the general polarization in terms

of the density polarization matrix. Therefore, the resulting pseudomagnetic frequency ω∗
P

can be written as [11]

ω∗
P = ωP

1

I

∑

MI

w(MI)MI . (22)

It should be noted that, in Eqs.(19) and (21), there are no contributions from the reso-

nance with a total spin J = I − 3/2, but there is a contribution with J = I + 3/2. This

asymmetry simply reflects the fact that we consider the case with a pure vector polarization

of the target, which corresponds to MI = I. For the case of mixed target polarization with

a fractional population of the target nuclear level of MI = −I, the resonance with a spin

J = I − 3/2 can also lead to pseudomagnetic precession due to corresponding difference of

amplitudes

f 1

2

− f− 1

2

=
3i

k

I

(2I + 3)(I + 1)
F J
I− 1

2
I− 1

2
1
. (23)

However, as it was mentioned above, these resonances cannot lead to TRIV effects.

III. PSEUDOMAGNETIC EFFECTS IN LANTHANUM ALUMINATE

Let us consider the application of the present formalism to the pseudomagnetic effect in

lanthanum aluminate crystals. Since a very large parity violating effect was observed on

139La in the vicinity of the 0.734 eV resonance [18–21], this isotope looks like a promising

target for a search of for TRIV effects in nuclei [1]. 139La nuclei can be polarized in lanthanum
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aluminate crystals with currently experimentally achieved value of 139La polarization [22, 23]

of 47.5%.

Since we do not know partial neutron widths for the p-wave resonance, we describe the

ratio xs =
√

Γn
p(I − 1

2
)/
√

Γn
p(I − 1

2
) + Γn

p(I +
1
2
) (see Appendix B) using a parameter α, such

that xs = sinα. Fig. 1 shows the pseudomagnetic field in the 100% polarized lanthanum

target as a function of neutron energy in the vicinity of p-wave resonance for α = 0, α = π/4,

α = −π/4, and α = π/2.

FIG. 1. (Color online) Pseudomagnetic field in the fully polarized lanthanum target for α = 0

(solid line), α = π/4 (dashed line), α = −π/4 (dashed-dotted line), and α = π/2 (dotted line).

Assuming that initial neutrons are polarized perpendicular to the quantization axis z and

along the axis x, we can calculate the neutron polarization Px (an expectation value of the

spin projection operator) as a function of the propagation distance L in the target [11, 16]

Px(L) =
cos
(

ωPL
vn

)

cosh
(

ω′L
vn

) , (24)

where vn is neutron velocity and

ω′ =
2πN~

Mn
Im (f 1

2

− f− 1

2

) (25)

is the imaginary part of the pseudomagnetic frequency, which is related to neutron absorbtion

in the target. For the case of a La target with the parameter α = 0 and for neutron energy

of 0.734 eV, the polarization as a function of L is shown in Fig. 2. One can see that the

value of the neutron polarization is gradually decreasing due to neutron absorbtion. Fig. 3

shows the polarization as a function of the neutron energy at L = 0 cm (solid line), L = 2
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FIG. 2. (Color online) Polarization of 0.734 eV neutrons in the fully polarized lanthanum target

as a function of the propagation distance L.

FIG. 3. (Color online) Neutron polarization in the fully polarized lanthanum target as a function

of neutron energy at L = 0 cm (solid line), L = 2 cm (dashed line), L = 4 cm (dashed-dotted line),

and L = 6 cm (dotted line).

cm (dashed line), L = 4 cm (dashed-dotted line), and L = 6 cm (dotted line), which clearly

demonstrate the energy dependance of the pseudomagnetic effect.

For the case of LaAlO3 we need also to include the pseudomagnetic field from polarized

Al. Then, assuming a pure vector 100% polarizations for both 139La and 27Al nuclei, the

calculated pseudomagnetic fields in the LaAlO3 target for α = 0, α = π/4, α = −π/4, and
α = π/2 are shown in Fig. 4.

From the above pictures we can see that pseudomagnetic fields of La and Al in the vicinity

of the La p-wave resonance are oriented in opposite directions. This demonstrates that, in

principle, one can essentially reduce the pseudomagnetic field in a compound by choosing an

appropriate combination of the elements with opposite directions of pseudomagnetic fields.

Here we discuss the case of LaAlxX1−xO3 where Al is partially replaced by the element X.
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FIG. 4. (Color online) Pseudomagnetic field in fully polarized LaAlO3 target for α = 0 (solid line),

α = π/4 (dashed line), α = −π/4 (dashed-dotted line), and α = π/2 (dotted line).

TABLE I. The replacement fraction x for the cancelation of the pseudomagnetism in LaAlxX1−xO3

at the thermal neutron energy.

Element I Abundance (a+ − a−)[fm] x

139La 7/2 0.9991 6.9 -

27Al 5/2 1 0.52 -

45Sc 7/2 1 -12.08 0.59

59Co 7/2 1 -12.79 0.56

Table I shows the replacement fraction x for X=45Sc and X=59Co to cancel the pseudomag-

netic field of 139La. It should be noted that the cancelation is calculated only at the thermal

neutron energy neglecting all resonance contributions. In general, it depends strongly on the

neutron energy. As we can see from this table, for example, the La and Al pseudomagnetic

fields are parallel at the thermal neutron energy but have an opposite directions in the reso-

nance region (see Figs. (4) and (1)). It should be also noted that the additional absorption

with the replacement of Al should be carefully considered in the design of the experiment.

IV. CONCLUSIONS

The presented study of the pseudomagnetic spin rotation for the propagation of polarized

neutrons through polarized targets shows the importance of a multi resonance description

of the effects. The general theoretical framework considered in this paper can be used for

the analysis of pseudomagnetic effects in any experimental setup (see, for example [1–10]
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and references therein) for a search for TRIV in neutron scattering. We show that the

effective pseudomagnetic field has a noticeable energy dependence in the vicinity of a p-

wave resonance and it is rather sensitive to target structure, to the polarization pattern

of different nuclei in the target, and to the values of partial neutron widths. Therefore,

by changing the composition materials of the target and by applying an external magnetic

field, it is possible to reduce the effect of the pseudomagnetic field in the given interval of the

neutron energy for a particular target. The partial neutron widths have been measured only

by using angular distribution measurements in neutron radiative capture. The sensitivity of

the pseudomagnetic field to the values of the partial neutron widths gives a new method to

measure them in the neutron transmission through polarized targets.
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Appendix A: A general form for the difference of p-wave amplitudes

The general formula for the difference of p-wave amplitudes amplitudes for a pure vector

polarized target can be obtained fron Eq.(10). Then, choosing the direction of the target

polarization along the axis z and the momentum direction along the vector ~n(θ, φ) we obtain

f 1

2

− f− 1

2

= (A1)

=































A
−3/2
−− F J

I− 1

2
I− 1

2
1

(J = I − 3
2
)

A
−1/2
−− F J

I− 1

2
I− 1

2
1
+ A

−1/2
−+ F J

I− 1

2
I+ 1

2
1
+ A

−1/2
++ F J

I+ 1

2
I+ 1

2
1

(J = I − 1
2
)

A
1/2
−−F

J
I− 1

2
I− 1

2
1
+ A

1/2
−+F

J
I− 1

2
I+ 1

2
1
+ A

1/2
++F

J
I+ 1

2
I+ 1

2
1

(J = I + 1
2
)

A
3/2
++F

J
I+ 1

2
I+ 1

2
1

(J = I + 3
2
)

Where the spin-angular coefficients are given by

A
−3/2
−− = − 3i

2k

I − 1

2I + 1
sin2 θ (A2)

, for I > 1,

A
−1/2
−− = −3i

k

I
(

sin2 θ +
√
2I − 1 sin 2θ cosφ+ (2I − 1) cos2 θ

)

(2I + 1)2
, (A3)
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A
−1/2
−+ =

3i

k

I
(

(2I − 3) sin θ cos θ cosφ+
√
2I − 1 (1− 3 cos2 θ)

)

√
I + 1(2I + 1)2

, (A4)

A
−1/2
++ =

3i

2k

I

(I + 1)(2I + 1)2

(√
2I − 1 sin 2θ cos φ+ (I + 1)(2I − 1) sin2 θ − 2 cos 2θ

)

,

(A5)

A
1/2
−− = − 3i

2k

1

(2I + 1)2

[

4I cos2 θ + 2I
√
2I + 1 sin 2θ cosφ

+
(

2I2 + I + 1− 2
√
2I + 1

√
I cos 2φ

)

sin2 θ + 2
√
I sin 2θ cosφ

]

, (A6)

A
1/2
−+ = − 3i

2k

1

(2I + 1)2
√
2I + 3

[

−4
√
I(2I − 1) cos2 θ

+ 2(2I − 1)
(√

2I + 1 cos 2φ+
√
I
)

sin2 θ (A7)

+
{√

I
√
2I + 1(2I − 3)− (6I − 1)

}

sin 2θ cos φ
]

,

A
1/2
++ =

3i

k

1

(2I + 1)2(2I + 3)

[

I(4I2 + 4I + 5) cos2 θ

+
(√

2I + 1(2I2 + I + 1)− (2I − 1)
√
I
)

sin 2θ cosφ

+
(

I(2I − 1)− 2
√
I
√
2I + 1 cos 2φ

)

sin2 θ
]

, (A8)

A
3/2
++ =

3i

2k

1

(I + 1)(2I + 3)

[

2I cos2 θ

+

{

I (2I2 + 5I + 5)

2I + 1
+

(
√

3(I + 1)

(2I + 1)
−
√
I + 1

√
2I + 3

)

cos 2φ

}

sin2 θ

+

(

2
√
I + 1−

√
2I + 3(I + 1)−

√

3

2I + 1

)

sin 2θ cos φ

]

.

(A9)
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Appendix B: Relations between different spin-coupling schemes

The relation between two spin coupling schemes ~J = (~I + ~s) + ~l and ~J = (~s + ~l) + ~I is

given by

〈((

l,
1

2

)

j, I

)

J

∣

∣

∣

∣

(

l,

(

1

2
, I

)

S

)

J

〉

= (−1)l+I+j+S
√

(2j + 1)(2S + 1)







l 1
2

j

I J S







, (B1)

where ~S = ~I + ~s and ~j = ~s+~l.

Now, defining

x =

∣

∣

∣

∣

j =
1

2

〉

(B2)

y =

∣

∣

∣

∣

j =
3

2

〉

xs =

∣

∣

∣

∣

S = I − 1

2

〉

ys =

∣

∣

∣

∣

S = I +
1

2

〉

,

one can write for l = 1

xs = (−1)2I+1
√
4I







1 1
2

1
2

I J I − 1
2







x+ (−1)2I
√
8I







1 1
2

3
2

I J I − 1
2







y (B3)

ys = (−1)2I
√

4(I + 1)







1 1
2

1
2

I J I + 1
2







x+ (−1)2I+1
√

8(I + 1)







1 1
2

3
2

I J I + 1
2







y.

Appendix C: Spin-operator representation

Sometimes for the description of neutron propagation through a polarized target, it is

convenient to use a spin operator [24, 25]

f̂ = a+ b(~s · ~I) (C1)

whose eigenvalues for J = I ± 1/2 are scattering amplitudes f±1/2. In that case, one can

calculate the coefficients a and b as

a =
1

2I + 1

[

(I + 1)f 1

2

+ If− 1

2

]

b =
2

2I + 1
(f 1

2

− f− 1

2

), (C2)
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with the amplitudes f± 1

2

as given in Eq.(11).
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