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Predictions for the interaction part of the symmetry energy obtained from microscopic approaches
based upon different foundations are reviewed and discussed in the light of recent updated constraints
obtained from reaction observables in the ASY-EOS experiment at GSI. The discussion is then
extended to the neutron skin thickness in 208Pb and its relation to the density derivatives of the
symmetry energy at and below saturation density. With regard to the latter, the main point is to
demonstrate the importance of proper consideration of the theoretical uncertainties of microscopic
predictions in order to guide phenomenological analyses.

I. INTRODUCTION

The importance of the symmetry energy for the properties of neutron-rich systems cannot be overstated. At the
same time, knowledge of this quantity remains limited, particularly its density dependence above saturation. The
issue of whether a “soft” or “stiff” density dependence of the symmetry energy is more consistent with available
constraints continues to be discussed extensively in the literature, see, for instance, Refs. [1–3] and references therein.

Constraints are typically extracted from heavy ion collision observables, although nuclear data and other types of
experiments have been used as well [4]. The neutron-proton elliptic flow ratio and difference are among the observables
found to be sensitive to the density dependence of the symmetry energy [5, 6]. Comparison of data from the FOPI-
LAND experiment [7, 8] with transport model calculations [9–11] suggested a softer-than-linear to linear term for the
potential energy part of the symmetry energy, when the latter is parametrized as a power law.

In a recent paper [12], results from the ASY-EOS experiment at GSI were reported. The measured observables are
the directed and elliptic flows of neutrons and light charged particles in the reaction 197Au + 197Au at 400 MeV per
nucleon. The findings confirm the moderately soft to linear density dependence from the FOPI-LAND experiment,
but in Ref. [12] the authors are also able to extract a more stringent constraint up to twice normal density. Naturally,
when new or updated constraints become available, comparison with microscopic calculations is more timely than ever.
Within that spirit, modern predictions of the symmetry energy based on chiral effective field theory (EFT) [13, 14]
are reviewed and discussed.

It is not among the paper’s scopes to give a detailed review of how nuclear forces are derived within chiral EFT.
Comprehensive review articles can be consulted for that purpose (see, for instance, Ref. [15] and references therein).
Only the main features and strength of chiral EFT will be recalled: it is firmly based on the symmetries of low-energy
quantum chromodynamics (QCD), and the predictions can be improved in a systematic way. For these reasons, at
this time chiral EFT is the most fundamental and potentially model independent approach to developing nuclear
forces.

For comparison, more “traditional” approaches are also included in this study, such as those based on meson-
theoretic or phenomenological nucleon-nucleon (NN) potentials and three-nucleon forces (3NF). These approaches,
which were particularly popular in the 1990’s and are still frequently used today, follow a very different philosophy.
Thus, their inclusion in the comparison can be both interesting and insightful.

This paper is organized in the following way: In the next section, some basic phenomenological features of the
equation of state (EoS) of isospin-asymmetric matter and the symmetry energy will be reviewed. I will then proceed
to describe briefly how the various theoretical EoS used here are generated. In Section III, the density dependence of
the potential part of the symmetry energy as predicted by the various approaches under consideration are discussed
and compared specifically in the light of the recent constraints. At this point the study is extended to theoretical
predictions of the neutron skin thickness in 208Pb in comparison with those extracted using the recent symmetry
energy constraints. The main point of this discussion, as well as of the paper, is to demonstrate the importance of
including microscopic predictions when correlating the density dependence of the symmetry energy (namely, its density
derivative) to the neutron skin thickness. More precisely, I wish to address the following questions: How consistent
with the constraints are the theoretical predictions? How do consistencies or inconsistencies impact the possibility to
constrain the density dependence of the symmetry energy at saturation from an accurate knowledge of the neutron skin
in 208Pb?

A brief summary and conclusions are contained in Sect. IV
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II. THE EQUATION OF STATE OF ASYMMETRIC NUCLEAR MATTER AND THE SYMMETRY
ENERGY.

A. Simple facts and phenomenology

Neglecting powers beyond α2, where α is the neutron asymmetry parameter defined in terms of the neutron and
proton densities, ρn and ρp, as (ρn − ρp)/(ρn + ρp), the EoS of isospin-asymmetric nuclear matter is written as

e(ρ, α) = e(ρ, 0) + esym(ρ)α2 , (1)

with esym(ρ) the symmetry energy. In this approximation, the symmetry energy is then

esym(ρ) = e(ρ, 1)− e(ρ, 0) . (2)

The well-known expression for the average non-relativistic kinetic energy of nucleons (with mass m) in nuclear matter
at some density corresponding to a Fermi momentum kF is elementary to derive and can be written as

T =
3

10

k2F
m

. (3)

Therefore, the kinetic contribution to the symmetry energy is

ekinsym(ρ) = e(ρ, 1)kin − e(ρ, 0)kin =
3

10m
[(knF )2 − k2F ] , (4)

where the neutron Fermi momentum in neutron matter, knF , is related to the Fermi momentum in symmetric nuclear

matter at the same density as knF = 21/3kF . In terms of the Fermi energy, EF , one can write

ekinsym(ρ) =
3

5
EF (22/3 − 1) . (5)

Expressing the Fermi energy in terms of ρ/ρ0, where ρ0 is about 0.16 fm−3, one finds

ekinsym(ρ) = T0

( ρ

ρ0

)2/3

, (6)

where the value of the coefficient T0 can be easily verified to have a value around 12-13 MeV. The parametrization
used in the analysis of Ref. [12] is

esym(ρ) = 22 MeV
( ρ

ρ0

)γ
+ 12 MeV

( ρ

ρ0

)2/3

, (7)

which fixes the symmetry energy at ρ0 to be 34 MeV. The power law coefficient, γ, is reported as 0.72 ± 0.19. From
the FOPI-LAND experiment [7, 8], the same coefficient was found to be 0.9 ± 0.4.

B. Theoretical input

1. The chiral EoS

First, I obtain the symmetry energy from the microscopic EoS of symmetric nuclear matter and the one of pure
neutron matter based on chiral EFT and calculated as described in Ref. [16]. The predictions at next-to-next-to-
next-to-leading order (N3LO) and at next-to-next-to-leading order (N2LO) are based on high-precision chiral nucleon-
nucleon (NN) potentials at the respective orders [15, 18] together with the leading 3NF, which is treated as in Ref. [19].
After subtracting the kinetic energy (as given in Eq. (5)) from the symmetry energy, the microscopic values of the
potential energy part are fitted with a power law, V0(ρ/ρ0)γ , where, for each of the models being considered, ρ0 is the
actual saturation density for that particular EoS.

One of the important features of chiral EFT is the possibility to estimate the truncation error at each order of the
chiral expansion. The truncation error at order n is a measure of what is left out when the chiral expansion terminates
at order n. If the prediction for observable X at order n+ 1 is known, the truncation error at order n is

εn = |Xn+1 −Xn| , (8)
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FIG. 1: (Color online) The EoS of symmetric matter (left side) and of neutron matter (right side) for the theories and models
considered in this study.

which is the same as the (n + 1)th correction. On the other hand, if Xn+1 is unknown, the truncation error can be
estimated to be

εn = |Xn −Xn−1|
Q

Λ
, (9)

where Q is a momentum typical for the system under consideration (or the pion mass), and Λ is the cutoff parameter
of the regulator, which is 450 MeV for the chiral potentials applied in the present work.

In the following, the error is estimated according to Eq. (9), with Q taken to be the Fermi momentum corresponding
to the appropriate density of nucleonic matter. A different prescription is proposed in Ref. [17]. Since estimating the
truncation error at N3LO requires the predictions at N2LO, those will be shown as well. (N4LO predictions are not
yet available.) Note that the N2LO calculation is complete, in the sense that both the two-nucleon force (2NF) and
the 3NF are consistently at next-to-next-to-leading order. This is not the case, though, for the N3LO calculation,
where the 3NF at N2LO is employed. Efforts are in progress to remove this inconsistency.

2. Relativistic meson-theoretic potentials and the Dirac-Brueckner-Hartree-Fock approach to the equation of state

The relativistic approach to nuclear matter, particularly the Dirac-Brueckner-Hartree-Fock (DBHF) approximation,
was developed in the 1980’s [20–23]. The starting point was the observation that the DBHF theory, unlike conventional
Brueckner theory, had the inherent ability to describe successfully the saturation properties of nuclear matter, that is,
saturation energy and density of the EoS. The DBHF method describes the nuclear mean field in terms of strong scalar
and vector components that, together, account for the binding of nucleons as well as the large spin-orbit splitting seen
in nuclear states. The characteristic feature of the DBHF approach is the fact that important 3NF are effectively
taken into account through the density dependence of the nucleon spinors. This effective 3NF, which originates from
virtual excitations of nucleon-antinucleon pairs and is, for that reason, known as “Z-diagrams”, provides a powerful
saturating effect and, thus, an important missing mechanism in conventional Brueckner-Hartree-Fock calculations.
For recent reviews, including considerations of isospin asymmetry, see Refs. [24, 25].

3. Variational approaches

Alternatively, the energy per particle in nuclear matter can be obtained combining the 2NF with meson-theoretic or
phenomelogical 3NF to generate the additional repulsion essential to improve saturation. Nonrelativistic calculations
of symmetric and neutron matter based on variational methods [26] and phenomenological 2NF and 3NF have been
used extensively. To also represent this point of view, I will include predictions [27] based on popular phenomenological
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FIG. 2: (Color online) As in Fig. 1, but for the symmetry energy.
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FIG. 3: (Color online) Microscopic predictions of the interaction part of the symmetry energy at N2LO and N3LO of chiral
perturbation theory, and corresponding power-law fits. See inset for the definition of the various curves.

2NF and 3NF from the 90’s, namely the Argonne v18 NN potential [28] together with the Urbana model IX [29] 3NF.
These will be referred to as the “APR” model.

III. PREDICTIONS AND DISCUSSION

This section opens with an overview of the energy per particle in symmetric nuclear matter (SNM) and pure neutron
matter (NM) for the theories and models included in this investigation, see Fig. 1. In Fig. 2, the corresponding values
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FIG. 4: (Color online) Left: The potential part of the symmetry energy as predicted with the DBHF calculation compared
with a power-law fit. Right: The same, but for the APR model [27].
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FIG. 5: (Color online) Microscopic predictions of the interaction part of the symmetry energy at N3LO with EFT truncation
error. The shaded area shows the empirical constraint from Ref. [12].

for the symmetry energy is displayed, revealing considerable model dependence, especially at and above saturation.
Turning attention to the potential energy part of the symmetry energy, in Fig. 3 I display this quantity as obtained

from microscopic calculations at N2LO (solid green line) and at N3LO (solid red line), together with approximations
given by functions of the form

epotsym = V0(ρ/ρ0)γ , (10)

dashed green for N2LO and dashed red for N3LO. The fit is done by searching for the single parameter γ, setting V0
equal to the microscopically predicted value at ρ0. The density range considered in the fit covers approximately from
0.03 to 0.33 fm−3, with all points carrying the same weight.
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Theoretical γ γ (reduced density range)

approach

N2LO 0.60 ± 0.05 0.58 ± 0.05

N3LO 0.55 ± 0.03 0.55 ± 0.03

DBHF 0.55

APR 0.79

TABLE I: Exponent of the power law, V0

(
ρ
ρ0

)γ
, fitted to each of the predicted interaction symmetry energies. Note that the

chiral results are reported with their truncation error.

Some additional comments are in place at this point concerning the density range used for the fit. Of course there
are limitations to the reliability of chiral predictions. Around 2ρ0, the neutron Fermi momentum in neutron matter
is about 2.1 fm−1 or 420 MeV, close to the cutoff of 450 MeV. However, the Fermi momentum is the highest, and not
the average or typical momentum of the system. In fact, the r.m.s. relative momentum of two nucleons in nuclear
matter can be estimated to be 55% of the Fermi momentum. Therefore, the chiral predictions up to that density
should be sound. Nevertheless, it is interesting to check how the best-fit γ is impacted if only densities up to about
saturation are retained. I find that the outcome is unchanged (to two significant digits) at N3LO, and changes by
about 3% at N2LO. This may indicate that the presence of “cutoff artifacts” is less likely at the higher order, although
the variation is within chiral uncertainty.

Table I displays the exponent of the power law found in each case, including (for the chiral models) those obtained
when only densities up to saturation are retained. The theoretical curves appear reasonably described by the simple
ansatz up to their respective saturation densities and somewhat above it, whereas the constraint should be applicable
up to about 2ρ0, which amounts to approximately 0.3 fm−3 by the definition of Ref. [12]. Furthermore, an analytical
approximation which appears reasonable may be less than satisfactory with respect to derivatives. This point will be
addressed again later in the paper.

As in the previous figure, in Fig. 4 one can see to which degree the interaction part of the symmetry energy can be
approximated by a single-term power law for the Bonn B meson-exchange potential [31] used in a DBHF calculation
(left-hand side), while a similar comparison is shown on the right-hand side of the same figure for the potential
symmetry energy obtained from the EoS of Ref. [27]. As it turns out, the power law of the predictions is within the
range of the empirical constraint of Ref. [12], γ = 0.72 ± 0.19, see Table I.

Although the overall quality of these parametrizations does not suggest that they would be a sound replacement for
the actual predictions, a few comments may be insightful. For instance, the smaller size of the exponent in the EoS
based on the N3LO NN potential is an indicator of the softer nature of the chiral interaction at N3LO. The exponent
we find for the DBHF curve has the same value, but note that, in this case, the fitting function underestimates the
actual predictions at the higher densities, whereas it overshoots them in the N3LO case, as the two (exact) curves
depart from each other with increasing density.

It is important to note that the N3LO predictions must be seen in the context of EFT theoretical uncertainties.
Therefore, in Fig. 5 the N3LO predictions are shown with their estimated truncation error calculated as in Eq. (9),
with Q the Fermi momentum at each density. At this point, it is also appropriate to recall that there is no well-defined
prescription to reliably estimate theoretical errors in cases such as DBHF or APR, or, for that matter, any approach
that is not EFT-based. In Fig. 5, the shaded area represents the empirical constraint. The predictions fall within the
empirical constraints at subsaturation densities but are otherwise softer.

Obviously, the parametrization given in Eq. 7 was found to be consistent with the reaction observables measured
in the GSI experiment. However, here one learns that, although a moderately soft (less than linear) dependence is
preferred by microscopic models, Eq. 7 is overall not a satisfactory representation of these theoretical predictions. It
would be interesting to move beyond the power-law parametrization when analyzing elliptic-flow ratios. We will come
back to this point at the end of this Section, armed with more information.

An “observable” which has been identified as sensitive to the density dependence of the symmetry energy is the
neutron skin thickness. Therefore, next we extend the discussion to the neutron skin of 208Pb in relation to density
derivatives and pressure. Neutron skins are calculated as described in some recent papers [34, 35], which are based on
an earlier work [36]. Namely, the parameters of the proton and neutron distributions, from which the skin is obtained,
are extracted by minimizing the energy of a nucleus which is written in terms of a liquid-drop functional. As input to
the functional, one needs the EoS of asymmetric matter, Eq. (1), to be constructed in accordance with Eq. (1). First,
the EoS will be built using empirical parametrizations taken from Ref. [37] or Ref. [38] for the isospin-symmetric part,
whereas the symmetry energy is as in Eq. (7). The saturation density of these phenomenological parametrizations is
approximately equal to 0.16 fm−3, consistent with the one used in the ASY-EOS analysis.
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γ S (fm)
∂esym

∂ρ
(MeV fm3) L (MeV) P0 (MeV/fm3)

0.53 0.14 154 60.1 3.14

0.72 0.18 177 72.6 3.80

0.91 0.21 195 85.2 4.45

TABLE II: Neutron skin (S) of 208Pb with varying power law, γ, in the interaction symmetry energy within the range determined
by the ASY-EOS analysis. The third column displays the the slope of the symmetry energy at about 2/3 of saturation density,
followed by the L parameter and the symmetry pressure. For further details, see discussion in the text.

I consider three different parametrizations of the symmetric matter EoS: the one from Ref. [37], fitted to K0=240
MeV, where K0 is the incompressibility of nuclear matter, and those from Ref. [38], with K0 = (240± 20) MeV. The
values shown here are averages within the range allowed by the uncertainties, which are estimated as in Refs. [34, 35].
For the skin thickness, the compounded error arising from the method I use to compute the skin is about ± 0.01
fm [35]. For each γ, the density derivatives and pressure also carry uncertainty due to small variations in ρ0, which
impact the kinetic energy coefficient in Eq. (6). Those differences, however, are much smaller than the ones originating
from the uncertainty in γ (or, from the choice of the theoretical approach, as will be shown later).

In Table II, for values of γ spanning the uncertainty of the ASY-EOS constraint, I show (second, fourth, and fifth
columns, respectively), the skin thickness of 208Pb, the L parameter, defined as

L = 3ρ0

(∂esym
∂ρ

)
ρ0

(11)

through a well-known expansion of the symmetry energy around saturation density, and the symmetry pressure,
P0 = ρ0L/3. For a family of such simple models, differing only in the density dependence of the potential part of the
symmetry energy through the power law, one finds a very strong correlation between the skin and L. This confirms
that the skin is sensitive to the pressure in the neutron-rich matter at the core of 208Pb which pushes excess neutrons
towards the low-density edges of the nucleus.

On the other hand, the average density in nuclei is less than saturation density and, therefore, typical nuclear
observables (such as, for instance, those used to construct phenomenological forces) actually probe lower densities.
In this regard, it has been observed [32] that, when values of the neutron skin within a certain range are included
as additional constraints in the development of Skyrme forces, the resulting symmetry energies obtained with these
adjusted forces are all rather similar around ρ=0.1 fm−3 (about 2/3 of normal density and closer to the average
density of nuclei), whereas the slopes at the same point differ considerably. This suggests that a very precise value of
the skin is necessary to constrain the density slope and thus allow a reliable extrapolation to normal nuclear densities.
With these comments in mind, Table II also shows how the slope of the symmetry energy at ρ=0.1 fm−3 varies in
relation to the neutron skin (third column).

Some of the observations collected above can be summarized as

Sempirical ≈ (0.18+0.03
−0.04) fm;

(∂esym
∂ρ

)
2
3ρ0
≈ (177+18

−23) MeV fm3 ; L ≈ (72.6± 13)MeV . (12)

Next, the focus will move on to the four theoretical approaches under the present consideration. At this time, I
wish to keep the focus on the impact of the microscopic neutron matter EoS on the neutron skin. Therefore, the
EoS of symmetric matter is kept fixed to an empirical one, as used for Table II, whereas the various neutron matter
EoS will be the theoretical ones shown on the right-hand side of Fig. 1. Another reason for doing so, besides the just
stated fact that I wish to isolate the role of the microscopic NM EoS for the present investigation, is the consideration
made in Section II B 1 concerning the missing 3NF in the calculations at N3LO. This contribution has been included
in Ref. [33], where it is also confirmed that the impact of the missing 3NF at N3LO in NM is small [33] for the chiral
potentials employed here. The same cannot be argued at this time for nuclear matter, and thus the absence of 3NF
at N3LO may potentially impact the conclusions of this study, especially when comparing different orders in chiral
EFT.

As done above, the uncertainties carried by the energy functional and the choice of the phenomenological EoS of
symmetric matter are accounted for. The (averaged) results displayed for the neutron skin carry an approximate
uncertainty of 0.01 fm. Those results are found in Table III, along with the predicted values for the same quantities
previously reported in Table II.

The spreading of the predictions from the “family” of models in Table III can be summarized as

STheories ≈ (0.18± 0.02) fm;
(∂esym

∂ρ

)
2
3ρ0
≈ (154+22

−19) MeV fm3 ; L ≈ (58+14
−11)MeV . (13)
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Theor. Approach S (fm)
∂esym

∂ρ
(MeV fm3) L (MeV) P0 (MeV/fm3)

DBHF 0.16 135 46.8 2.45

N3LO 0.17 148 47.5 2.50

APR 0.18 158 65.0 3.43

N2LO 0.20 176 72.0 3.79

TABLE III: As in Table II, but for each of the theoretical approaches under consideration.

Concentrating on the chiral predictions, the difference between the predictions at N2LO and N3LO is a (pessimistic)
estimate of the truncation error at N3LO. As discussed earlier, the truncation error at order n when the prediction
at order n + 1 is unknown is best estimated as in Eq. (9). Taking as Q the Fermi momentum in nucleonic matter
corresponding to approximately normal density (or 2/3 of normal density, as appropriate), the chiral predictions at
N3LO is estimated to be

SN3LO ≈ (0.17± 0.02) fm;
(∂esym

∂ρ

)
2
3ρ0
≈ (148± 14) MeV fm3 ; L ≈ (48± 15)MeV . (14)

The additional uncertainty in the skin of about 0.01 fm arising from the theoretical method and mentioned earlier
does not increase substantially the compounded uncertainty when added in quadrature to the truncation error. It is
noted again that, for non-EFT based predictions (APR and DBHF), a full theoretical uncertainty cannot be reliably
estimated.

Earlier I observed, cf. Table II, that very precise measurements of the skin are necessary for a reliable constraint on
the density derivative of the symmetry energy. Comparing Table II and Table III, another important point emerges:
two values of the skin taken from Table II and Table III, respectively, and being very similar to each other, say within
0.01 fm, correspond to significantly different values of the density derivatives and the L parameter, in particular. In
other words, even a very precise measurement of the skin would not be able to contrain the density derivative in a
reasonable way when based on simple phenomenological models, such as, for instance, those differing in the exponent
of a power law. This point is often overlooked, possibly because analyses of skin vs. density-slope are typically
conducted within the framework of phenomenology. Furthermore, the result for L at N3LO stated in Eq. (14) is in
good agreement with the one reported in Ref. [40], which was also obtained with chiral forces in neutron matter (L
= 32.5-57.0 MeV), whereas both are lower than the quoted mean value of 60 MeV typically extracted from reaction
data. Based on the evidence shown here, one may conclude that the “discrepancy” resides in the assumed functional
form for the interaction symmetry energy, with zero uncertainty near the assumed ρ0. Such simple form, obviously,
cannot capture the details of the density dependence of the theory. It would therefore be better if constraints on
the symmetry energy from heavy-ion experiments were expressed as an uncertainty band which allows for diverse
functional forms (consistent with theory) and, correspondingly, density derivatives which may cover a broader range
than suggested by a power-law assumption.

Additional comments are in place here. In Ref. [12] the authors do mention that the sharp value of epotsym(ρ0) is the

result of choosing a power law as in Eq. (7) and that using lower values of epotsym(ρ0) leads to lower values of L, still
within acceptable error margins. However, the results by Brown [32] (which are based on Skyrme phenomenology),
are no longer met with the alternative parametrization. The study presented here shows that adhering to Eq. (7) is
not recommendable from the theoretical standpoint.

Perhaps the point we set forth to make is more easily captured in a visual way, as presented in Figure 6. The area
shaded in blue is obtained from the empirical constraint for L and the corresponding constraint for the neutron skin.
Including the predictions from Table III generate the green area. Finally, Eq. (14) produces the pink region. Clearly,
the uncertainty in the density derivative is much larger than could be inferred from the blue area.

IV. CONCLUSIONS

The on-going and planned experimental program in nuclear physics is very exciting. Heavy-ion reactions, exper-
iments at radioactive beam facilities, and measurements of the weak charge density in nuclei from the electroweak
program at Jefferson laboratory promise to provide, in different ways, new information on neutron-rich systems. In
turn, this information will improve current understanding of neutron drip lines, neutron skins, and may potentially
reach out to systems of astrophysical relevance, such as neutron stars. Clearly, theoretical calculations are timely and
important, in particular from modern ab initio predictions
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FIG. 6: (Color online) Relation between the L parameter and the neutron skin in 208Pb. Blue shaded area: empirical constraint
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In this paper, existing predictions for the interaction part of the symmetry energy have been explored in the light of
new and more stringent constraints recently obtained for this quantity. I considered a few but fundamentally different
approaches to obtain a realistic idea of the spreading in microscopic predictions.

It is important to stress that analyses of reaction observables aimed at extracting constraints on the EoS are not
free of assumptions. Within the simplest assumption of a single-term power law, it is found that various predictions
based on chiral EFT, relativistic meson-theory, or phenomenological forces and the variational method, can only
approximately be described by a power law consistent with the constraint. The latter cannot capture the details of
the density dependence of microscopic theories much beyond ρ0. The N3LO prediction is softer than the constraint
at and above saturation density.

The focus then moves to the neutron skin thickness of 208Pb. This is obtained using the symmetry energy constraint
supplemented with empirical EoS for symmetric matter and compared with the predictions from the various theoretical
approches in the purview of this study. To highlight the impact of the neutron matter EoS and its pressure on the
formation of the skin, the latter has been calculated with microscopic predictions of the NM EoS while the EoS for
SNM remained fixed by empirical information.

Hopefully, very precise measurements of the skin will be delivered by new PREX experiments which may, in turn,
provide reasonable constraints on the density dependence of the NM EOS below and around saturation density. In
that regard, this paper aims at demonstrating the importance of experiments keeping in close touch with ab initio
predictions. Caution must be excercised with regard to the possibility of constraining the density slope from the
knowledge of the skin based only on correlations obtained with families of simple phenomenological interactions. As
shown, the latter procedure may underestimate the uncertainties.
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