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We present a detailed discussion of the structure of the low-lying positive-parity energy spectrum
of 12C from a no-core shell-model perspective. The approach utilizes a fraction of the usual shell-
model space and extends its multi-shell reach via the symmetry-based no-core symplectic shell model
(NCSpM) with a simple, physically-informed effective interaction. We focus on the ground-state
rotational band, the Hoyle state and its 2+ and 4+ excitations, as well as the giant monopole
0+ resonance, which is a vibrational breathing mode of the ground state. This, in turn, allows
us to address the open question about the structure of the Hoyle state and its rotational band.
In particular, we find that the Hoyle state is best described through deformed prolate collective
modes rather than vibrational modes, while we show that the higher-lying giant monopole 0+

resonance resembles the oblate deformation of the 12C ground state. In addition, we identify the
giant monopole 0+ and quadrupole 2+ resonances of selected light and intermediate-mass nuclei,
along with other observables of 12C, including matter rms radii, electric quadrupole moments, as
well as E2 and E0 transition rates.

I. INTRODUCTION

Recent advances in nuclear modeling, greatly aided by
the availability of high-performance-computing (HPC)
facilities, have enabled the re-examination of a long-
standing challenge in nuclear physics [1–5], namely,
understanding α-clustering and highly-deformed spatial
configurations from a microscopic many-particle perspec-
tive. These phenomena are exemplified by the elusive
7.65-MeV second 0+2 (Hoyle) state of 12C [6] and its
associated rotational excitations, which continue to be
studied theoretically (e.g., [7–13], with recent reviews
[14, 15]), as well as experimentally (e.g., [16–23]). Key
features of the Hoyle state have been recently revealed
within the ab initio frameworks of lattice effective field
theory (EFT) [24, 25] and Green’s function Monte Carlo
[26], together with a first fully microscopic no-core sym-
plectic shell-model (NCSpM) study [27]. This interest
is motivated, in part, because various phenomena of as-
trophysical significance, such as nucleosynthesis, the evo-
lution of primordial stars in the Universe, X-ray bursts,
and core-collapse supernovae simulations, are greatly in-
fluenced by several important low-lying states in 12C [28],
including the Hoyle state and its long-debated 2+ and 4+

excitations.
In this paper, we address – from a no-core shell-

model perspective – open questions about the structure,
radii, and deformation of the Hoyle-state rotational band
in 12C, and investigate the underpinning mechanism of
these excitations: whether they are vibrational or shape-
coexistence modes. While low-lying 0+ states have com-
monly and historically been understood as vibrational
modes, a different mechanism – shape coexistence – has
been proposed for the Hoyle-like 0+2 state in 16O [29],
and has been found to occur in many nuclei across the
nuclear chart (see Fig. 8 of Ref. [30]), including 16O,
40Ca, 56Ni, and the vicinity of (single-) closed shell nu-

clei, together with regions around 74Se and 100Zr, as well
as 152Sm and 154Gd, up to heavy isotopes of Au, Hg, Tl,
Pb, Bi, Po, and many others [30–32]. This corroborates
our earlier findings of a large prolate deformation for the
Hoyle state [27] that is very different from the oblate
shape of the ground state of 12C. In the present study, we
examine largely deformed prolate configurations favored
in the low-lying energy spectrum of 12C, and the vibra-
tional breathing mode of the oblate ground state within
a unified shell-model approach. In particular, we em-
ploy the NCSpM with a simple but physically-informed,
schematic, many-nucleon interaction. The model has re-
cently provided, with no parameter adjustments, no-core
shell-model descriptions of low-lying states in deformed
sd-shell nuclei and of phenomena tied to collectivity and
alpha-clustering in 8Be [33, 34]. Here, we focus on the
ground-state rotational band, the Hoyle state and its 2+

and 4+ excitations, together with the giant monopole
0+ resonance (GMR) and giant quadrupole 2+ resonance
(GQR) in 12C. With the aim to gain further insight into
the collective and cluster-like substructures of 12C, we
consider excitation energies, matter rms radii, electric
quadrupole moments, E2 and E0 transition rates, and
probability distributions.

We also identify giant monopole and quadrupole reso-
nances in other p- and sd-shell nuclei, including 16,20O,
20,22Ne, and 20,22Mg. Giant multipole resonances in nu-
clei, such as the GMR and GQR, provide important in-
formation about nuclear structure, including information
about the compressibility of nuclear matter in the case
of the GMR [35, 36], which is often referred to as a vi-
brational breathing mode. Further, GMRs figure promi-
nently in isoscalar monopole strengths [37, 38] with a
renewed interest [39] following the reach of experimental
data to higher excitation energies. For the lightest nuclei,
the first isoscalar monopole excitations of 4He has been
examined within an ab initio framework [40, 41]. Ad-
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ditionally, the symplectic shell model of Rosensteel and
Rowe [42, 43], which adopts a symplectic Sp(3,R) basis
and underpins the present NCSpM, has provided success-
ful microscopic descriptions of both low-lying rotational
band structure, as well as giant resonances of sd-shell and
heavy nuclei [37, 44–49], along with 8Be [50]. The NC-
SpM is hence well-suited to identify and study giant reso-
nances: in the model, the symplectic symmetry provides
a classification of the complete translationally invariant
shell-model space, while dividing the space into vertical
symplectic cones; basis states of a symplectic cone are
built by the monopole and quadrupole moment opera-
tors, which describe one-phonon excitations of a giant
monopole and giant quadrupole type [43]. Indeed, the
dominant role of the symplectic symmetry in light nu-
clear systems has been recently confirmed by ab initio
studies of nuclei from 6Li to 16O [51–54].

The paper is organized as follows. We start with a brief
outline of the NCSpM model (Sec. II), together with the
model spaces and the schematic long-range interaction
that are used, and show they yield results that closely
agree with feasible ab initio outcomes for the ground-
state rotational band of 12C. In Sec. III A, we present
NCSpM results in down-selected ultra-large shell-model
spaces for the Hoyle-state rotational band and its struc-
ture (including deformation, radii, quadrupole moments,
and transition rates), and examine the dependence of the
results on model parameters and on the size of the model
space. The last section, Sec. III B, focuses on the struc-
ture and observables for the GMR and GQR in 12C and
other selected nuclei, with a discussion on the role of the
vibrational breathing mode in the 12C excitation spec-
trum.

II. NO-CORE SYMPLECTIC SHELL MODEL
WITH Sp(3,R) SYMMETRY

The NCSpM, as outlined in Ref. [27, 34], is based on
the physically relevant symplectic Sp(3,R) group [42, 43]
and its embedded SU(3) subgroup [55–57]. These sym-
metries provide an organization of the model space into
symplectic basis states (or vertical cones), as described
below, which are comprised of states of definite defor-
mation and are related via a unitary transformation to
three-dimensional harmonic oscillator (HO) many-body
basis states [52], such as the m-scheme basis used in the
no-core shell model (NCSM) [58, 59]. In fact, the NC-
SpM and NCSM coincide for the same Nmax, where Nmax

describes the cutoff in total oscillator quanta above the
lowest HO configuration for the system.

A. Model space selection

Each basis state of a symplectic Sp(3,R) irreducible
representation (irrep) is labeled according to the group
chain [43],

Sp(3,R) ⊃ U(3) ⊃ SO(3) ⊃ SO(2)
σ nρ ω κ L M

(1)

and is constructed using the following relation with sym-
metrically coupled polynomials in the symplectic raising
operators, A(20):

|σ = Nσ(λσ µσ), n = Nn(λn µn), ρ, ω = Nω(λω µω), κLM〉

=

[[
A(20) × · · · ×A(20)︸ ︷︷ ︸

](λn µn)

× |Nσ(λσµσ)〉

]ρ(λω µω)

κLM

,

Nn/2 (2)

where Nω = Nσ + Nn is the total number of oscillator
quanta (ρ and κ are multiplicity labels). The A(20) oper-
ator induces 2~Ω 1-particle-1-hole (1p-1h) monopole or
quadrupole excitations (one particle raised by two shells)
together with a smaller 2~Ω 2p-2h correction for elimi-
nating the spurious center-of-mass (CM) motion. The
symplectic bandhead, |Nσ(λσµσ)〉, is the lowest-weight
Sp(3,R) state, which is defined by the usual require-
ment that the symplectic lowering operators (A(20))† an-
nihilate it. The bandhead is an SU(3)-coupled many-
body state with a given nucleon distribution over the HO
shells (that is, a set of {η1, . . . , ηA} configurations with
ηi the oscillator number of the i-th particle for a nuclear
mass number A). The corresponding Nσ~Ω energy of
HO quanta1, together with the bandhead deformation,
(λσµσ), serve to label the symplectic irrep. An exam-
ple is shown in Table I for the basis states of a 0~Ω(0 4)
symplectic irrep up through Nn = 6.

Including the spin degrees of freedom requires the
straightforward generalization, |σnρωκ(LSσ)JMJ〉 =∑
MMS

〈LM ;SσMS |JMJ〉|σnρωκLMSσMS〉. All of the
states within a symplectic irrep share the same spin value,
given by the spin Sσ of the bandhead |σ;Sσ〉. With the
inclusion of the additional {α} quantum numbers to dis-
tinguish between physically distinct bandheads with the
same Nσ(λσµσ), |{α} σ〉, the symplectic basis states span
the entire shell-model space.

We employ a symmetry-guided concept, which allows
the NCSpM model space to be down-selected to physi-
cally relevant symplectic bandheads, starting from band-
heads of highest quadrupole deformation and lowest in-
trinsic spin. This means that the model space typically
starts with only a few symplectic irreps, ‘vertically’ ex-
tended to high Nmax, and is then expanded – until con-
vergence of results is achieved – by adding more sym-
plectic irreps, which introduce additional configurations

1 This energy includes the HO zero-point energy. To eliminate the
spurious CM motion, we use Nσ , for which 3/2 is subtracted from
the total HO quanta, together with symplectic generators con-
structed in relative coordinates with respect to the CM. These
generators are used to build the basis, the interaction, the many-
particle kinetic energy operator, as well as to evaluate observ-
ables.
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TABLE I: Basis states of the 12C symplectic irrep 24.5(0 4),
or equally 0~Ω(0 4), up through Nmax = 6 for L = 2 (and
M = 0, with Nω = 24.5 +Nn).

Nn (λn µn) ρ (λω µω) κ Nn (λn µn) ρ (λω µω) κ

0 (0 0) 1 (0 4) 1 6 (6 0) 1 (5 3) 1

2 (2 0) 1 (2 4) 1 6 (6 0) 1 (4 2) 1

2 (2 0) 1 (2 4) 2 6 (6 0) 1 (4 2) 2

2 (2 0) 1 (1 3) 1 6 (2 2) 1 (4 2) 1

2 (2 0) 1 (0 2) 1 6 (2 2) 1 (4 2) 2

4 (4 0) 1 (4 4) 1 6 (2 2) 1 (3 4) 1

4 (4 0) 1 (4 4) 2 6 (6 0) 1 (3 1) 1

4 (4 0) 1 (3 3) 1 6 (2 2) 1 (3 1) 1

4 (4 0) 1 (2 2) 1 6 (2 2) 1 (2 6) 1

4 (4 0) 1 (2 2) 2 6 (2 2) 1 (2 6) 2

4 (0 2) 1 (2 2) 1 6 (2 2) 1 (2 3) 1

4 (0 2) 1 (2 2) 2 6 (6 0) 1 (2 0) 1

4 (0 2) 1 (1 4) 1 6 (2 2) 1 (2 0) 1

4 (4 0) 1 (1 1) 1 6 (2 2) 1 (1 5) 1

4 (0 2) 1 (0 6) 1 6 (2 2) 1 (1 2) 1

6 (6 0) 1 (6 4) 1 6 (2 2) 1 (0 4) 1

6 (6 0) 1 (6 4) 2 6 (0 0) 1 (0 4) 1

within each ~Ω subspace, thereby leading to a larger ‘hor-
izontal’ mixing. As the selection of additional symplectic
irreps is based on the deformation of their bandheads,
it is useful to note that the intrinsic quadrupole defor-
mation of a bandhead is informed by its SU(3) labels
according to the established mapping [60–62]. Specifi-
cally, within an ~Ω-subspace, the deformation parameter
β2 of a bandhead is proportional to the expectation value
of the second-order Casimir invariant of SU(3):

2

3
(λ2σ + µ2

σ + λσµσ + 3λσ + 3µσ). (3)

Clearly, large λσ and µσ imply large quadrupole defor-
mation (large β), and bandheads are included in a model
space in order of decreasing β, that is, decreasing values
of Eq.(3).

This concept is informed by an ab initio study [51, 52]
which used the symplectic symmetry in an analysis of
wave functions of 12C and 16O calculated with bare
nucleon-nucleon (NN) interactions. Specifically, the out-
come of this earlier ab initio study, corroborating the
findings of preceding algebraic approaches [42, 43, 63],
has revealed that typically symplectic many-body basis
states built on only one or two bandheads of highest de-
formation and low spin suffice to represent a large frac-
tion – typically in excess of 80% or more – of the physics
as measured by projecting ab initio NCSM results onto a
symmetry-adapted equivalent basis [52]. Such a symplec-
tic pattern has been also observed in ab initio symmetry-
adapted no-core shell-model (SA-NCSM) studies of 6Li,
6He, 8Be, and 12C [54, 64–66].

In particular, the present study focusses on various
model spaces for 12C consisting of symplectic irreps with
bandheads of large quadrupole deformation and low in-
trinsic spin (Table II), which allows results to be exam-
ined for convergence. Following the symmetry-guided
concept, we first consider a model space consisting of
the most deformed spin-0 0~Ω, 2~Ω, and 4~Ω bandheads
together with their symplectic excitations up through
Nmax = 20 with total dimensionality of 4.5× 103 (C-1 in
Table II). Then, the model space is expanded “horizon-
tally” to C-2 (with total dimensionality of 6.6× 103), as
well as to C-3 and C-4, which include higher-lying band-
heads and bandheads of decreasing deformation. The
C-4 selection, for example, includes the symplectic irreps
0~Ω(0 4), 4~Ω(12 0), 2~Ω(6 2) and 6~Ω(10 2) that have
been identified to have the lowest mean-field energy based
on shape-consistent mean-field considerations [67]. We
also consider the model space that includes all Sp(3,R)
irreps with low spin, spin-0 and spin-1, 0~Ω bandheads
with symplectic excitations up to Nmax = 20 (C-5 in Ta-
ble II). This space consists of the complete 0~Ω model
space for 12C, excluding only the spin-2 part of the (2 0)
0~Ω configuration, which is expected to be influenced
by a spin-2 interaction, such as a tensor force [68, 69].
Given the spin-0 and spin-1 nature of the model inter-
action we use, inclusion of the tensor force is outside of
the scope of the present model, but is being considered
in ongoing studies [70]. Nonetheless, as discussed next,
the model interaction has been shown to yield results for
A = 8 to A = 24 in close agreement with ab initio studies
and experiment [27, 33, 34], with model space selections
as small as C-1 and C-2 found to be sufficient.

Model 0~Ω 2~Ω 4~Ω 6~Ω 8~Ω

Space S = 0 S = 1 S = 0 S = 0 S = 0 S = 0

C-1 (0 4) (6 2) (12 0)

C-2 (0 4) (1 2) (6 2) (12 0)

C-3 (0 4) (1 2) (6 2) (12 0) (14 0) (16 0)

C-4

(0 4) (1 2) (6 2) (12 0) (14 0) (16 0)

(2 4) (8 2) (10 2)

(4 4)

(0 6)

C-5
(0 4) (1 2) (6 2) (12 0)

(2 0) (0 1)

TABLE II: Sp(3,R) irreps (specified by their bandhead la-
bels) included in each of the model spaces considered. Each
of model spaces C-1 through C-4 includes its preceding model
space, while model space C-5 expands C-2 by including all
spin-0 and spin-1 0~Ω bandheads, which are, in fact, all
the SU(3) configurations that exist in the 0~Ω subspace. All
model spaces extend up to Nmax = 20.
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B. Schematic many-nucleon interaction

As discussed in Ref. [27], we employ a microscopic
many-body interaction, which enables largeNmax no-core
shell-model applications. This interaction utilizes two
pivotal components: a single-particle piece, consisting of
the harmonic oscillator potential and a spin-orbit term,
together with a collective piece, which enters through the
quadrupole-quadrupole interaction, tied to a long-range
expansion of the nucleon-nucleon central force V (|ri−rj |)
[71],

Hγ =

A∑
i=1

(
p2
i

2m
+
mΩ2r2i

2
− κli · si

)
+
χ

2

(e−γ(Q·Q−〈Q·Q〉Nn ) − 1)

γ
, (4)

where ~Ω, κ, and χ are parameters, for which we use
empirical estimates, and γ ≥ 0 is the only adjustable
parameter in the model (as discussed below). Hγ and

the mass quadrupole moment Q(2M) =
∑A
i=1 q(2M)i =∑

i

√
16π/5r2i Y2M (r̂i) are given in terms of particle mo-

mentum and position coordinates relative to the cen-
ter of mass. The quadrupole-quadrupole interaction,
1
2Q ·Q = 1

2

∑
i qi · (

∑
j qj) realizes the important interac-

tion of each particle with the total quadrupole moment of
the system. The average contribution 〈Q ·Q〉Nn

of Q ·Q
for a given number of Nn HO excitations [72] introduces
a considerable renormalization of the HO shell structure,
and hence is removed in multi-shell studies [73].

We use χ = ~Ω/(4
√
Nωf

Nωi
) for a 〈f |Hγ |i〉 matrix

element for a final (initial) many-body state, f (i). The
decrease of χ with Nω, to leading order in λω/Nω, has
been shown by Rowe [74] based on self-consistent argu-
ments and used in an Sp(3,R)-based study of cluster-like
states of 16O [29]. We also use the empirical estimates
~Ω ≈ 41/A1/3 and κ ≈ 20/A2/3 (e.g., see [75]).

The only adjustable parameter of the model is γ, which
controls the presence of the many-body interactions in
the model. The effective interaction (4) introduces hi-
erarchical many-body interactions in a prescribed way.
This ties directly to the interaction used in Ref. [76],
which is given as a polynomial in Q, and applied to the
24Mg ground-state (gs) rotational band. Indeed, higher-
order terms in Q ·Q of Eq. (4) become quickly negligible
for a reasonably small γ. For example, we find that for
12C, besides Q ·Q, only one additional term – (Q ·Q)2 –
is sufficient for the ground-state band, with higher-order
terms of the expansion being negligible. However, we find
that the inclusion of terms up through (Q ·Q)4 (third or-
der in γ) is necessary for the Hoyle-state band [27].

C. Comparison to ab initio no-core shell model

A comparison of our current results for 12C to ab initio
outcomes is possible in smaller model spaces, for which
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FIG. 1: (Color online) Probability distribution for 12C across
the Nn total excitations of (a) the lowest 0+ state and (b) the
lowest 4+ state as calculated by the NCSpM with Hγ (left)
in model space C-2 (see Table II) and the ab initio SA-NCSM
with the bare JISP16 NN interaction (right). Both models
are limited to an Nmax = 6 model space for comparison. The
dominant “shapes”, specified by (λµ), are shown. This com-
parison is illustrated for the 0+

gs and 4+
1 states, and the close

similarity persists for the lowest 2+ state.

ab initio NCSM calculations are feasible. For example,
for the gs rotational band, the Nmax = 6 space appears
to be reasonable for both models (Fig. 1). In par-
ticular, we compare to wave functions obtained in the
SA-NCSM [54] with the bare JISP16 realistic interac-
tion [77]. The SA-NCSM utilizes an SU(3)-coupled ba-
sis, which yields eigenfunctions equivalent to the conven-
tional NCSM wave functions [58], but realized in terms
of the (λµ) deformation labels, and hence, the deformed
configurations that dominate the 12C wave functions can
be straightforwardly studied.

Consistent with the outcome of Refs. [54] and [80] (see,
e.g., Fig. 1 in Ref. [54] for 6Li and 8Be wave functions in
Nmax = 8−10), the ab initio Nmax = 6 SA-NCSM results
with the bare JISP16 realistic interaction for the 0+ gs,
first 2+ and first 4+ states of 12C reveal the dominance
of the 0~Ω component with the foremost contribution
coming from the leading (0 4) S = 0 irrep (see Fig. 1
for the gs and the 4+1 state). Important SU(3) configu-
rations are then organized into structures with Sp(3,R)
symplectic symmetry, that is, the (0 4) symplectic irrep
gives rise to dominant (0 2) and (2 4) configurations in
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FIG. 2: (Color online) Energy spectrum for 12C calculated using the NCSpM with symplectic irreps starting at 0p-0h (blue,
left), 2p-2h (green, center), and 4p-4h (red, right) bandheads and extending to Nmax = 20, for model spaces C-1 and C-2.
Experimental data is from [78], except the latest results for 0+

3 [18] and the states above the Hoyle state, 2+ [20] and 4+

[79]. The B(E2; J → J − 2) transition rates are in W.u. with theoretical uncertainties estimated for a ±60% deviation of the
Hoyle-state energy. Spectra calculated in model spaces C-3 and C-4 are the same as those shown for model space C-2.

the 2~Ω subspace and so on (see Fig. 1 and Table I), and
those configurations indeed realize the major components
of each of the wave functions in this subspace. The next
most important configuration is spin-1 (1 2) at 0~Ω with
its associated symplectic excitations (Fig. 1). Among all
possible configurations present in the SA-NCSM (total of
1.26× 106 for J = 0 in Nmax = 6), only the states of the
(0 4) and then (1 2) symplectic cones appear dominant.
This further confirms the significance of the symplectic
symmetry to nuclear dynamics. The outcome points to
the fact that the relevant model space can be system-
atically determined by down-selecting to important spin
configurations in lower subspaces while expanded to in-
clude a manageable set of symplectic configurations in
the higher Nmax regime.

Furthermore, we find a close similarity between com-
plete ab initio SA-NCSM results and the NCSpM wave
functions of the 12C gs rotational band, calculated with
Hγ of Eq. (4) for γ = 1.71× 10−4 and symplectic irreps
of model space C-2 (Fig. 1). NCSpM and SA-NCSM cal-
culations are performed for ~Ω = 18 and an Nmax = 6
model space. The two models show close agreement of
the probability distribution, including the SU(3) content
of the wave functions. This suggests that the interaction
used in the NCSpM has effectively captured a major por-
tion of the underlying physics of the realistic interaction
important to the low-lying nuclear states.

III. RESULTS AND DISCUSSIONS

The NSCpM utilizes Bahri’s symplectic computational
code [81], which uses Draayer & Akiyama’s SU(3) pack-

age [82]. The symmetry-mixing spin-orbit term is calcu-
lated in the SA-NCSM [54]. This term is applied only
to the symplectic bandheads and provides a ‘horizontal’
mixing of the symplectic irreps.

The model successfully reproduces the ground-state
and Hoyle-state rotational bands in 12C [27], where both
rotational features and α-cluster substructures are shown
to emerge in the fully microscopic Nmax = 20 no-core
shell-model framework, as suggested by the reasonably
close agreement of the model outcome with experiment
and ab initio results in smaller spaces. While the model
includes an adjustable parameter, γ, this parameter only
controls the presence of many-nucleon interactions, and
hence, introduces an additional, but very limited, degree
of freedom. The entire many-body apparatus is fully mi-
croscopic and no adjustments are possible. We find that,
as γ varies, there is only a small window of possible γ
values around γ = 1.71 × 10−4 which, for large enough
Nmax, closely reproduce the relative positions of the three
lowest 0+ states in 12C and associated measured observ-
ables, discussed below. The model has been also applied
to low-lying states of other nuclei, such as 8Be and sd-
shell nuclei [33, 34], without any further parameter ad-
justment. In particular, using the same γ = 1.71× 10−4

as determined for 12C, we have described selected low-
lying states in 8Be in an Nmax = 24 model space with
only 3 spin-0 0~Ω (4 0), 2~Ω (6 0), and 4~Ω (8 0) symplec-
tic irreps [33], as well as the ground-state rotational band
of heavier nuclei, such as 20O, 20Ne, 22,24Ne, 20,22,24Mg,
and 24Si, using Nmax = 12 model spaces [34].
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A. Clustering and collectivity in 12C

In this section, we focus on the ground state and Hoyle
state in 12C, along with their rotational bands, and study
the dependence of the NCSpM results on the model space
and the model parameters γ. As described above, we use
Hγ with γ = 1.7× 10−4 along with, for A = 12, ~Ω = 18
MeV and κ = 3.8 MeV.

Analysis of the results shows that model space C-1,
consisting of irreps built upon the spin-0 0~Ω 0p-0h (0 4),
the 2~Ω 2p-2h (6 2), and the 4~Ω 4p-4h (12 0) bandheads,
is capable of bringing the Hoyle state down in energy
(Fig. 2, last column). For this model space, we observe
three low-lying 0+ states below 10 MeV, and their ro-
tational bands (e.g., 0+, 2+, and 4+): the 0p-0h ground
state (Fig. 2, first column), the 4p-4h 0+ state that tracks
with the Hoyle state, and a 2p-2h (Fig. 2, middle col-
umn) above the 4p-4h 0+ state. However, this model
space yields a compressed energy spectrum. We note
that the spin-orbit interaction, being a tensor operator
of spin 1, does not mix spin-0 irreps. Hence, for this
model space, the spin-orbit term has no effect (equiva-
lent to Hγ with κ = 0) and the Hγ eigenstates consist of
a single symplectic irrep.

With the expansion of the model space by only one
spin-1 irrep (model space C-2), the Nmax = 20 NCSpM
energy spectrum is improved and found to lie reasonably
close to the experimental data (Fig. 2, see C-2) [27]. The
Sp(3,R)-nonpreserving spin-orbit term mixes the spin-0
(0 4) and spin-1 (1 2) irreps for all Jπ = 0+, 2+1 , and 4+1 ,
which results in a more realistic energy spacing between
the excited states. Specifically, we see the gs separating
from the higher-lying 0+ states, and a slight stretching
in the gs rotational band. This agrees with early cluster
models that showed similarly compressed spectra, which
were corrected through allowing for α-cluster dissociation
due to a spin-orbit force, as discussed in Ref.[7]. The
inclusion of this additional irrep introduces another low-
lying 0p-0h 0+ state (Fig. 2, first column), which – along
with the 2p-2h 0+ state – lies close to the broad 10-MeV
0+ resonance observed in 12C.

In the present model, the spin-orbit interaction is
turned on only among the bandheads of the symplec-
tic irreps, up to Nmax = 4 for the C-2 model space (and
Nmax = 8 for C-4), which results in the mixing of basis
states within S = 0 and S = 1 irreps up to Nmax = 20
(see the NCSpM results shown in Fig. 1 forNmax = 6 and
the 12C ground state). These calculations are performed
in the SA-NCSM, referenced above, which is ideal for
the symplectic bandheads under consideration, because
they are equal to the corresponding SU(3) basis states of
the SA-NCSM. The full accounting of the spin-orbit in-
teraction is estimated, at the most, to render additional
mixing of about 0.2% for (6 2), 4× 10−4% for (12 0), and
11% for (1 2) and (0 4) to the 12C gs, while increasing
the corresponding 0+ state energies by only a few MeV
without affecting their order. That the bandheads pro-
vide a reasonable account of the spin-orbit effect stems

TABLE III: Transition rates, B(E2) in W.u. and M(E0) in
e fm2, as well as rms matter radii (rrms) in fm and the electric
quadrupole moment in e fm2 obtained by the NCSpM with Hγ
in model spaces C-1 and C-2 (with C-2 results coinciding with
those for model spaces C-3 & C-4), as well as for a 1.7% mixing
of the (12 0) irrep into the (0 4) irrep (see text for details).
Experimental values are shown in the rightmost column.

C-1 C-2

NCSpM Mixing NCSpM Mixing Expt.

B(E2; 2+1 →0+gs) 5.12 4.37 4.3 3.64 4.65(26)a

B(E2; 0+2 →2+1 ) 0 8.7 0 8.4 8.0(11)a

B(E2; 2+2 →0+2 ) 63.2 60.5 63.2 60.5 N/A

M(E0; 0+2 →0+gs) 0 2.04 0 2.1 5.4(2)a

rrms 0+gs 2.44 2.45 2.43(1) 2.44 2.43(2)b

rrms 0+2 (Hoyle) 2.93 2.92 2.93(5) 2.92 2.89(4)c

Q
2+1

6.63 6.17 5.9(1) 5.44 +6(3)a

aRef. [78]
bRef. [83]
cExperimentally deduced, based on model-dependent analyses of

diffraction scattering in Ref. [84]; 0+gs rrms = 2.34 fm.

from an important feature of the l · s operator – it is a
spin-1 0~Ω(1 1) SU(3) tensor and only mixes certain con-
figurations within the irreps. Specifically, the main con-
tribution to the spin-orbit matrix elements between the
(1 2) irrep and the (6 2) irrep, or the (12 0) irrep, comes
from higher-Nn configurations where the (1 2) probabil-
ity amplitudes are already small, 1-8% (see Fig. 1). In
addition, mixing to the (6 2) and (12 0) irreps is not al-
lowed by SU(3) selection rules for the most dominant
configurations in these irreps, and it involves only con-
figurations of probability amplitudes of less than 0.5%
for (6 2) and 0.02% for (12 0). This results in negligible
effects on the states and associated energies. In addition,
the bandheads of the (0 4) and (1 2) irreps constitute a
major component of the wave functions, which is ∼ 70%
of the 0+gs, 2+1 , and 4+1 states.

Of particular note is the 2+ state, calculated by the
NCSpM as a rotational excitation 1.51 MeV above the
second 0+ state (see Fig. 2, last column). Morinaga was
the first to suggest that this 2+ state, which he estimated
to be at 9.7 MeV, could be a member of a Hoyle-state
rotational band [85]. The existence of a 2+ state near
this energy has important implications for astrophysical
reaction rates [28], and has been the subject of many ex-
perimental studies since Morinaga first suggested it as
a mechanism to probe the structure of the Hoyle state.
More recent experimental studies have given rise to much
debate surrounding the 2+2 state: inelastic 12C(α, α′) and
12C(p,p′) scattering reactions showed evidence for an ex-
cited 2+2 around 9.6-11 MeV [16, 18, 19, 23], but studies
of the β-decay of 12N and 12B found no evidence for the
existence of a 2+ state below 10 MeV [17, 21]. The NC-
SpM first identified a low-lying 2+ state as a part of the
0+2 rotational band at 10.68 MeV [80], which used model
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FIG. 3: (Color online) Dependence of NCSpM (γ = 1.71 × 10−4) on Nmax for (a) B(E2) of the gs rotational band in model
spaces C-1 and C-2 (see Table II), as well as (b) B(E2) of the Hoyle-state rotational band, (c) gs point-particle matter rms
radius, and (d) the electric quadrupole moment for 2+

1 in model space C-2 (with results for C-3 and C-4 identical to those of
C-2).

space C-1 and a rescaling factor. A subsequent study used
the 12C(γ, α0)8Be reaction, and identified the 2+2 state at
10.03(11) MeV with a total width of 800(130) keV [20],
or approximately 2.4 MeV above the Hoyle-state energy.
For comparison, recent ab initio Nmax = 8 NCSM cal-
culations, while achieving a remarkable reproduction of
the gs rotational band, yield the second low-lying 0+ and
2+ states around 13 MeV and 15 MeV, respectively [86],
which are thus believed to be associated with higher-lying
states of spin-parity 0+ and 2+. Here, we also identify a
low-lying 4+ state at 11.7 MeV (see Fig. 2), which tracks
with experimental identification of a low-lying 4+ state
believed to be in the Hoyle-state rotational band [79].

The NCSpM is also used to study observables of 12C,
such as B(E2) transition strengths, Q2+1

, and matter rms

radii for the gs and Hoyle state. Comparison of results
for model spaces C-1 and C-2 (see columns 2 and 4 in Ta-
ble III) shows slight differences, implying that the spin-
orbit interaction has only a small effect on these observ-
ables. Notably, our calculations yield the rrms = 2.93 fm
for the 0+2 state, which is smaller than other recent pre-
dictions – e.g., 3.88 fm [87] and 4.00 fm [88], 3.38 fm [10],
4.32 fm [9], and 3.83 fm [8] – but tracks well with a re-

cent experimentally deduced radius for the Hoyle state,
2.89(4) fm [84], as well as with ab initio lattice EFT
results at leading order, 2.4(2) fm [24]. While the in-
band transition strengths are quite reasonable, a nonzero
B(E2; 0+2 → 2+1 ) value can only result from mixing of
symplectic irreps, which requires an interaction with an
Sp(3,R) symmetry-breaking term beyond the spin-orbit
interaction. To examine a possible mixing of the 4p-
4h (12 0) irrep into the ground state, we consider an
ad-hoc mixing of the 0p-0h and 4p-4h irreps, which is
equally applied to all the states within each irrep. How-
ever, we find that an extremely small mixing, 1.7%, of
the (12 0) irrep into the 0p-0h irreps of the gs rotational
band is sufficient to realize the observed B(E2) rates and
to yield results consistent with the M(E0) experimen-
tal value (Table III). The results indicate that while the
mixing has some effect on the collectivity within the gs
rotational band, the matter rms radii for the ground and
Hoyle states remain unaffected.

Dependence on horizontal expansion – As shown
above, reasonable results for 12C are obtained using the
C-2 model space. We examine a possible dependence of
the outcome as more symplectic irreps are added into the
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quoted in Table III for γ = 1.71× 10−4.

Energy (MeV)

Nσ(λσ µσ) C-3 C-4

2~Ω(2 4) 30.68

4~Ω(8 2) 31.94

4~Ω(4 4) 55.61

4~Ω(0 6) 70.53

6~Ω(14 0) 34.21 34.21

6~Ω(10 2) 57.56

8~Ω(16 0) 63.12 63.12

TABLE IV: Low-lying 0+ states calculated as the lowest 0+

state for each Sp(3,R) irrep specified by its bandhead in the
table and for the model spaces C-3 and C-4 (see Table II). En-
ergies are reported with respect to the ground state in MeV.
For comparison, the Hoyle-state energy given by the lowest
0+ state within the 4~Ω(12 0) irrep is 6.66 MeV.

model space by considering C-3 and C-4 (Table II). This
leads to more configurations within each “horizontal” HO
shell. We find that all the C-2 results presented in Fig. 2
and Table III remain unaltered, and that no additional
low-lying 0+ states are introduced to the 12C spectrum
with the inclusion of the most deformed S = 0 band-
heads at 6~Ω and 8~Ω as in model space C-3, nor with
the inclusion of S = 0 bandheads of decreasing deforma-

tion, as in model space C-4 (Table IV). Thus, we find
the results to be converged with respect to a horizontal
expansion of the model space. Model space C-5 does pro-
duce an additional low-lying, (2 0)-dominated 0+ state
below the Hoyle-state energy. A similar state appears at
15 MeV in ab initio SA-NCSM calculations for the com-
plete Nmax = 8 model space. However, with a radius
almost equal to that of the ground state (2.41 fm) and a
very weak monopole transition strength (0.29 efm2), this
is not a viable candidate for the Hoyle state.

Dependence on vertical expansion – A study of the
effect of the Nmax cutoff on the convergence of B(E2)
(Fig. 3a and b) shows that, for both model spaces C-1
and C-2, large Nmax values are required in order to reach
convergence. Indeed, we find that, while convergence for
the gs rotational band is achieved around Nmax = 12, the
Hoyle-state rotational band requires at least Nmax = 18
for convergence. Similar dependence on Nmax is found
for the matter rms radius of the ground state and for
the electric quadrupole moment (Fig. 3c and d, respec-
tively), both of which require at least Nmax = 12 for
convergence. The dependence on Nmax does not im-
prove with inclusion of additional symplectic irreps; that
is, convergence cannot be achieved with low Nmax and
many symplectic irreps. These observations underscore
the importance of high Nmax values for achieving con-
verged B(E2) strengths. Such Nmax values are within
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reach of the NCSpM but well-beyond that of the NCSM
calculations due to the combinatorial growth of its model
spaces with increasing Nmax values.
Dependence on model parameters – The strength
parameter γ effectively determines to what extent higher-
order many-body interactions will contribute to the cal-
culation. A study of its effect on the 12C energy spectrum
(Fig. 4a) reveals that the additional degree of freedom
associated with the γ model parameter is substantially
limited by the lowest 0+ states (with only a small effect
on the gs rotational band). Indeed, given the dramatic
variation with γ for the 0+2 and 0+3 levels, there is only a
small range of reasonable γ values. In this range, energies
and other observables, such as rms matter radii, B(E2)
transition rates, and the electric quadrupole moment (see
Fig. 4b-d, respectively), are found to be in agreement
with experiment. As the γ value decreases from the value
adopted in this model (with a limit γ → 0, for which the
NCSpM simplifies to a multi-shell Elliott model), higher-
shell excitations become energetically more favorable and
the nucleus expands spatially. This is accompanied by
enhancement of collectivity and by considerably larger
B(E2) transition strengths. Hence, the second and third
0+ states of large deformation fall below the 0+gs state
for small values of γ (Fig. 4a). In the limit γ → ∞,
the Hamiltonian becomes a harmonic-oscillator potential
plus a spin-orbit force. In this case, lowest-energy con-
figurations are favored, and the energy of the 2p-2h state
is about 2~Ω MeV lower than that of the 4p-4h state. It
is then remarkable that for the value of the γ parameter
adopted in this study – which yields reasonable repro-
duction of the Hoyle state – energy spectra and other
observables in p- and sd-shell nuclei are found in a rea-
sonable agreement with their experimental counterparts
without further adjustment [33, 34].

The spin-orbit strength κ is selected using an empir-
ical estimate (see Sec. II B), and is not adjusted in the
present calculations. However, a ±20% variation of the κ
parameter shows changes of less than ±1 MeV for states
in the low-lying energy spectrum (see inset of Fig. 4a
in Ref. [27]), and has no considerable effect on the other
observables under consideration (0.05% to 3%).

B. Deformation and giant resonances

Important information about deformation is found
through analysis of the SU(3) (λµ) configurations that
comprise the NCSpM wave function. This is based on an
established mapping [60–62] between the SU(3) (λµ) la-
bels and the shape variables used in the Bohr-Mottelson
collective model [75]. In particular, for large deforma-
tion, the labels (λ 0) and (0µ) can be associated with
distinctly prolate and oblate shapes, respectively. From
this, it is clear that, while the predominant component
of the lowest 0+ state in 12C is at 0~Ω and manifests
an evident oblate shape (Fig. 5a), the second 0+ state
(Hoyle state) peaks around 8~Ω with a clear indication of

a prolate shape deformation, with (16 0) being the largest
contribution (Fig. 5b). The strong prolate deformation
of this 0+2 state together with the significance of the 4p-
4h symplectic irrep (built on a configuration of three al-
pha particles, each occupying a single HO shell) indicate
that this 0+ state has an underlying alpha-particle clus-
ter structure. Inspection of the one-body (matter) den-
sity of the gs and 0+2 state shows an essentially symmetric
gs probability density function (Fig. 6a), while the 0+2
state shows peaks in the probability density aligned along
the z-axis (Fig. 6b). These peaks indicate overlapping
clusters forming along the z-axis for the 0+2 state, and
extending beyond 6 fm. This points to a need for next-
generation NCSM models, which are capable of ab initio
calculations in larger model spaces, in order to capture
important structural information for the Hoyle state.

EGMR B(E2; ↑) EGQR B(E2; ↓)
(MeV) (W.u.) (MeV) (W.u.)

12C 27.90 2.38 20.87 7.43

16O 29.35 21.94 23.54 8.13

20O 23.61 6.82 23.40 3.58

20Mg 23.61 15.35 23.40 8.05

20Ne 24.27 11.94 24.39 5.90

22Mg 25.17 13.16 24.97 6.43

22Ne 25.17 9.14 24.97 4.46

TABLE V: Energies in MeV of the first excited 0+ state,
EGMR, and the lowest excited 2+ state that peaks above 0~Ω,
EGQR, within the ground-state symplectic irrep for selected
p- and sd-shell nuclei, and their associated B(E2) transition
rates in W.u., B(E2; ↑) for 0+

GMR → 2+
1 and B(E2; ↓) for

2+
GQR → 0+

gs, calculated with the NCSpM using model space
C-1.

In light nuclei, both the GMR and GQR are expected
to be broad resonances, of width a few hundred keV,
and are particularly difficult to identify experimentally
because of their large overlap with other multipolarities
(see, e.g., [89]). The GMR is understood to be the first
0+ excitation of the gs symplectic irrep [47], which is
a breathing mode with a similar shape to that of the
ground state (see Fig. 5c for 12C). The GQR candidates
are identified as part of the gs symplectic irrep as the
lowest excited 2+ state that peaks above 0~Ω (Table V).
For example, for 20Mg, the gs symplectic irrep adopted is
the one that builds upon the most deformed 0~Ω config-
uration (4 2) – for this irrep, the first excited 0+ state has
a broad peak with its maximum at 2~Ω with (6 2) being
the most dominant contribution, while the third 2+ state
exhibits a broad peak with a dominant 2~Ω(6 2) config-
uration (note that the two lowest 2+ states for this irrep
peak at 0~Ω and are part of the gs rotational band).
These dominant configurations represent excitations of

the symplectic bandhead induced by the A
(2 0)
L symplec-
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FIG. 5: (Color online) NCSpM probabilities and amplitudes (insets) for (a) the ground-state rotational band in the C-1 model
space, (b) the Hoyle-state rotational band computed in the C-2 model space (these results do not change when computed in
other model spaces), and (c) the GMR and GQR for 12C computed in the in the C-1 model space. States with probabilities
≥ 0.1%, which make up 98.83%− 99.63% of the wave functions, are included in the figures.

tic generators with L = 0 for the GMRs (or equally, by
the monopole operator) and L = 2 for GQRs (or equally,
by the quadrupole operator). In general, the main con-
tributions to both GMRs and GQRs arise from excita-
tions described by multiples of the A(2 0) operators. For
12C, both the GMR and GQR have non-negligible con-
tributions up to Nmax = 14 (Fig. 5c). Because the giant
resonances are very broad in light nuclei, the inclusion of
higher Nmax configurations is critical for describing their
structure.

Previous studies of the GQR for 16O in the symplectic
framework identify the resonance near Ex = 25 MeV with
a B(E2; ↓) ≈ 17 e2fm4 or 10 W.u. [46]. The NCSpM cor-
roborates these results (Table V): it identifies the second
2+ excitation of the gs symplectic irrep of 16O at 23.54
MeV as having a similar dominant 2~Ω 1p-1h configura-
tion, with a strong B(E2) transition to the ground state.
Analysis of the GMR and GQR candidates for a selection
of p- and sd-shell nuclei shows the two resonances close in
energy, with a typically higher energy for the breathing
mode. Notably, the oblate GMR for 12C appears much
higher in energy than the prolate 4p-4h deformed state
near the Hoyle-state energy.

IV. CONCLUSION

We carried out a study of the NCSpM in applications
to 12C as well as to giant monopole and quadrupole res-
onances in light and intermediate-mass nuclei. Previous
studies have successfully employed the NCSpM to de-
scribe low-lying states of various p- and sd-shell nuclei
without any parameter adjustment. Here, we show that
the NCSpM is capable of describing α-clustering in the
Hoyle-state rotational band together with the breathing
mode in 12C, and discuss dependences of the results on
the model space considered and on γ, the only adjustable
parameter in the Hamiltonian. We note that the other
model parameters are kept fixed: ~Ω and κ are empiri-
cally estimated based on the mass A, and χ is selected
through self-consistent methods as described in Sec. II B.

By varying both the number of symplectic irreps we
include in the model space and the Nmax cutoff, we exam-
ined the dependence of NCSpM results on the horizontal
and vertical expansion of the model space. We found that
including only the spin-0 symplectic irreps built on the
most deformed bandheads and extended up to Nmax = 20
describes a compressed energy spectrum of 12C, for which
a 4p-4h 0+ state with the Hoyle-state properties was
found to lie low in energy (between the 2+ and 4+ states
of the gs rotational band). By including one additional
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(a) 0+
gs state in 12C

ρ 
(f

m
-3

)

r (fm)

z-axis 
x-axis 

(b) 0+
2 state in 12C

ρ 
(f

m
-3

)

r (fm)

z-axis 
x-axis 

FIG. 6: (Color online) Densities, shown along the x-axis (red,
dashed) and z-axis (blue, solid) for (a) the gs computed in
the C-1 model space (with no major change for the C-2 model
space), and for (b) the 0+

2 in the C-2 (and any larger) model
space. Components of the wave function with probability
> 3% are included in the calculation, comprising 95% of the
gs wave function, and 91% of the wave function for the 0+

2

state.

spin-1 0~Ω symplectic irrep, we showed the importance

of the spin-orbit interaction for reproducing the energy
spacing in the 12C spectrum. However, the inclusion of
additional Sp(3,R) irreps did not have any effect on the
calculations for the gs or Hoyle-state rotational bands,
indicating that this model space (C-2) is sufficient. We
demonstrated the necessity for the inclusion of higher-
energy excitations in the model space, both for conver-
gence of observables such as the B(E2) transitions, rms
matter radii, and electric quadrupole moments, and to
describe the wave functions of the Hoyle-state rotational
band. Higher Nmax configurations were also shown to be
key in describing candidates for the GMR and GQR.

Most importantly, we showed, for the first time, how
both collective and cluster-like structures of 12C, includ-
ing the Hoyle state and the breathing mode, emerge from
a shell-model framework extended to very high Nmax val-
ues. The ability of the NCSpM to successfully describe
the structure of 12C and other p- and sd-shell nuclei
with only a small number of basis states allows one to
study the underlying physics that would otherwise re-
quire ultra-large shell-model spaces.
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