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We analyze the spin flip loss for ultracold neutrons in magnetic bottles of the type used in
experiments aiming at a precise measurement of the neutron lifetime, extending the one-dimensional
field model used previously by Steyerl et al. [Phys. Rev. C 86, 065501 (2012)] to two dimensions
for cylindrical multipole fields. We also develop a general analysis applicable to three dimensions.
Here we apply it to multipole fields and to the bowl-type field configuration used for the Los
Alamos UCNτ experiment. In all cases considered the spin flip loss calculated exceeds the Majorana
estimate by many orders of magnitude but can be suppressed sufficiently by applying a holding field
of appropriate magnitude to allow high-precision neutron lifetime measurements, provided other
possible sources of systematic error are under control.

PACS numbers: 28.20.-v, 14.20.Dh, 21.10.Tg

I. INTRODUCTION

The neutron lifetime τn is an important parameter in
nuclear physics, particle physics, and cosmology. τn can
be combined with the neutron β-decay (n → p+e−+ ν̄e)
correlation coefficients to determine the universal weak
interaction vector and axial-vector coupling constants
whose values allow searches for semi-leptonic scalar and
tensor currents beyond the Standard Model [1–4]. A τn
of reliable precision is also needed for calculations of the
neutrino flux expected from solar and reactor sources,
including detection efficiencies [5–7], as well as in Big
Bang nucleosynthesis calculations. At present, we are
confronted by an apparent discrepancy of about three
standard deviations between the average τn from ultra-
cold neutron (UCN) storage experiments and the τn from
cold neutron beam experiments as outlined in the next
paragraph. It is the leading source of uncertainty in pre-
dictions of the primordial abundance of 4He [8–10].

Experiments determining τn employ either a beam of
cold neutrons or an ensemble of trapped ultracold neu-
trons (UCN) (see [11–16] for reviews of τn experiments).
In-beam experiments count reaction products (p or e−)
emerging from an exactly specified section of the beam
while the trapping method involves loading UCNs into
a “neutron bottle” and counting the “survivors” as a
function of the holding time. The most common τn ex-
periments to date have used material traps where the
neutrons reflect off the neutron-optical potential of the
wall. This requires correction of measured storage life-
times for reflection losses. Measuring procedures have
been applied which take into account, as well as possible,
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even loss channels which are not well understood, such
as surface contamination by hydrogenous substances.

Wall losses can be avoided by confining the UCNs
in “magnetic neutron bottles”, utilizing the interaction
energy −µ · B between the neutron magnetic moment
µ = −60.3 neV/T with a static non-uniform magnetic
field B to establish a closed trapping region. In this
scheme, only the neutrons in one spin state can be stored;
those in the other spin state are attracted towards the
wall and lost. In the field configurations commonly ap-
plied the field increases toward the wall, thus neutrons in
the low-field seeking state with spin parallel to B (i.e. µ
anti-parallel to B) are stored and should, ideally, expe-
rience no losses other than β-decay, provided that depo-
larization, i.e. the spin flip to the opposite spin state, is
sufficiently suppressed.

Until recently, UCN depolarization estimates [17, 18]
have been based on Majorana’s quasi-classical result [19]
for a model where a particle with magnetic moment
moves with constant velocity vector through an infinitely
extended non-uniform magnetic field of specific form. For
field parameters as currently used for magnetic UCN
storage the probability D of a spin flip away from the

field direction would be of order D ∼ e−106 , thus immea-
surably small.

Walstrom et al. [20], in 2009, pointed out that the val-
ues ofD for confined, rather than freely moving, neutrons
are much larger. For a particular vertical path in the field
of the Los Alamos gravito-magnetic UCN trap they cal-
culated D ∼ 10−20 − 10−23, which is much larger than
the Majorana estimate but still negligible in any actual
or projected neutron lifetime experiment.

In [21, 22] we extended this theory to general orbits
with both vertical and horizontal velocity components,
using the model of an ideal Halbach magnetic field B

where the magnitude B only depends on the vertical po-
sition. We found that the lateral motion in the plane
where the Halbach field rotates is of critical importance.
Taking it into account increases the spin-flip loss thus cal-
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culated by some 10 orders of magnitude to D ∼ 10−12 for
a field minimum (holding field) ofBh ≈ 5 mT. This trans-
lates into a spin-flip loss rate that is a fraction ∼ 10−4

of the β-decay rate and decreasing rapidly with larger
holding field.

The analysis in [20, 21] is based on the following con-
cepts: For the one-dimensional (1D) field model of [21],
the potential V (z) = gz−µB(z)/m = gz+|µ|B(z)/m for
the high-field repelled |+〉 spin state of a neutron with
mass m depends only on the vertical z coordinate. In
this model the neutrons are exposed to a uniform grav-
itational field −gẑ and a non-uniform magnetic field of
magnitude B(z). They perform an oscillatory motion
with turning points (TP) at the lower and upper hori-
zontal equipotential surfaces (ES) where vz = 0 and the
potential is V = (E/m) − v2⊥/2. Here E is the neutron

energy; vz and v⊥ =
√

v2x + v2y are the vertical and hori-

zontal velocity components, respectively. v⊥ is constant
for the 1D field model.

As the particle moves from one TP to the next, start-
ing out in a pure |+〉 spin state, its wave component for
the |−〉 spin state increases. It may change over many
orders of magnitude [20, 21], peaking at critical points
where the field magnitude B is small and the vector B

rotates rapidly in the reference frame of the moving par-
ticle. The spin flip probability is “measured” only at the
next TP where, in the Copenhagen interpretation, the
wave function collapses and UCNs in the |+〉 state re-
turn to the trapping region while the |−〉 projection sep-
arates in space and quickly becomes lost. Conceptually,
the “measurement” could be made by an ideal neutron
detector placed just next to the TP, which would inter-
sect the UCNs in the “wrong” spin state as they exit
the storage space. This “measurement’ resets the UCN
wave function to a pure initial |+〉 state for the next lap
where the sequence of wave evolution and collapse at the
following TP is repeated.

II. OUTLINE

In the present article we extend this approach to the
analysis of depolarization in cylindrical multipole fields
such as those described in Refs. [23–28], where the trap-
ping fields are generated by Halbach arrays of perma-
nent magnets [24–27] or, for [23, 28] and, earlier [29], by
superconducting currents. For these cylindrical configu-
rations we use a 2D field model which enables us to ob-
tain a semi-analytic expression for the ensemble-averaged
spin-flip loss and which can be analyzed with no need
to involve simulations. The results are consistent with
the only experimental spin-flip probabilities with vary-
ing holding field available so far [26].

For the cylindrical 2N -pole we approximate the field

in cylindrical coordinates r, φ, ζ as follows:

Br = Bmax(r/R)N−1 sin (Nφ),

Bφ = Bmax(r/R)N−1 cos (Nφ),

|B| = B(r) =
√

B2
ζ +B2

max(r/R)2N−2 , (1)

where N ≥ 2. ζ points along the cylinder axis and the
holding field Bζ is considered constant. Bmax is the trap-
ping field magnitude at the wall and the radius R (typi-
cally ∼ 5 cm) is much smaller than the length, which is
of order 1 m. This justifies the neglect of gravity for hor-
izontal configurations of this type [23] since the gravita-
tional energy varies little over the trap radius. To assess
the merits of model (1) in general we have performed 3D
simulations including gravity both for the vertical and
the horizontal cylindrical multipole configurations.
As a second application we extend the previous anal-

ysis [21] of depolarization for a 1D field model of the
Los Alamos UCNτ trap [20, 30, 31] to the actual field
in this magneto-gravitational trap with its asymmetri-
cally double-curved wall in the shape of a bowl. As in
[20] we approximate the field for the curved arrays of
permanent magnets by that of the corresponding infinite
planar array tangent to the bowl surface at the closest
point on the bowl surface. We also use the same expres-
sions for the flat-wall field, dubbed “smooth” [Eq. (5)
of [20]], “one-way ripple” [Eq. (7)] and “two-way ripple”
[Eq. (8)]. The “one-way ripple” takes into account the
finite magnet size and the “two-way ripple” also includes
the effect of iron shims between the magnets, a design
feature not implemented for the current UCNτ system
(status of 2016).
The theoretical approach is outlined in Sec. III, where

we derive a first-order approximation to the spin-flip
probability from the spin-dependent Schrödinger-Pauli
equation (SE), and in Sec. IV where we average these
results over the ensemble of orbits in the field configura-
tions of UCNτ and of multipole bottles. In Sec. V we de-
rive a higher-order solution of the spin-dependent SE and
show that it deviates very little from the first-order ap-
proximation. These various approaches are semi-classical
since the field B(t) acting on the neutron spin is deter-
mined by the classical motion of the particle through the
field. However, the results have been shown [20, 21] to be
consistent also with a fully quantum mechanical analysis
starting from the spin and space dependent SE. We show
in the Appendix that this equivalence also holds for our
extension to arbitrary field configurations.
As in [20, 21], we use the Wentzel-Kramers-Brillouin

(WKB) approximation [32] to solve the SE. This is jus-
tified since the spatial variation of field variables is much
slower than the variation of the UCN wave function. The
scales are of order cm for gravity and B, and of order µm
or less for the wavelength. Thus the wave function for
spin state |+〉 can be expressed in the WKB form except
at a TP z′ = 0, where its amplitude 1/

√

k′+(z
′) diverges

since the wave number k′+ vanishes. (See Eq. (A12) for
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details.) Furthermore, due to the slow variation of field
variables their gradients are small quantities.

III. SEMI-CLASSICAL APPROACH

Neutron lifetime experiments based on magnetic stor-
age require that the spin follows the changes of field direc-
tion along the neutron path for a time much longer than
the neutron lifetime, implying that the probability |α(t)|2
for spin |+〉, parallel to the local field, is always much
larger than the small spin-flipped part |β(t)|2. Therefore,
in order to separate large terms in the SE (e.g. those in
Eq. (6) below) from the small ones (those in (7)) it is ad-
vantageous to use a reference system which rotates with
the field experienced by the moving particle. Thus we use
the SE for spin 1/2 with quantization axis in the local
field direction, as in [20, 21]:

i~
d

dt

(

α(t)χ+(t) + β(t)χ−(t)
)

= |µ|B
(

α(t)χ+(t)− β(t)χ−(t)
)

, (2)

where the spinors

χ+ =

(

c
e+s

)

and χ− =

(

e−s
−c

)

(3)

are the orthonormal basis vectors corresponding to the
spin aligned in the direction of the local magnetic field B

and opposite to it, respectively. Here c = cos (θ/2), s =
sin (θ/2) and e± = e±iφ are given by the angles θ (polar)
and φ (azimuthal) defining the direction of B(x, y, z) at
the point x(t), y(t), z(t) through which the particle passes
along its trajectory at time t. For example, for the Los
Alamos “bowl” we choose, as in [20], the fixed Cartesian
coordinate system x, y, z where z points vertically up. y
(horizontal) and z define the vertical symmetry plane.
In this plane (x = 0) the holding field points in the x-
direction and we refer θ and φ to this fixed direction:
θ = arccos(Bx/B) and φ = arctan(Bz/By). Similarly,
for the cylindrical multipole field we refer θ and φ to the
direction of the symmetry axis.
In the reference system moving with the particle, θ

and φ depend on t. In Eq. (2) we need the temporal
derivatives χ̇+(t) and χ̇−(t) [21]

χ̇+ = Appχ
+ +Apmχ−, χ̇− = Ampχ

+ +Ammχ−, (4)

with time dependent coefficients

App =
i

2
φ̇(1 − cos θ), Apm = −1

2
e+(θ̇ + iφ̇ sin θ)

Amp = −A∗
pm, Amm = A∗

pp = −App. (5)

Amp and App are determined by the time derivatives of

the field (θ̇ and φ̇). These are small quantities as com-
pared to the wave frequency which is given by the Lar-
mor frequency ωL = 2|µ|B/~. In practical cases, |App|

and |Amp| are ∼ 10−4ωL or less even at the field min-
ima. Therefore, we will treat these quantities as small
perturbations.
Using Eqs. (3)-(5) in (2) we obtain for the terms with

χ+ in first order

α̇+
iωL

2
α = 0 (6)

and for those with χ−

β̇ − iωL

2
β = −αApm =

α

2
e+(θ̇ + iφ̇ sin θ). (7)

In WKB approximation, the solutions of ODEs (6) and
(7) are [20, 21]

α(t) = e−iΘ/2, (8)

β(t) = − iApm

ωL
e−iΘ/2 =

i

2ωL
e+(θ̇ + iφ̇ sin θ)e−iΘ/2, (9)

where Θ =
∫ t

0 ωL(t
′) dt′ is twice the phase angle accu-

mulated since the previous TP. Since α and β have the
same phase factor e−iΘ/2, the wave components α and β
propagate between TPs as a unit (they do not run apart).
This important feature had also been noted in [21].
From (9), the probability of finding the neutron in the

spin-flipped state along the way to the next TP is

p(t) = |β(t)|2 =
θ̇2(t) + φ̇2(t) sin2 θ(t)

4ω2
L(t)

=
Ω2(t)

4ω2
L(t)

. (10)

Ω(t) is the frequency of field rotation about an axis nor-

mal to the plane defined byB and Ḃ and can be expressed
as Ω = |B×Ḃ|/B2. This form holds since θ̇2+ φ̇2 sin2 θ is

the squared projection of vector Ḃ, as drawn from the tip
of vector B, onto the unit sphere. For any trajectory we
determine the arrival time at, and the position of the TPs
from the condition that the velocity component along the
gradient of potential V vanishes, v · ∇V = 0, since, at a
TP, the particle momentarily moves along the ES at a
stationary speed.
Equations (9) and (10) make use of an approximation

which we will discuss in Sec. V in connection with the
higher-order solution given in (25) and (27). In short,
this analysis shows the following features of p(t): Start-
ing from zero at a TP, p(t) increases to the value given
in (10) within a short time of order µs. Eq. (10) holds
over the entire remainder, typically 0.01 − 0.1 s, of the
motion to the next TP where p(t) is “measured”. Equa-
tion (10) shows that the result depends only on the local
field variables Ω(t) and ωL(t). It does not depend on
the path history; from (9), only the phase −iΘ/2 of β(t)
does. (This is similar to the behavior of α(t) shown in
(8).)
For the sequence of TPs encountered along a neutron

path of total duration Ttot we determine the spin-flip rate
between consecutive TPs at ti−1 and ti by dividing p(ti),
from (10), by the time interval ∆Ti = ti − ti−1. Taking
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into account the probability ∆Ti/Ttot of finding the par-
ticle on this path element the spin-flip rate for the entire
path becomes

1/τdep =
1

Ttot

n
∑

i=1

p(ti), (11)

where n is the number of TPs encountered. Finally, the
depolarization rate measured in the experiments is the
ensemble average over all paths, which is determined by
the source characteristics and by spectral cleaning. We
assume an isotropic Maxwell spectrum, thus an energy
independent phase space density (PSD). The Boltzmann
factor e−E/kBT is close to unity since UCN energies E,
which are of order . 10−7 eV, are much lower than kBT
even for a low trap temperature T . The corresponding
velocity dependence of the spectrum is f(v) ∼ v2.
Relation (10) is also obtained in a fully quantum me-

chanical approach using the space and spin dependent SE
in WKB approximation [20, 21]. This equivalence holds
for any field geometry as shown in Appendix A.

IV. ENSEMBLE AVERAGE OF SPIN-FLIP LOSS

In actual magnetic UCN storage systems it is difficult
to make sure that the spectrum is isotropic and fills phase
space uniformly up to the trapping limit. In practice this
would require the complete removal of UCNs with ener-
gies slightly exceeding the limit. These tend to be in
quasi-stable orbits lasting for times of the order of τn,
thus affecting the precision of a measurement of τn. De-
viations from the Maxwell spectrum may also be due to
the characteristics of the UCN source and of UCN trans-
port to the trap but we will disregard these differences
since they are expected to be of minor importance for the
specific loss due to spin flip.

A. 1D field model

For the 1D field model of Ref. [21] the condition of
constant PSD was taken into account as follows: The
spin-flip probability was averaged over the vertical veloc-
ity component vz0 in the plane z = z0 where the gravita-
tional downward force, −mg, is balanced by the magnetic
upward force, −µd|B|/dz. z0 is the 1D equivalent of an
elliptic fixed point O and z = z0 is the only plane where
UCNs of any energy E can reside, down to E = 0 and
up to the maximum value for trapping. (Here and hence-
forth we set the potential V = 0 at O and assume that
there are no other potential minima in the trapping re-
gion; this is the case for the field configurations presently
used or proposed.) For any other height, the lower en-
ergy limit is nonzero. Therefore, to include all possible
orbits in the averaging process we have to choose z0 as
the reference height, and since the statistical distribution

of vz0 values is uniform for uniform PSD, the mean de-
polarization rate is given as the average of 1/τdep as a
function of vz0.
To analyze the depolarization between consecutive TPs

we start trajectories from a TP, not from the fixed point
O; so we have to connect the statistics at z0, which is
given by a uniform distribution of vz0, with the distribu-
tion P (z) of launching height z for given vz0. P (z) follows
from energy conservation: The potential at the launch-
ing point is V (z) = v2z0/2, thus (dV/dz)dz = vz0dvz0.
Therefore, to represent constant spacing in velocity space
(∆vz0 = const.) for orbits launched at height z we have
to choose the density P (z) of launching points propor-
tional to

1

∆z
=

|dV (z)/dz|
vz0 ∆vz0

=
|dV (z)/dz|

(∆vz0
√
2)
√
V
,

thus P (z) =
|dV (z)/dz|
√

V (z)
, (12)

where we have omitted the irrelevant constant factor
1/(∆vz0

√
2). In this form, P (z) is neither normalized

nor made dimensionless. This is not necessary since in
the simulations described below we use von Neumann’s
acceptance or rejection method to implement probability
distributions. For this purpose we only need the relative
value P/Pmax where Pmax is the maximum value of P
for the ensemble of trajectories.

B. General 3D field models

Now we adapt this result to arbitrary 3D field mod-
els as are relevant for the Los Alamos bowl [20]. In this
system the asymmetry introduced by the choice of two
different radii of curvature along the rows of Halbach
field magnets helps to randomize the orbits although fully
mixing phase flow cannot be achieved. To select a repre-
sentative sample of orbits for depolarization calculations
we assume that most particles with energy E below the
trapping limit will, at some time, be found at rest. (This
would be the case for full phase mixing and is a reason-
able approximation for UCNτ . Moreover, for the argu-
ment made below it suffices to assume that, at some time
during storage, the particle is slowed down, by field gra-
dients, to a small velocity, not necessarily to a full stop.)
At the time of a momentary halt the particle has just
reached the ES V = E/m = constant. It will then be
accelerated back into the region of lower potential in the
direction perpendicular to the ES.
Taking these points as the initial position for simu-

lated trajectories starting from rest we make sure that
the particle remains within the volume bounded by the
ES with potential V = E/m (as long as no spin flip to
the |−〉 state takes place). The statistical distribution of
launch points in space is determined by the following ex-
tension of (12) to 3D geometry: We relate the launching
point to the fixed point O in the same way as for the 1D
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TABLE I: Mean depolarization rate 〈1/τdep〉 [10
−9/s] for the

Los Alamos UCNτ field

Bx0[T ] smooth one-way ripple two-way ripple

0.1 0.022(1) 0.023(1) 0.024(1)

0.03 0.32(1) 0.33(1) 0.31(1)

0.01 1.6(1) 1.7(1) 1.9(1)

0.001 9.4(1) - -

field model. Equating the initial energy E = mV (x, y, z)
with the kinetic energy at O, E = mv20/2, we differentiate
V (x, y, z) = v20/2. This gives ∇V ·ds = |∇V | ds = v0 dv0
where we have taken into account that the path element
ds is parallel to the gradient of V (x, y, z) at the launch-
ing point. Furthermore, in the immediate vicinity of O
the potential is constant, thus the spatial density is sta-
tionary. Hence, to satisfy uniformity of PSD the density
in velocity space must be uniform: ∆v0 = const., and
we have to choose the spatial density of launching points
proportional to

1

∆s
=

|∇V |
v0 ∆v0

=
|∇V |

(∆v0
√
2)
√
V
.

As in (12) we can ignore the constant factor 1/(∆v0
√
2)

and define

P (x, y, z) =
|∇V (x, y, z)|
√

V (x, y, z)
(13)

as the (non-normalized) probability distribution repre-
senting the number of launch points per unit volume at
position (x, y, z).
We use this method to select random launching points

for simulated orbits in UCNτ for the three field mod-
els, “smooth”, “one-way ripple” and “two-way ripple”,
and the toroidal-shaped holding field coil geometry de-
scribed in [20]. We approximate the latter by a complete
(360◦), tightly wound torus, thus neglecting end effects
and ripples for the holding field. Averaging the spin-flip
rate (11) over a sample of some 103 orbits, each of du-
ration Ttot = 10 s with n ≈ 100 TPs, for four values of
holding field Bx0 at the bowl bottom, we obtain the de-
polarization rate 〈1/τdep〉 shown in Table I. The results
are consistent, within a factor of two, with those given in
Fig. 3 of [21] for the 1D field model: 〈1/τdep〉 ≈ 4× 10−9

s−1 for Bx0 = 5 mT and 〈1/τdep〉 ≈ 5 × 10−11 s−1 for
Bx0 = 50 mT. Fig. 1 shows as squares the 1D calculation
of [21] and as circles the present 3D calculations for the
smooth-field model. In the range Bx0 & 5 mT the data
are represented reasonably well by the proportionality
〈1/τdep〉 ∼ B−2

x0 as indicated by the dashed line.
Table I shows that the field ripple has a minor effect

on the net depolarization loss. This is plausible since the
ripple only affects the immediate vicinity, of order mm,
of the wall which contributes little to the spin flip since
the adiabatic condition Ω ≪ ωL is well satisfied in the
region of high field strength near the wall.
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FIG. 1: (Color online) Comparison of spin flip loss rate cal-
culated in [21] for the Los Alamos UCNτ trap [20] using a 1D
field model (blue squares) with the present 3D calculation for
the smooth field given in Eq. (5) of [20] (red circles). In the
range Bx0 & 5 mT the data are represented reasonably well
by the power law 〈1/τdep〉 ∼ B−2

x0 as shown by the dashed
line.

C. Cylindrical multipole fields

1. Results for the field model of equation (1)

We use the field of an ideal cylindrical multipole given
in Eq. (1), which does not take into account the devi-
ations induced in the actual designs by the discrete ge-
ometry of electric currents [23, 28], or by the permanent
magnet blocks with constant magnetization within each
block in the schemes of Refs. [20, 24–27].
Equation (1) neglects gravity and assumes a uniform

holding field Bζ in the axial direction. With these sim-
plifications, the field is determined only by the polar
coordinates r and φ in the plane perpendicular to the
axis. Moreover, the field magnitude B and the force
−|µ| dB/dr acting on a |+〉 spin UCN depend only on
r. In this central force field the equipotential lines are
concentric cylindrical shells. Energy E and angular mo-
mentum Lζ about the symmetry axis are conserved. (For
vertical systems, Lz is conserved also in the presence of
gravity as well as for variable Bζ , as for end fields, as long
as the potential V remains cylindrically symmetric.)
The orbits of the 2D hexapole (2N = 6) are ellipses.

Analytic expressions for the orbits, in terms of elliptic
integrals, exist also for the quadrupole (2N = 4), de-
capole (2N = 10) and for 2N = 14 [33]. Alternatively,

the radial equation of motion, ṙ =
√

2 (E − Veff (r)) /m,
in the effective potential Veff (r) = V (r)+L2

ζ/(2m
2r2) is

readily solved numerically for any N(≥ 2). There are two
apsidal radii, rmin and rmax, and the orbits are symmet-
ric about the angular positions of these TPs. Therefore,
it suffices to analyze only the path section between any
consecutive TPs.
We average over all possible orbits confined within the
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trap radius R and subject to the requirement of uniform
PSD as follows. Choosing the radius r1 < R of an ES we
consider all orbits which turn around at r1. Subset a of
these orbits comes from the inside and has 0 ≤ rmin ≤ r1
and rmax = r1. The other subset b of orbits comes from
the outside and has rmin = r1 and r1 ≤ rmax ≤ R. In
case a (b) the region exterior to the storage space for spin
|+〉 is the range r > r1 (r < r1). In either case, a spin-
flipped UCN entering this “forbidden zone” is attracted
toward the high field at the wall and considered as lost.

The classification a or b is determined by the peripheral
velocity v1 at r1: For group a the range of v1 is between
0 (for the radial path from or toward the center r =
0, for which the angular momentum is zero) and vc =
√

r1F (r1)/m with centripetal force F (r1) = mdV/dr1.
In the latter limit the path is circular with radius r1. For
group b, v1 ranges from vc (circular) to v2 for the limiting
path skirting the wall (rmax(v2) = R). In each case, the
second turning radius and the time ∆t(r1, v1) it takes
from one TP to the next are found numerically from the
radial equation of motion.

To determine the statistical weight of a given orbit
with one TP at radius r1 we have to modify the strategy
used for the UCNτ field. In that case we considered only
the sample of orbits where the particle starts from rest
at the ES with the highest potential, V = E/m, reached
for given energy E.

For the cylindrical multipole field (1) only regular or-
bits exist and releasing a particle from rest would cover
only the subset (of measure zero) of trajectories with an-
gular momentum zero, which oscillate radially through
O (the axis r = 0). However, field (1) is an idealization
and in the physical situations field irregularities such as
“ripples” and stray fields in the axial ζ direction are un-
avoidable. As far as the statistics of orbits perturbed
in this way goes, the following strategy appears justi-
fied: For a path turning around at r1 with peripheral
velocity v1 we consider the ES of radius ρ such that
V (ρ) = E/m = V (r1) + v21/2 and relate the statistical
weight for radius ρ to the uniform phase-space density at
O. As in Secs. IVA and IVB we differentiate the energy
balance between r = ρ and r = 0, E/m = V (ρ) = v20/2,
and obtain the proportionality

∆v0
∆ρ

∼ dV (ρ)/dρ
√

V (ρ)
. (14)

Multiplying by ρ to take into account the number of al-
lowed points along the circle with radius ρ we derive for
the weighting factor for radius ρ, and therefore also for
the probability P (r1, v1) for an orbit with apsidal radius
r1 and apsidal velocity v1:

P (r1, v1) = ρ
dV (ρ)/dρ
√

V (ρ)
(15)

where, by definition of V (ρ) and using (1),

V (ρ) = V (r1) + v21/2

= (|µ|/m)
(√

B2
ζ +B2

max(ρ/R)2N−2 −Bζ

)

. (16)

To evaluate dV (ρ)/dρ in (15) we have to take into ac-
count the dependence of V (ρ) and of

ρ = R

{

[mV (r1) + |µ|Bζ +mv21/2]
2 − |µ|2B2

ζ

|µ|2B2
max

}1/(2N−2)

(17)
(from (16)) on r1 and v1:

dV (ρ)

dρ
=

∂V (ρ)/∂r1
∂ρ/∂r1

+
∂V (ρ)/∂v1
∂ρ/∂v1

= 2
dV (r1)/dr1
∂ρ/∂r1

,

(18)
where we have used ∂ρ/∂v1 = [v1/(dV (r1)/dr1)]
×(∂ρ/∂r1) which follows from (17) with the help of
∂V (ρ)/∂r1 = dV (r1)/dr1 and ∂V (ρ)/∂v1 = v1. The re-
sult is

P (r1, v1) =

µ2B2
t (r1) + |µ|B(r1)mv21 +m2v41/4

(|µ|B(r1) +mv21/2)
√

|µ|[B(r1)−Bζ ] +mv21/2
, (19)

where Bt(r) = Bmax(r/R)2N−2 and B(r) =
√

B2
ζ +B2

t

are the multipole fields without and with holding field Bζ ,
respectively, and we omitted the constant factor N − 1.
Weight factor (19) determines how the depolarization

rate from (10) is averaged over all paths. At TPs we

have θ̇ = 0 since θ depends only on r and ṙ = 0. (Here
we measure θ from the ζ-axis.) The angular velocity of
trapping field rotation experienced by a neutron moving
through a TP is φ̇ = (N − 1)v1/r1. Thus, averaging
p/∆T from (10) over the ensemble of paths the overall
depolarization rate becomes

〈1/τdep〉 =
(N − 1)2

ν

∫ R

r1=0

dr1
sin2 θ(r1)

4r21ω
2
L(r1)

×
∫ v2(r1)

v1=0

dv1 P (r1, v1)
v21

∆t(r1, v1)
, (20)

with Larmor frequency ωL(r1) at radius r1 and normal-

ization constant ν =
∫ R

0
dr1

∫ v2(r1)

0
dv1 P (r1, v1).

Numerical results for a wide range of multipole orders
2N are shown in Fig. 2 for R = 4.7 cm and Bmax =
1.3 T. These are typical values for multipole traps; we
keep these parameters the same for hypothetical systems
where only the multipole order 2N is varied and use Bζ =
0.001 T, 0.01 T and 0.1 T for the holding field. To show
the behavior of 〈1/τdep〉 vs.N more clearly we have added
the half-integral values N = 5/2 and N = 7/2 which
cannot be realized with magnetic fields.
Our calculation for the octupole (2N = 8) at Bζ = 1

mT gives 〈τ−1
dep〉 = 1.5×10−5 s−1. This result is consistent
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FIG. 2: (Color online) Mean spin-flip rates calculated from
Eq. (20) for a cylindrical multipole trap vs. order 2N . The
purple, red and black points (down triangles, closed circles
and diamond symbols) represent integer N ; the intervening
orange, blue and green points (open circles, squares and up
triangles) are for half-integral N .

with the order of magnitude τdep = (4 ± 16) × 104 s−1

given in Table IV of [26] for a solenoid current 3 A which
corresponds to Bζ & 1 mT. (In experiment [26] some
depolarization may have been caused by reflection on the
Fomblin-coated wall at the bottom of the trap.)

The depolarization rates calculated from (20) for the
multipole traps are about 10 times those for the 3D
UCNτ field for the same holding field. The difference
may be attributed to the small radius R = 4.7 cm used.
The dimensions of the UCNτ field are larger,∼0.5 m, and
therefore the average field gradient is smaller. Our calcu-
lations for a cylindrical multipole with large radius R = 1
m, a value similar to the multipole design of Ref. [28],
gives ≈ 102 times lower spin-flip losses for the same val-
ues of Bζ .

We have evaluated expression (20) for the mean de-
polarization rate, taking into account all possible flight
paths subject to the condition of constant PSD and con-
fined to a cylinder of radius R. This was possible since
all orbits are regular for model field (1).

By contrast, the orbits in the actual magnetic traps are
perturbed and may show instability. In this case we rely
on sampling. For instance, for the Los Alamos UCNτ
system with its field asymmetry we have considered, in
Sec. IVB, only orbits for which the particle velocity and
angular momentum vanish at some time.

Applying the same method to 3D simulations for verti-
cal multipole configurations including gravity would not
provide a proper sample of orbits since these systems con-
serve angular momentum about the vertical axis, Lz = 0.
All paths launched from rest would be confined to ver-
tical planes passing through the central axis, as stated
earlier.

TABLE II: Mean depolarization rate 〈1/τdep〉 [10−9/s] from
3D simulations for cylindrical multipoles with gravity and end
coils included

2N 4 8 20

HOPE, vertical [4.1(1)] 0.34(1) [0.78(1)]

HOPE, horizontal [0.61(1)] 0.15(1) [0.89(1)]

NIST, mark 2 0.43(1)

NIST, mark 3 0.021(1)

2. 3D simulations for multipole fields

We include orbits with Lz 6= 0 as follows. Choosing a
random initial position Q within the trap volume a par-
ticle is launched with initial velocity vector v1 tangential
to the ES at Q and pointing in a random direction within
the launch plane. To conform to a uniform distribution in
velocity space the endpoint of v1 is uniformly distributed
within the area of a disk whose radius is determined by
the maximum velocity for particle trajectories confined
to the trap volume. This and the following operations
correspond to those described for the 2D field model (1)
in Sec. IVC1 but averages over the circular ESs of the
latter model are now replaced by averages over ESs of
general shape in 3D space. Based on (13), this leads
to an approximation for the weight factor P (r1,v1) for
launch at position r1 and initial velocity v1 and, finally,
to the mean depolarization rate 〈1/τdep〉 by averaging
(11) over some 103 orbits, each of duration Ttot = 10 s
with n & 500 TPs.
We approximate the effect of spectral cleaning in UCN

storage experiments by specifying the largest energy
Emax of stored particles. The calculations of 〈1/τdep〉
shown in Table II use Emax ≈ 0.8 times the value
|µ|Bhigh for the highest field Bhigh in the trap and are
based on the field parameters of the following two de-
signs:
(a) The HOPE octupole magnet [26] has bore radius

4.7 cm and its axis oriented vertically or horizontally.
For the vertical configuration we assume activation of
only the bottom solenoid with a maximum axial field of
1.4 T while gravity provides the cap. With both end
field solenoids activated in the horizontal configuration
we assume fields of 1.4 T on both ends, separated by a
distance of 1.13 m, without activating the long holding
field solenoid. The radial confinement field is Bmax = 1.3
T at the trap wall.
(b) Two horizontal Ioffe type quadrupole magnets have

been used at NIST [34, 35] (versions mark 2 and mark 3).
For mark 2 (mark 3) we use maximal fields of, axially:
1.4 T (4.0 T), and radially: 1.3 T (3.9 T), a trap radius of
5 cm (5 cm) and a separation of 0.4 m (0.76 m) between
the centers of the end field solenoids; for mark 2, the
latter include “bucking” coils [34, 35] causing the axial
field to drop off more quickly to a minimum of 0.1 T at
the trap center. For mark 3, the minimum field is 0.6 T.
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Since the depolarization rates depend only weakly on
the details of the field distribution, such as field ripples,
we use the smoothed fields and approximate the solenoid
fields by their values on the solenoid axis, neglecting the
variations of field magnitude and direction over the trap’s
cross section. The results are shown in Table II.
For the HOPE-type system we include, in square

brackets, also systems with the same geometries and
maximum fields but different multipole order 2N . We
observe the same tendency as for the 2D calculations of
Fig. 2: The depolarization rates for 2N = 4 and 2N = 20
are higher than in the intermediate range (2N ∼ 8). This
can be explained by higher field gradients, near the axis
for low N and near the wall for high N .
As a further general feature, the magnitudes and N

dependence of 〈1/τdep〉 from the 3D simulations in Table
II are well approximated by the 2D results from Fig. 2 if
we use values of holding field close to their minima: 0.08
T/0.1 T for HOPE (vertical configuration with Bmin =
0.013 T/horizontal with Bmin = 0.09 T) [26] and 0.1 T
(0.6 T) for NIST mark 2 (mark 3) with Bmin ≈ 0.1 T
(0.6 T) [34, 35].
Finally, 〈1/τdep〉 approximately scales like B−2

ζ . A sim-

ilar increase of 〈1/τdep〉 with decreasing holding field is
also seen for UCNτ as shown by the dashed line in Fig. 1.
As an application of scaling in an experiment, we could
deliberately lower the holding field to enhance the depo-
larization loss to a measurable level to verify that the loss
for the actual field is negligible.

V. A HIGHER-ORDER SOLUTION

In this section we compare the first-order approxima-
tion for the spin-dependent SE, Eqs. (6), (7), with a
higher-order approach where we retain all the terms with
Apm and App [given in (5)], which arose from the trans-
formation to the reference system rotating with the field:

α̇+
iωL

2
α = −Appα+A∗

pmβ, (21)

β̇ − iωL

2
β = −Apmα+Appβ. (22)

The coupled first-order ODEs (21) and (22) can be solved
by direct numerical integration with initial conditions
α(0) = 1, β(0) = 0 for a particle starting in the |+〉
state at t = 0.
Alternatively, we can use the perturbation approach

developed in [36] for searches for a permanent electric
dipole (EDM) of the neutron, to solve the SE for spin
1/2 up to second order of small perturbations. In the
EDM case the UCN spin state is perturbed by magnetic
field inhomogeneities and a strong static electric field. In
Eqs. (21) and (22) the perturbations are the terms on the
RHS, which are much smaller than those on the left.
To facilitate comparison with [36] we define Σpp(t) =

−2iApp(t) (real-valued), Σ(t) = −2iApm(t) (complex),

ω1(t) = ωL(t) + Σpp(t) and Θ1(t) =
∫ t

0
ω1(t

′) dt′. In

practical cases, Σpp is at least 104 times smaller than ωL;
thus ω1 is very close to ωL.
The transformations α(t) = u(t) e−iΘ1(t)/2, β(t) =

w(t) eiΘ1(t)/2 turn Eqs. (21), (22) into

iu̇(t) =
1

2
Σ∗(t)w(t) eiΘ1(t),

iẇ(t) =
1

2
Σ(t)u(t) e−iΘ1(t). (23)

These coupled ODEs for u and w have the same form
as Eqs. (7) for αr and βr in [36]. The only difference is
the arguments of the exponential functions. In [36], the
SE was transformed into the reference frame rotating at
constant frequency ω0 for constant applied Larmor field.
In the present case, ω1(t) can be an arbitrary function of
t; thus the phase factor e±iω0t is replaced by e±iΘ1(t).
We combine the two first-order ODEs (23) into the

single second-order ODE for u(t):

ü(t)−
(

iω1(t) +
Σ̇∗(t)

Σ∗(t)

)

u̇(t) = −1

4
|Σ(t)|2u(t) (24)

which has the same form as Eq. (8) of [36] with ω0 in
the first term of the expression in brackets replaced by
ω1(t). This additional time dependence does not affect
the method of solving (24) since the second term is time-
dependent in either case. The initial conditions, u(0) = 1
and w(0) = 0, are the same as for the EDM case with
initial spin up (αr(0) = 1, βr(0) = 0).
Following the steps (11) to (18) of [36] we derive

w(t) =
2iu̇(t)

Σ∗(t)
e−iΘ1(t) = − i

2
(Σi(t)− Σi(0))

= − i

2

∫ t

0

dt′ e−iΘ1(t
′) Σ(t′) (25)

where Σi(t) =
∫

dt e−iΘ1(t) Σ(t).
The initial value, w(0) = 0 at t = 0, satisfies the re-

quired initial condition β(0) = 0. As t increases, the
integral in (25) rapidly increases on a time scale of or-
der tmin = 1/ω1(0) ≈ 1/ωL(0). In practical applications
this is a very short time since the Larmor frequency ωL is
large everywhere inside the trap volume, even at the field
minimum where B is the holding field. For B(0) = 0.01
T, tmin = π~/(|µ|B(0)) ≈ 3 µs.
For times t > tmin it is advantageous to change the

integration variable in (25) from t′ to Θ1, with dt′ =
dΘ1/ω1, and to integrate by parts:

w(t) =

[

Σ(t) e−iΘ1(t)

2ω1(t)

]t

0

− 1

2

∫ t

0

dt′ e−iΘ1(t
′) d

dt′

[

Σ(t′)

ω1(t′)

]

.

(26)

We did not employ the WKB approximation to derive
Eq. (26) but its use enables us to evaluate it analytically:
We can neglect the last term in (26) since the field vari-
able Σ/ω1 varies slowly on the wavelength scale and get,
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with (5),

β(t) = w(t) eiΘ1(t)/2 =
Σ(t) e−iΘ1(t)/2

2ω1(t)

=
i

2ω1(t)
e+(θ̇ + iφ̇ sin θ)e−iΘ1(t)/2. (27)

In (27) we have set the integration constant from the
lower limit t = 0 of the first term in (26) equal to zero,
and an equivalent approximation had also been made in
deriving the first-order solution (9) which differs from
(27) only by the replacement of ω1 by ωL. The detailed
justification in [21], below Eq. (28), can be summarized
as follows. Equations (9) and (27) are semi-classical since
the SE is solved for the time dependent field B(t) deter-
mined from the classical equations of motion. A fully
quantum mechanical treatment requires the solution of
the spin and space dependent SE as in [20, 21] and in
Appendix A. In this quantum analysis the exact solu-
tion for the wave function near a TP involves the Airy
functions and the TP is blurred into a nonzero region
(typically of order µm). So is the starting time at a
TP. Thus, the initial value of the first term in (26), at
t0 ≈ 0, which is ∼ e−iΘ1(t0) ≈ e−iω1(0)t0 , should be av-
eraged over the rapidly varying phase ω1(0)t0 with the
result

〈

e−iΘ1(t0)
〉

t0
= 0. This holds except for the initial

few micrometers of the path subsequent to a TP.
Outside of this region we have, from (27) and (5),

|β(t)|2 = |w(t)|2 =
|Σ(t)|2
4ω2

1(t)
=

|Apm(t)|2
ω2
1(t)

=
Ω2(t)

4ω2
1(t)

. (28)

Eq. (28) agrees with the first-order solution (10) if we
replace ωL by ω1. As we have seen, in practical cases the
difference between ωL and ω1 is negligible.
Fig. 3 shows the time-dependence of spin-flip proba-

bility |β(t)|2 for a particle released from rest at an arbi-
trary position in UCNτ , here (x, y, z) = (−0.1, 0.2, 0.3)
m, calculated in three ways: (a) The analytic results
from Eqs. (10) and (28) (solid curve), and the numer-
ical solutions (b) of differential Eq. (9) (dashed) and (c)
of ODEs (21) and (22) (dot-dashed). The three curves
closely agree except within short time intervals tmin . 10
µs subsequent to passage though TPs at nonzero velocity,
such as the TPs marked by the arrows. The deviations
(not shown in Fig. 3) are due to the reset to β = 0 at a
TP. They are shown in detail in Fig. 4 for a UCN moving
away from a TP at (x, y, z) = (−0.1, 0.2, 0.2) m at initial
velocity 2 m/s tangential to the local ES. As expected
from Eq. (26), |β|2 jumps, within a few Larmor periods
(. 10 µs), from 0 to the asymptotic curve given by (10)
(or (28)). The remainder of the wave evolution up to the
next TP, shown by the arrow, is practically unaffected
by the transient at t ≈ 0.
As a crucial test of the validity of numerical integration

of (21), (22) we verified the norm, |α(t)|2+|β(t)|2, to be 1
within 1 ppm. The demands on the precision of numerical
integration of (9), (21) and (22) become more stringent
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FIG. 3: (Color online) Magnitude squared of spin-flip am-
plitude β for UCNs released from rest at position (x, y, z) =
(−0.1, 0.2, 0.3) m in the Los Alamos UCNτ “smooth field”
[20]. The analytic results, Eqs. (10) and (28) (blue solid),
and the numerical solutions of ODE (9) (red dashed) and of
ODEs (21), (22) (green dot-dashed) closely agree. The first
two turning points, shown by arrows, are at 0.2108 s (when
the particles pass the field minimum at a close distance) and
0.2291 s (when they are reflected at the high field near the
wall). The reset of β to zero at these turning points and its
subsequent fast increase, within microseconds or less, to the
values given by the curves are not shown.

for paths through regions of higher magnetic field since
large Larmor frequencies require short time steps.

VI. SUMMARY AND CONCLUSIONS

The spin-flip loss in magnetic storage of UCNs in the
Los Alamos UCNτ permanent magnet trap had been an-
alyzed theoretically in [20] for neutrons on a specific ver-
tical path, and in [21] for arbitrary motion. In the latter
work we used a 1D model for the trapping field. In the
present article we have extended this analysis to arbi-
trary orbits in arbitrary fields in 3D space and report
calculations of mean spin-flip rates for the UCNτ sys-
tem and for multipole fields such as the cylindrical oc-
tupole of the HOPE project [25, 26] and the Ioffe-type
quadrupole trapping fields of [23, 34, 35]. In all cases
relevant to magnetic UCN storage we have established
agreement between the semi-classical approach, solving
the spin-dependent SE for the time-dependent field seen
by the particle in a classical orbit, and a fully quantum
mechanical analysis based on the space and spin depen-
dent SE solved in WKB approximation. The relative
difference between a first-order treatment (in Sec. III)
and a higher-order analysis (in Sec. V) of depolarization
in the semi-classical framework is at most on the order
of 10−4 in practical applications.
We confirm and generalize the earlier conclusions of
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FIG. 4: (Color online) Spin-flip probability |β|2 for UCNs
launched in UCNτ at time t = 0 from a TP at (x, y, z) =
(−0.1, 0.2, 0.2) m at velocity (vx, vy , vz) = (0,−2, 0) m/s (tan-
gential to the local equipotential surface). The numerical in-
tegrations of ODE (9) (red dashed) and of ODEs (21), (22)
(green dotted) show the rapid increase, within a few Larmor
periods, from β = 0 at t = 0 to the asymptotic behavior given
by Eqs. (10) and (28) (blue solid). The ensuing evolution of
|β|2 up to the next TP (shown by the arrow) is practically
unaffected by the transient behavior at t ≈ 0.

[20, 21] relating to “Majorana spin flip at zeros of the
magnetic field”. Magnetic UCN traps avoid locations of
vanishing field by applying a holding field Bh perpen-
dicular to the trapping field. For typical values of Bh

we calculate spin-flip probabilities which are greater, by
many orders of magnitude, than the Majorana predic-
tion [19] which had been derived for fast particles mov-
ing in an infinitely extended field rather than the slow
UCNs trapped in fields of finite extent. For the magnetic
traps investigated we have found an approximate power
law behavior of spin-flip loss rate as a function of Bh:
〈1/τdep〉 ∼ B−2

h , see Figs. 1 and 2, to be compared with

the exponential behavior, ∼ e−πξ/2 with adiabaticity pa-
rameter ξ = ωL/Ω, for the Majorana case [19].

Numerical results for the depolarization rate 〈1/τdep〉
are summarized in Table I and Fig. 1 for UCNτ and
in Table II and Fig. 2 for cylindrical multipole fields
as for the HOPE and NIST systems. We find good
agreement between the analytical calculations for sim-
plified low-dimensional model fields (1D for UCNτ in
[21] and 2D for multipoles in the present Sec. IVC1)
and the more elaborate simulations for 3D field mod-
els closer to fields used in experiments. As shown in
Fig. 1, 〈1/τdep〉 strongly depends on Bh and less pro-
nouncedly on multipole order 2N . For the design fields
of HOPE (in horizontal or vertical configuration with-
out activating the long holding field solenoid) we ob-
tained 〈1/τdep〉 ∼ 10−10/s. The corresponding values for
NIST (mark 3) are 〈1/τdep〉 ∼ 10−11/s (see Table II) and

∼ 10−9/s for UCNτ with Bh = 0.01 T (see Table I).
We conclude that Bh can always be increased to a

strength that renders spin-flip losses negligible compared
to other possible sources of systematic error in preci-
sion neutron lifetime experiments, foremost that due to
marginal trapping. (We leave aside the more fundamen-
tal question raised in [37] whether or not neutron lifetime
values derived from storage experiments should indeed be
identical to those from beam-type experiments).
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Appendix A: Quantum analysis

The space and spin dependent wave function Ψ for
a neutron with energy E moving in a gravito-magnetic
trapping field satisfies the SE

EΨ =

[

− ~
2

2m
∇2 +mgz + |µ|σ · B(x, y, z)

]

Ψ (A1)

where Ψ = α(3)(x, y, z)χ+ + β(3)(x, y, z)χ− and σx, σy

and σz are Pauli matrices. Superscript (3) indicates that
α(3)(x, y, z), for the spin-up wave (relative to the local
magnetic field direction), and β(3)(x, y, z), for the spin-
down wave, are functions of the three spatial coordinates.
The derivatives of χ+ and χ− with respect to j = x, y, z

are of the same form as the temporal derivatives (4). In
terms of the spin angles θ and φ and of e± = e±iφ as
defined below Eq. (3) we have

χ+
j =

i

2
φj(1 − cos θ)χ+ − 1

2
e+(θj + iφj sin θ)χ

−, (A2)

χ−
j =

1

2
e−(θj − iφj sin θ)χ

+ − i

2
φj(1− cos θ)χ−, (A3)

where the subscript j denotes partial differentiation.
Keeping only the dominant contributions, as in

Eqs. (6) and (7), the Laplacian in (A1) reads

∇2Ψ = (α(3)
xx + α(3)

yy + α(3)
zz )χ

++ (A4)






(β(3)
xx + β(3)

yy + β(3)
zz )− e+

3
∑

j=1

α
(3)
j (θj + iφj sin θ)







χ−.

Thus, in WKB approximation the spatial wave functions
satisfy

∇2α(3) + k2+α
(3) = 0, (A5)

∇2β(3) + k2−β
(3) = e+

∑

j=x,y,x

α
(3)
j (θj + iφj sin θ), (A6)

where

k2±(x, y, z) =
2m

~2
[E −mgz ∓ |µ|B(x, y, z)] (A7)
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are the squared local wave numbers for the (+) and (−)
spin state, respectively.
Now we consider a UCN with spin (+) starting at time

t = 0 at a TP and arriving at t = ∆T at the next TP
which we label U . At U the UCN momentarily moves
along the local ES at constant speed and we introduce a
local Cartesian system of coordinates centered at U with
x′ and y′ in the plane of this ES. z′ points away from the
direction into which the UCN is reflected.1 Coordinate
system x′, y′, z′ is defined for the narrow space where the
ESs can be considered flat (over a region commensurate
with the UCN wavelength) and parallel to one another.
Since the α(3) and β(3) constituents of the wave func-

tion move as a unit the wave numbers kx′ and ky′ are the
same for both. Thus we put

α(3)(x′, y′, z′) = α(z′) eikx′x′

eiky′y
′

,

β(3)(x′, y′, z′) = β(z′) e+ eikx′x′

eiky′y
′

. (A8)

As in [21], e+ = eiφ can be interpreted as a Bloch-wave
modulation due to the field rotation.
Substituting (A8) in (A5) and (A6) we obtain

d2α(z′)

dz′2
+ k′2+(z

′)α(z′) = 0 (A9)

and
[

d2β(z′)

dz′2
+ k′2−β(z′)

]

eikx′x′

eiky′y
′

=
∑

j=x′,y′,x′

α
(3)
j (x′, y′, z′)(θj + iφj sin θ), (A10)

where the wave numbers for the z′ direction are given by

k′2± = k2± − k2x′ − k2y′ (A11)

with k2± defined in (A7). Among the components of k+
and k−, the z′ component k′+(z

′) plays a special role.
Even within the narrow space where the primed system
of coordinates has been defined, k′+ is not constant. It
becomes zero at the TP z′ = 0 and, in this semi-classical
picture, is only defined for z′ ≤ 0.
In WKB approximation the solution of (A9) is

α(z′) =
1

√

k′+(z
′)
eiX

′

+(z′) (A12)

with X ′
+(z

′) =
∫ z′

k′+(u)du. (The exact quantum solu-
tion in form of an Airy function has no singularity at

1 There are special cases where the path curvature at a TP equals

the curvature of the ES. These are locations where two TPs co-

incide and the trajectory may proceed on either side of the ES,

depending on the exact initial conditions. In this limit, the di-

rection “away” is ill-defined, but for a continuous spectral distri-

bution in phase space these paths represent a negligible fraction

of the ensemble.

z′ = 0 and decays exponentially in the classically forbid-
den zone z′ > 0.)
To solve (A10) we substitute the WKB approximation

for the partial derivatives on the RHS, α
(3)
x′ = ikx′α(3),

α
(3)
y′ = iky′α(3), α

(3)
z′ = ik′+(z

′)α(3), and implement the

total time derivative in the form d/dt = vx′(∂/∂x′) +
vy′(∂/∂y′)+vz′(∂/∂z′) with velocity v = (~/m)k+. Em-
ploying also (A12), (A10) becomes

d2β(z′)

dz′2
+ k′2−β(z

′) =
m

~

i
√

k′+(z
′)
(θ̇ + iφ̇ sin θ) eiX

′

+(z′).

(A13)
The solution of (A13) has been outlined in [20, 21].

The phase factor for the wave function β(z′) is the same

as for α(z′): eiX
′

+(z′). Therefore, in WKB approximation
we have d2β(z′)/dz′2 = −k′2+(z

′)β(z′) and the solution of
(A13) becomes

β(z′) =
m

~

i
√

k′+(z
′)

θ̇ + iφ̇ sin θ

k′2− − k′2+(z′)
eiX

′

+(z′). (A14)

The depolarization loss measured at TP U is given by
the probability current for spin-flipped UCNs,

j−(z
′) = − ~

m
Re

[

iβ∗(z′)

(

dβ

dz′

)]

, (A15)

leaving the storage space at z′ = 0 in the positive z′

direction. With (A14) this current is

j−(z
′) =

m

~

θ̇2 + φ̇2 sin2 θ

[k′2− − k′2+(z′)]2
=

~

m

Ω2

4ω2
L

, (A16)

evaluated at z′ = 0 (i.e., for the field variables Ω and
ωL at the particle position at time t = ∆T ). In the
last step of (A16) we have used the Larmor frequency
ωL = ~(k′2− − k′2+)/(2m).
To evaluate the spin-flip loss rate 1/τdep between the

consecutive TPs we divide the current (A16) by the num-
ber N of (+) spin UCNs moving between the TPs in a
channel with unit cross section centered at the trajectory.
The cross section of this channel is measured parallel to
the ES at every point along the path. The N particles
within this volume contribute to loss current (A16), their

decay rate −Ṅ equaling j−(0).
Denoting the wave number perpendicular to the ESs

traversed along the way by k′+(t) and using the WKB
form |α(t)|2 = 1/k′+(t) as the particle density we have

N =

∫

channel

|α(t)|2 d(volume)

=

∫ ∆T

0

1

k′+(t)

~k′+(t) dt

m
=

~

m
∆T. (A17)

As for the 1D field model of [21], N is given directly by
the travel time ∆T . Using (A16), the depolarization rate
becomes

1/τdep = −Ṅ/N =
m

~

j−(0)

∆T
=

Ω2

4ω2
L∆T

, (A18)
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evaluated for the field at the endpoint U . This agrees
with the semi-classical result 1/τdep = p(∆T )/∆T with
p(t) given by Eq. (10). Generalizing this result to arbi-
trary time t in the range tmin < t ≤ ∆T (with tmin of
order µs), we choose the UCN position at t as the center
of reference system x′, y′, z′, with z′ normal to the local
ES, and use (A14), (A15) to obtain the identity

m

~
j−(t) =

Ω2(t)

4ω2
L(t)

= p(t). (A19)

This shows that the semi-classical and the quantum ap-
proaches to depolarization are equivalent, with p(t) di-
rectly corresponding to m/~ times the probability cur-
rent j−(t).
There is an open question of interpretation: In the

derivation of (A13) we used a total time derivative in

the form ḟ = vx′(∂f/∂x′) + vy′(∂f/∂y′) + vx′(∂f/∂z′)

with velocity v referring to the particle’s motion along
its classical path. In this sense, the quantum approach
of this Appendix does involve classical concepts. Use of
the WKB method is not the only approximation made.

A similar caveat applies to the possibility of going to
higher-order approximations in this quantum approach.
In the semi-classical analysis we were allowed to add, in
(21) and (22), terms such as Appβ which are of second or-
der and had been neglected in the first-order Eqs. (6) and
(7). However, adding the corresponding second-order
contributions in the quantum treatment would require
that we also add the second-order quantities neglected in
the WKB approximation used to derive the ODEs (A5)
and (A6). These would be replaced by coupled non-linear
PDEs of high complexity. At this stage the semi-classical
and quantum approaches clearly diverge.
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