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The polarization of direct photons produced in an ultrarelativistic heavy-ion collision reflects the
momentum anisotropy of the quark-gluon plasma created in the collision. This paper presents a
general framework, based on the photon spectral functions in the plasma, for analyzing the angular
distribution and thus the polarization of dileptons in terms of the plasma momentum anisotropies.
The rates of dilepton production depend, in general, on four independent spectral functions, corre-
sponding to two transverse polarizations, one longitudinal polarization, and – in plasmas in which
the momentum anisotropy is not invariant under parity in the local rest frame of the matter – a new
spectral function, ρn, related to the anisotropy direction in the collision. The momentum anisotropy
appears in the difference of the two transverse spectral functions, as well as in ρn. As an illustration,
we delineate the spectral functions for dilepton pairs produced in the lowest order Drell-Yan process
of quark-antiquark annihilation to a virtual photon.

PACS numbers: 25.75.Cj,12.38.Mh,11.10.Wx

I. INTRODUCTION

Direct photons, both real and virtual, are an impor-
tant probe of the dynamics of ultrarelativistic heavy-ion
collisions. An average temperature of the quark-gluon
plasma (QGP) formed in high-energy collisions has been
extracted from the transverse momentum spectrum of di-
rect photons in the range qT ∼ 1-3 GeV [1–3]. Theoret-
ically, measurements of the photon polarization through
the angular distribution of dileptons (l+l−) have been
proposed to provide information on the early stages of
collisions, before the onset of thermalization [4–6]. While
relativistic hydrodynamics provides a successful space-
time description of the later stages of the collision dy-
namics and associated hadronic and leptonic observables
[7], important questions concerning the early dynamics,
such as the degree of thermalization as well as isotropiza-
tion of the QGP, have not been answered either exper-
imentally or theoretically. Recently, Ref. [8] proposed
using the polarization of direct photons as a measure of
the gluon anisotropy in collisions. While measuring di-
rect photon polarization, involving external conversion
to dilepton pairs, is very difficult experimentally, a more
promising approach to is measure polarization of virtual
photons, through the angular distribution of dileptons
produced via internal conversion.

The lowest order mechanism to produce dilepton pairs
is the Drell-Yan process, Fig. 1, in which a quark and
an antiquark annihilate to a virtual photon. The dilep-
ton cross section dσ/dΩ can be parametrized as ∝ 1 +
λ cos2 θ+µ sin 2θ cosφ+(ν/2) sin2 θ cos 2φ, where θ and φ
are the polar and azimuthal angles of one of the dileptons
in the dilepton rest frame measured in the Collins-Soper
reference frame [9, 10]. High-energy pp̄ and pp collisions
at the Tevatron and the LHC have confirmed the leading-
order prediction λ ' 1, µ = ν = 0, for qT <∼ 5 GeV and
invariant dilepton mass Ml+l− ' MZ (see, e.g., [11] and

references therein). The dilepton angular distribution in
In-In collisions has been measured by the NA60 experi-
ment [12] at the CERN-SPS in the primary kinematical
range 0.4 < Ml+l− < 0.9 GeV, in which production of
dileptons by hadronic sources such as π+π− annihilation
dominates Drell-Yan dileptons; the results are consistent
with λ = µ = ν = 0.

FIG. 1: Lowest order Drell-Yan production of a lepton pair.

On the other hand, in ultrarelativistic heavy-ion colli-
sions we expect the momentum-space anisotropy of the
QGP to be detected most readily in dilepton production
in the range 1 GeV < qT < 3 GeV and Ml+l−

<∼ 0.3 GeV
where the excess of direct photons is seen experimentally
[1]. In this paper, we present a general framework for
analyzing the angular distribution of dileptons emitted
from a QGP, which can be used to extract quark and
gluon momentum anisotropies in the collision. The basic
starting point is the photon polarization tensor and as-
sociated spectral function; we analyze the spectral func-
tion in terms of four vectors, two transverse polarization
vectors, a longitudinal polarization vector, and a vector
specifying the momentum anisotropy. Such a decompo-
sition combined with the leptonic tensor describing the
conversion of a virtual photon into a dilepton pair leads
to a general formula relating the momentum anisotropy
of the plasma and the dilepton angular distribution. As
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an illustration, we apply the formalism to virtual photon
emission through the leading-order Drell-Yan process in a
plasma with anisotropic distributions of the Romatschke-
Strickland form [13].1

II. DILEPTON PRODUCTION

Quite generally, the production rate, R, of a dilepton
pair is proportional to the spectral function, ρµν , of the
in-medium photon polarization or self-energy operator,
for momentum ~q and energy q0,

Πµν(~q , z) = e2
∫ ∞
−∞

dq0

2π

ρµν(~q , q0)

z − q0
, (1)

times the squared matrix element Lµν (L for leptons) for
a virtual photon of 4-momentum q to produce a lepton
of 4-momentum p and mass m and an antilepton of 4-
momentum p′, averaged over the spins of the leptons.
Explicitly,

dRl+l−

d3p̄d3p̄′
=

α2

4π4Q4
ρµν(q)Lµν(p, p′) , (2)

with the leptonic tensor,

Lµν(q, s) = 2
(
qµqν − gµνQ2 − sµsν

)
, (3)

where d3p̄ ≡ d3p/2Ep, d
3p̄′ ≡ d3p′/2Ep′ , q = p + p′,

s = p − p′, Q2 ≡ qµqµ > 0, and Q2 + s2 = 4m2 with m
the lepton mass.

The spectral function ρµν(q) is related to the cut, or
imaginary part, of the photon polarization operator, il-
lustrated in Fig 2. Its explicit form in the kinematical

regime q0 � T �
√
Q2 has been previously evaluated

using hard thermal loop effective theory for the isotropic
quark-gluon plasma [15, 16]. The heart of the problem in
this paper is to determine the structure of ρµν(q), to see
how the anisotropy of the gluon and quark distributions
is reflected in the final orientation of the dilepton pair.

FIG. 2: Photon polarization tensor with hard thermal loop
corrections to the quark lines and vertices [15].

1 In the course of writing this paper we became aware of the
work of Friman and collaborators [14] which does not include
the anisotropic terms ρT1 − ρT2 and ρn, but otherwise arrives at
results in agreement with those given here; the approach of these
two treatments of the problems are complementary and will be
discussed in a future joint publication of the two groups.

III. STRUCTURE OF ρµν

In a heavy-ion collision volume, the initial gluon and
quark distributions are anisotropic in momentum space
with a single preferred axis n̂, which we assume to be
along the beam direction [17] (we do not consider at this
point possible multiple anisotropy axes). We define the
four vector nµ to have space component n̂ in the local
rest frame of the matter and time component, n0 = 0,

nµ = (0, n̂) , (4)

so that n2 = −1. We also define, in the local rest frame,
the two transverse polarization vectors

εµi = (0, ε̂i) , (5)

where ε̂1 ≡ (~q × n̂) × ~q/|~q × n̂| and ε̂2 ≡ ~q × n̂/|~q ×
n̂|. These polarization vectors are illustrated in the left
panel of Fig. 3. In addition, we define the longitudinal
polarization vector

εµL ≡
1√
Q2

(|~q |, q0q̂) = (|~̃q |, q̃0q̂) . (6)

where we write q̃µ = qµ/
√
Q2. Note that ε21 = ε22 =

ε2L = −1. The three polarization vectors are individually
orthogonal to qµ: (qε) = 0 (where (ab) denotes the four
vector product of a and b) and together with qµ form an
orthogonal basis obeying;

gµν = q̃µq̃ν − εµ1εν1 − ε
µ
2ε
ν
2 − ε

µ
Lε
ν
L . (7)

q̂

n̂

ps
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zn̂e2~ q̂x^

n̂e1 ~ q̂x(  x   )q̂^
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^

qs

FIG. 3: (Left) Virtual photon polarization vectors ε̂i and
the relative spatial momentum ~s between the lepton and an-
tilepton. (Right) The relative lepton momentum in the plane
transverse to the virtual photon momentum ~q.

Thus the photon spectral function, ρµν , is a sum of
terms of the form

aεµLε
ν
L + bεµ1ε

ν
1 + c(εµ1ε

ν
L + εµLε

ν
1) + dεµ2ε

ν
2 . (8)

There are no terms proportional to qµqν for Q2 6= 0,
since q is a zero eigenvector of ρ; in addition (nε2) = 0,
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so there are no ε2εL terms by symmetry. Since ~n can be
written as the linear superposition, ~n = cos θq q̂+sin θq~ε2,
with θq being the angle between n̂ and q̂, and n0 = 0, we
obtain

nµ = cos θq(q̃
0εµL − |~̃q |q̃

µ) + sin θq ε
µ
1 . (9)

We also introduce the four-vector N µ with the property
(N q) = 0 as,

N µ ≡ q̃0 cos θq ε
µ
L + sin θq ε

µ
1 = nµ − (q̃n)q̃µ, (10)

Thus the εµ1ε
ν
L + εµLε

ν
1 term can be eliminated in favor of

N µN ν , εµ1ε
ν
1 , and εµLε

ν
L. In addition, N 2 = −(1 + (nq̃)2).

The latter term, plus the explicit εµLε
ν
L term in Eq. (8),

can be eliminated using Eq. (7). The photon spectral
function, again with the help of Eq. (7), assumes the
general form

ρµν = εµLε
ν
Lρ

L + εµ1ε
ν
1ρ

T
1 + εµ2ε

ν
2ρ

T
2 +N µN νρn (11)

= −(gµν − q̃µq̃ν)ρL + εµ1ε
ν
1(ρT1 − ρL)

+εµ2ε
ν
2(ρT2 − ρL) +N µN νρn . (12)

The momentum-space anisotropy of the system leads to
the extra ρn term, as well as a difference of ρT1 and ρT2 .

The terms ρn, ρT2 can be extracted directly from
Eqs. (11) and (10) as

ε1µρ
µνεL ν = −q̃ 0 cos θq sin θq ρn , (13)

and

ε2µρ
µνε2 ν = ρT2 , (14)

while ρL is found from

εLµρ
µνεL ν = ρL + (q̃ 0)2 cos2 θq ρn . (15)

Using Eq. (13), we find ρT1 from the trace condition,

ρµµ = −(ρL + ρT1 + ρT2 + (1 + (nq̃)2)ρn) . (16)

When the particle distribution functions are even un-
der parity, so that ~n enters only as a special axis, not
a special direction, the extra ρn term must vanish. To
see this we note that when the distribution functions
are parity invariant, both parity and the transformation
n̂ → −n̂ are independent symmetries, meaning that a
parity transformation keeping ~n fixed is also a symme-
try. But under such a transformation ~εL transforms as a
vector, while ~ε1 transforms as a pseudovector; thus the
mixing of the two directions in ρij , the source of ρn, can-
not occur. For collisions of two identical nuclei, there
should not be a special direction in the local rest frame
of the matter. Below, when we write down the Drell-
Yan rate in the medium in such a situation, we will see
explicitly how this argument is realized. However, for
asymmetric collisions, one expects a non-zero ρn term in
the photon spectral function. In the following, we keep
the ρn term in the general discussions.

The various ρ depend separately on the local q0, q⊥,
and ~q · n̂, where q⊥ is the magnitude of the component of
~q orthogonal to n̂. Or expressed covariantly, they depend
on Q2, (qu), as well as on (qn), where uµ is the 4-velocity
of the local rest frame. Note that (nu) ≡ 0.

We look now at the eigenvalue structure of photon
spectral function. In the local rest frame, in an isotropic
system or for ~q along n̂, the ρn term vanishes and
ρT1 = ρT2 , while for ~q ⊥ n̂ the eigenvectors of ρ are the
εi, with the two eigenvalues, ρT1 and ρT2 . More gener-
ally, in the local rest frame, the eigenvectors of ρµν are
qµ with eigenvalue 0, εµ2 with eigenvalue ρT2 , and two or-
thogonal linear combinations of εµ1 and εµL whose spatial
components lie in the (~q, n̂) plane. In the isotropic limit,
the eigenvector εL has eigenvalue ρL, and ε1 has eigen-
value ρT. In contrast, when the system is anisotropic, the
two eigenfunctions describe propagation in a birefringent
medium with a mixing of the longitudinal (L) and trans-
verse (T) polarizations. Furthermore, as ~q → 0, ρTi − ρL
must vanish as ~q 2, and thus, ρTi = ρL for i = 1, 2.

IV. EMISSION RATE OF DILEPTONS AND
PHOTONS

To calculate the production rates of dilepton pairs we
first note that quite generally, (sq) = 0, so that

1

2
ρµνLµν = −(Q2ρµµ + sµρ

µνsν) (17)

= Q2
(
ρT1 + ρT2 + ρn

)
+ 4m2ρL

−s21(ρT1 − ρL)− s22(ρT2 − ρL)

+((qn)2 − (sn)2)ρn , (18)

where we use the identity Q2 + s2 = 4m2, with m being
the lepton mass, and we define si ≡ (sεi) (i = 1, 2) to
be the components of ~s transverse to ~q in the local rest
frame: ~s⊥ = s1~ε1 + s2~ε2.

Equation (18) gives the dilepton production rate in
terms of the projections of s along the two transverse
polarizations and n. The s21 and s22 terms contain the
anisotropy produced by transverse virtual photons, while
from Eq. (9), we see that the s2z term arises from the mix-
ing of longitudinal and transverse (~ε1) virtual photons.
As noted above, for symmetric collisions with parity in-
variance in the local matter rest frame, ρn should van-
ish so then the final term Eq. (18) is absent. To bring
out the anisotropic terms, we write s1 = |~s⊥| cosφs, and
s2 = |~s⊥| sinφs; the squared matrix elements (18) be-
come

1

2
ρµνLµν = 2Q2ρ̄T +

(
s2⊥ + 4m2

)
ρL

+
(
Q2 + (qn)2 − (sn)2

)
ρn

−|~s⊥|2
(
ρ̄T + δρT cos 2φs

)
, (19)

where ρ̄T ≡ (ρT1 + ρT2 )/2 and δρT ≡ (ρT1 − ρT2 )/2. The
cos 2φs as well as the ρn terms are anisotropic. For
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massless dileptons in the absence of ρn, the right side of
Eq. (19) becomes 2Q2ρ̄T + |~s⊥|2(ρL − ρ̄T − δρT cos 2φs).
With θs the angle between ~q and ~s, we see that this ex-
pression is of the form ∝ 1+λs cos2 θs+µs sin 2θs cosφs+
(νs/2) sin2 θs cos 2φs, with

λs =
ρ̄T − ρL

ρ̄T(1− 2s20/~s
2) + ρL

,

νs =
−2δρT

ρ̄T(1− 2s20/~s
2) + ρL

, (20)

and µs = 0. We note the similarity to the angular distri-
bution fitted in the NA60 analysis [12], where the angles
are defined in the Collins-Soper frame; as noted above,
NA60 finds when averaging over all lab directions of the
virtual photons, that λ, µ, and ν are consistent with zero.

With the Jacobian from the variables p and p′ to Q,
~s⊥, rapidity y and ~q

T
,

d3p̄ d3p̄′ =
1

2

dQ2 dy d2qT d
2s⊥√

Q2(Q2 − s2⊥ − 4m2)
, (21)

we finally obtain the dilepton emission rate

dRl+l−

dQ2d2s⊥dyd2qT
=

α2

4π4Q4

ρµνLµν/2√
Q2(Q2 − s2⊥ − 4m2)

,

(22)

where ρµνLµν/2 is given by Eq. (19). As seen in Fig. 3,
the components (sn) and (qn) are not independent; their
dependence on the experimental variables, Q2, s⊥, y, and
q
T

is algebraic (but too complicated to quote here).
It is instructive to connect the present formalism for

virtual photons to the calculation of the rate for real
photons, Q2 = 0 including possible polarization, as con-
sidered by [18, 19] and [8]. To do so, we rewrite Eq. (12)
as

ρµν = −(gµνQ2 − qµqν)
ρL

Q2
+ εµ1ε

ν
1(ρT1 − ρL)

+εµ2ε
ν
2(ρT2 − ρL) + (Q2N µ)(Q2N ν)

ρn
Q4

, (23)

from which we see that as Q2 → 0, ρL vanishes as Q2

and ρn vanishes as Q4. Thus the rate to produce a real
photon with polarization εµ is

dRγ
d3q̄

=
α

2π2
ε∗µρ

µνεν ,

=
α

2π2

(
ρ̄T + (|(εε1)|2 − |(εε2)|2)δρT

)
=

α

2π2

(
ρ̄T + δρT cos 2φε

)
, (24)

where (εε1) ≡ − cosφε, (εε2) ≡ − sinφε, and d3q̄ =
d3q/2|~q|. The anisotropy for real photons arises entirely
from the difference, δρT, of ρT1 and ρT2 : the spectral func-
tion ρn does not enter.

V. DRELL-YAN PROCESS IN THE MEDIUM

To give a specific illustration of the present formalism
we focus on the leading-order Drell-Yan production of
dilepton pairs where the squared matrix element for a
quark and antiquark to produce a virtual photon is

Hµν(q, t) = 2(qµqν − gµνQ2 − tµtν) , (25)

with t = k− k′ the difference of the four momenta of the
two incident quarks, k and k′.

In a heavy-ion collision, the anisotropy in the Drell-Yan
process arises only from the distributions of the initial
quarks and antiquarks. The imaginary part of the lowest-
order photon polarization tensor in a heavy-ion collision
is

1

2
ρµν(q) = (qµqν − gµνQ2)〈1〉 − 〈tµtν〉 , (26)

where

〈X〉 = Nc
∑
f

e2f
4π2

∫
d3k̄d3k̄′ Xδ(4)(q − k − k′)f~k f̄~k ′ ,

(27)

with the sum being over flavors, ef denoting the quark
charge; +2/3 for u-quarks, −1/3 for d-quarks, etc., and
Nc = 3 is the number of colors. The generally anisotropic
quark and antiquark distributions are denoted by f and
f̄ , respectively.2

In this notation, the coefficients in the spectral distri-
bution function are obtained by comparing Eqs. (11) and
(26):

ρT1 + sin2 θq ρn = 2Q2〈1〉 − 2〈(ε1t)2〉 ,
ρT2 = 2Q2〈1〉 − 2〈(ε2t)2〉 ,

ρL + (q̄0)2 cos2 θq ρn = 2Q2〈1〉 − 2〈(εLt)2〉 , (28)

with

ρn = − 4

q̄0 sin 2θq
〈(ε1t)(εLt)〉 . (29)

When the product of the distribution functions is invari-
ant under parity as well as n̂ → −n̂, ρn must vanish,
as argued after Eq. (16). Explicitly, the orthogonality

(qt) = 0 implies (εLt) = −t0/|~̃q |, so that in Eq. (29),
〈ε1t)(εLt)〉 ∼ ~ε1 ·〈t0~t 〉. But 〈t0~t 〉 can at most be propor-
tional to a linear combination of ~q and n̂, and if n̂→ −n̂ is

2 The photon polarization operator is not that for an equilibrium
system at finite temperature, owing to the fact that the electro-
magnetic sector in a heavy-ion collision never has adequate time
to come into thermal equilibrium. The inverse processes in which
a dilepton pair is absorbed, would lead to the distributions en-
tering as f~k f̄~k′ + (1 − f~k)(1 − f̄~k′ ) = 1 − f~k − f̄~k′ in the thermal
equilibrium photon spectral function in full thermal equilibrium.
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an invariance, the n̂ term must vanish; then since ~q·~ε1 = 0
one has ρn = 0. In this case, Eq. (28) implies

δρT = −〈(~ε1 · ~t )2 − (~ε2 · ~t )2〉 = −3

2
〈t2z − ~t 2/3〉 sin2 θq,

(30)

which has the structure of a second spherical harmonic,
and will thus select out the second spherical harmonic
anisotropy in the particle distribution functions.

A simple approach to describing the anisotropy of the
distributions is to assume an angular dependent temper-
ature, so that, e.g., the quark distribution of massless
quarks becomes (with the chemical potential suppressed)

f~k =
1

eβ(k̂)k + 1
. (31)

The parametrization of the angular dependent inverse

temperature given in Ref. [13] takes the form β(k̂) =
β0(1 + ξ cos2 θk)1/2 where θk is the angle between the

quark momentum ~k and the anisotropy (z) axis. The
full calculation of the Drell-Yan dileptons in an ultra-
relativistic heavy-ion collisions with such an anisotropic
temperature has been given by Strickland et al. [20–23].

To illustrate, we expand the quark distribution func-
tions, assumed to be of the form Eq. (31), to lowest order
in the angular dependence of the temperature, writing

f~k ' f
0
k − f0k (1− f0k )(β(k̂)− β0)k , (32)

where f0k is the distribution with β(k̂) = β0. We see then
that for weak anisotropy,

δρT ∼ −3

2
〈t2z − ~t 2/3〉 ∼ −β2 (33)

where β2 = 1
2

∫ 1

−1 d(cos θ)β(k̂)P2(cos θ) = β0ξ/15 is the
second spherical harmonic component of the tempera-
ture.

The terms in the photon spectral function ρµν be-
yond the lowest order Drell-Yan contribution are found
from the imaginary part of the polarization diagram in
Fig. 2 with hard thermal loop corrections and distribu-
tion anisotropies [24].

In practice, in order to obtain the dilepton spectra,
one should integrate the spectral function, as given by
Eq. (27), over the space-time volume of the collision
vlume with an underlying model for the dynamics of
ξ(x) and β0(x) such as viscous [25] or anisotropic hydro-
dynamics [26]. Previous work has shown that the high-
energy dilepton rate computed in this manner is sensitive
to the assumed initial momentum-space anisotropy of the
plasma [23] and that the momentum-space anisotropy of
the quark-gluon plasma induces suppression of forward
dilepton production [22].

VI. OUTLOOK

In this paper we have formulated the general struc-
ture of the spectral functions that describe the rate of
virtual photon (dilepton) production in a heavy ion col-
lision that is locally anisotropic in momentum space. As
we have demonstrated, momentum-space anisotropy in-
duces new angular dependence in the transverse struc-
ture functions and, in the case of a non-parity symmetric
momentum-space anisotropy, a new structure function
ρn appears. As an example, we delineated the formal-
ism for the leading-order Drell-Yan process. The struc-
ture derived is not limited simply to production of virtual
photons from a quark-gluon plasma, but encompasses all
virtual photon production processes in collisions.

With this full framework in place for relating polariza-
tion information in dilepton production to the underly-
ing physical mechanisms, the next step will be to gener-
alize prior calculations for real photon production in an
anisotropic quark-gluon plasma [18, 19]; also [8]. A forth-
coming publication will present a detailed calculation of
the polarization of dileptons to order αs, the strong inter-
action fine structure constant, including Compton scat-
tering of a gluon on a quark or antiquark to a virtual
photon, and annihilation of a quark-antiquark pair into
a gluon and virtual photon [24]. In the computation of
the spectral functions, we include space and time depen-
dent anisotropic quark, antiquark, and gluon distribu-
tions, hard thermal loops, and soft scale processes, with
the space-time evolution described by full 3+1 dimen-
sional anisotropic hydrodynamics.
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