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Abstract

Background: Knowledge of nucleon structure is today ever more of a precision science, with

heightened theoretical and experimental activity expected in coming years. At the same time, a

persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice

QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such

as light-front constituent quark models).

Purpose: Seeking to bridge these complementary worldviews, we explore the potential of a Eu-

clidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing

of the quark-level axial-vector vertex, which we undertake as a test of the framework.

Method: To access its indispensable elements with a minimum of inessential detail, we develop

our ECQM using the simplified quark+scalar diquark picture of the nucleon. We construct a hyper-

spherical formalism involving polynomial expansions of diquark propagators to marry our ECQM

with the results of Bethe-Salpeter Equation (BSE) analyses, and constrain model parameters by

fitting electromagnetic form factor data.

Results: From this formalism, we define and compute a new quantity — the Euclidean density

function (EDF) — an object that characterizes the nucleon’s various charge distributions as func-

tions of the quark’s Euclidean momentum. Applying this technology and incorporating information

from BSE analyses, we find the quenched dressing effect on the proton’s axial-singlet charge to be

small in magnitude and consistent with zero, while use of recent determinations of unquenched

BSEs results in a large suppression.

Conclusions: The scalar quark + diquark ECQM is a step toward a realistic quark model in

Euclidean space, and urges additional refinements. The substantial effect we obtain for the impact

on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands

further investigation.

∗ tjhobbs@uw.edu
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I. INTRODUCTION

Hadronic physics is presently at an important crossroads. On the one hand, with its

advantageous representation of Minkowski field theory, light-front formalism [1–6] has made

impressive gains in understanding the proton’s flavor and spin structure [7–10]. At much

the same time, techniques grounded in Euclidean field theory, such as Lattice QCD [11, 12]

and the methodology of Bethe-Salpeter Equations (BSEs) [13–20], continue to unfold an

ever more refined picture of the hadronic spectrum, as well as its various excitations and

transitions. An effort to reconcile these two families of approaches is therefore more of a

crying necessity than ever before. The present analysis represents an initial step to bridge

this enduring gap by formulating a Euclidean constituent quark model (ECQM).

To this end, we craft a simple model in Euclidean space which binds the constituent

quark into the nucleon through the exchange of a scalar spectator diquark. While the

quark-diquark approach itself is hardly new (such models have an established history in the

analyses of both the DIS sector [21–24] and elastic scattering [10]), our specific formulation

of a Euclidean constituent quark model has not to our knowledge been previously attempted.

Standard light-front theory [25, 26] extracts bound state properties (e.g., elastic form fac-

tors, inelastic structure functions) from overlaps of 3-dimensional light-front wave functions

(LFWFs), which are themselves obtained by integrating a 4-dimensional Bethe-Salpeter am-

plitude over the “minus” components of the internal momenta k− ≡ k0 − k3; these in turn

provide a means of obtaining form factors and GPDs from constituent quark models [27–30].

Despite the success of methods rooted in constituent quark models, an uncircuitous means

of relating them to Euclidean approaches remains lacking. That is, although techniques

have been pioneered recently, e.g., involving Euclidean time projections [31] as well as for

projecting the pion’s Bethe-Salpeter amplitude onto the LF [32], a direct formulation of the

quark model in Euclidean space of the type we describe here has not yet been put forth. Such

an approach would bridge the complementary worlds of light-front modeling and Euclidean

space methods in that it brings the methods of Euclidean field theory to a description of the

nucleon in terms of constituent degrees of freedom. The latter is typically developed using

Fock space expansions of the nucleon’s wave function on the light-front, but through general

covariance we can construct a model in Euclidean space with the same ultimate ingredients;

in the end, this will permit us to incorporate into the quark-diquark framework the products
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of Euclidean DSE analyses such as the vertex dressing function considered in Sect. IV.

The aim of the present article is to do precisely this, producing the aforementioned

ECQM. However, the implementation in Euclidean space requires techniques inspired by

hyperspherical QED calculations [33–36], which we trace in detail in Sec. III below. Follow-

ing angular integration of the resulting 4-dimensional amplitudes in Euclidean hyperspherical

space, the formalism we develop outputs distributions for the quark-level densities of the

proton as functions of the intermediate quark’s Euclidean momentum. These latter quanti-

ties we designate Euclidean density functions (EDFs), and we carry out their evaluation in

the sections below.

In the present paper, we test our formalism by performing an analysis of the quark

helicity share of the proton’s spin by evaluating the flavor-singlet axial charge as spelled

out in later sections. The origin of the proton’s spin in the angular momentum of its

QCD constituents is a problem that has bedeviled hadronic physics ever since the advent

of the “spin crisis” in the late 1980s following the revelation [37, 38] of the European Muon

Collaboration (EMC) concerning the small size of the proton’s integrated spin-dependent

structure function,
∫ 1

0
gp1(x) dx = 0.114 ± 0.012 ± 0.026. During the intervening decades,

sufficient progress has been made to reduce the crisis to a mere “spin problem” as it is

now more commonly known. Even so, the exact interplay of the various relevant dynamics

[39–41] remains sufficiently subtle as to prevent an unambiguous reckoning of the multiple

effects giving rise to the proton’s spin.

Canonically, the spin of the proton is decomposed among contributions from quark and

gluon helicity and orbital angular momentum as [42–44]

1

2
=

1

2

∑

q

∆q + Lq + Jg , (1)

and the contribution from the total quark helicity
∑

q ∆q is now understood to represent

approximately one third of the total nucleon spin, and has been the focus of intense ex-

perimental and theoretical effort [45–49]. Despite recent progress [10], obtaining this result

in the context of constituent quark models, including those formulated on the light-front,

remains an elusive goal.

For this reason, an assessment of the rôle played by the exchange of nonperturbative

gluons in the setting of a constituent quark model could help weigh whether this effect

substantially alters the spin decomposition of Eq. (1). To accomplish this, we use the
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FIG. 1. (Color online) (a) The triangle diagram responsible for the nucleon’s electromagnetic

current Jµ and first nontrivial contribution to F1,2(q̃
2). (b) The main graph for the quark contri-

butions to the nucleon’s axial-singlet charge, a0. In both cases, solid internal lines represent the

propagation of the interacting quark, while the dashed lines are for the scalar spectator diquark.

The ovate blobs symbolize our prescription for the momentum dependence of the nucleon-quark-

diquark interaction as given by ϕ(k̃2) in Eq. (3).

aforementioned hyperspherical ECQM to incorporate information from BSE analyses on the

quark’s dressed axial-vector vertex [15, 50–55], ultimately finding a minimal effect with the

“quenched” Bethe-Salpeter calculation appropriate for the isovector vertex, but a potentially

large suppression once “unquenching” quark loop effects are included.

The remainder of the paper is organized as follows: Sec. II treats the standard covari-

ant approach, with a description of the formalism needed to fit current data in the elastic

electromagnetic sector with the bare ECQM in Sec. IIA, and a prediction of the proton’s

axial-singlet charge in Sec. II B; Sec. III describes the hyperspherical formalism. Herein, the

basic properties of EDFs are introduced in Sec. IIIA, and the simplest nontrivial calculation

— the EDF for the proton’s charge distribution — is given in Sec. III B. Having thus com-

pletely determined the details of the bare hyperspherical ECQM, we use it to predict the

axial-singlet charge of the proton in Sec. IIIC, as well as the distribution of this axial charge

as a function of the struck quark Euclidean momentum k̃. In Sec. IV we fold the latest

numerical estimates for the soft gluon dressing effect on the axial charge of an individual

quark into our formalism, and draw our final conclusions in Sec. V. Lastly, select formulae

are postponed to Appendices A and B.
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II. THE BARE MODEL: ELECTROMAGNETIC STRUCTURE AND SPIN

A. Electromagnetic form factors

In the quark+scalar diquark picture, computing the Pauli and Dirac form factors F1(q̃
2)

and F2(q̃
2) as functions of the spacelike photon virtuality squared q̃ 2 amounts to evaluating

the leading triangle diagram in Fig. 1(a), which here represents an amplitude formulated in

Euclidean space. For this purpose, we take the propagators of the scalar diquark (of mass

mD) and quark (of mass m) to be, respectively,

D
(
[p̃− k̃]2

)
=

1

[p̃− k̃]2 +m2
D

,

S
(
k̃
)

=
1

i6̃k +m
, (2)

where we in general denote Euclidean 4-vectors as ṽµ, and the main prescription-dependent

ingredient of the ECQM involves making a formal choice to characterize the binding of the

struck constituent quark into the nucleon. To accomplish this, it is necessary to stipulate

a relativistic vertex factor for the momentum dependence of the nucleon-quark-diquark

interaction, represented by the “blobs” appearing in both panels of Fig. 1. The systematics

involved in the implementation of such phenomenological vertex factors have been explored

in diverse contexts, including in models of nucleon structure [56–58] and nuclear scattering

[59]; in the end, however, we select for simplicity a minimal choice consistent with Lorentz

covariance: a scalar function of the quark’s Euclidean 4-momentum k̃ with the general form

ϕ(k̃2) ≡ g

(
Λ2

k̃2 + Λ2

)
. (3)

Of course other analytic forms for the vertex function may also be used (e.g., multipoles

involving higher powers, or functions of the spectator diquark 4-momentum), but these

ultimately lead to qualitatively similar results, and in practice we find use of Eq. (3) simplifies

calculations dramatically. For this reason, the remainder of the present analysis is carried

out using Eq. (3).

Structurally, the propagators of Eq. (2) are familiar from the Euclidean formalism of

Dyson-Schwinger theory [20], which determines the Green’s function of a dressed quark

from its Dyson-Schwinger Equation (DSE), leading to

S
(
k̃
)

=
1

i6̃k A
(
k̃2
)
+ B

(
k̃2
) =

Z
(
k̃2
)

i6̃k + M
(
k̃2
) , (4)

6



where the nonperturbative dressing functions A
(
k̃2
)
and B

(
k̃2
)
are related to the quark’s

dynamical mass and wave function renormalization constant via Z
(
k̃2
)
= 1

/
A
(
k̃2
)
and

M
(
k̃2
)
= B

(
k̃2
)/
A
(
k̃2
)
. In traditional constituent quark models, dynamical chiral sym-

metry breaking (DCSB) is realized through the large constituent masses of the quark and

diquark which emerge effectively after integrating out gluonic degrees of freedom. As a first

approximation, we build on this paradigm by ignoring the momentum dependence of the

dressed quark’s dynamical mass and make the replacement M
(
k̃2
)
→ m on the grounds

that our model is dominated by its behavior in the infrared k̃2 ≈ 0, as will be apparent in

Sect. III. If we similarly ignore the momentum dependence of the renormalization constant

Z
(
k̃2
)
and absorb this quantity into the overall normalization g, we may take the quark

propagator to be S
(
k̃
)
→ S

(
k̃
)
; a similar logic carries through to the diquark, and we

therefore proceed with the forms of the propagators given in Eq. (2).

In light of our choice for the nucleon-quark-diquark vertex function, the model param-

eters in our framework are thus the strength of the nucleon’s couplings to its internal

quark/diquark degrees of freedom g (which acts as an overall normalization), the constituent

masses of the quark and scalar diquark m and mD, respectively, and the ultraviolet cutoff

parameter Λ, all of which we take from fits in the electromagnetic sector. Namely, the form

factors F1,2(q̃
2) are extracted from the triangle diagram shown in Fig. 1, which gives the

extended electromagnetic vertex Γµ

(
p̃ ′, p̃

)
of the nucleon as

u(p̃ ′) γµ u(p̃) −→ u(p̃ ′) Γµ

(
p̃ ′, p̃

)
u(p̃) = Jµ (5)

=
1

(2π)4

∫
d4k̃ u(p̃ ′)

(
1

i6̃k
′
+m

)
γµ

(
1

i6̃k +m

)
u(p̃)

(
ϕ(k̃ ′2)ϕ(k̃2)

[p̃− k̃]2 +m2
D

)
,

where p̃
(
p̃ ′
)
is the intial (final) proton 4-momentum, k̃ ′ = k̃ + q̃, and p̃ ′ = p̃ + q̃. Using

the general form of the photon-proton vertex given by Eq. (A10) in App. A, we compute

this latter amplitude using standard techniques [60, 61] involving Feynman parameters and

momentum shifts to obtain

F1(q̃
2) =

(
gΛ2

4π

)2 ∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

∫ 1−x−y−z

0

dw (6)

×

([
1

∆2

]2
+ 2N1(q̃

2)

[
1

∆2

]3)
,

F2(q̃
2) = 2

(
gΛ2

4π

)2 ∫ 1

0

dx

∫ 1−x

0

dy

∫ 1−x−y

0

dz

∫ 1−x−y−z

0

dw N2(z)

[
1

∆2

]3
, (7)
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in which

N1(q̃
2) =

(
m+ zM

)2
− (x+ w)

(
1− x− z − w

)
q̃ 2 , (8)

N2(z) = 2M (1− z)
(
m+ zM

)
, (9)

∆2 = (x+ w)
(
1− x− z − w

)
q̃ 2 + (x+ y)m2 + zm2

D

− z (1− z)M2 + (1− x− y − z) Λ2 . (10)

Above,M is the mass of the on-shell nucleon, and we have made use of the Euclidean Gordon

Identity given by Eq. (A9) to decompose the amplitude of Eq. (5) into separate Pauli and

Dirac components à la Eq. (A10).

With these explicit expressions for F1 and F2, it is simple to construct the familiar Sach’s

parametrization of the nucleon’s electromagnetic form factors:

GE(q̃
2) ≡ F1(q̃

2) −
q̃ 2

4M2
F2(q̃

2) ,

GM(q̃ 2) ≡ F1(q̃
2) + F2(q̃

2) , (11)

and we may determine the model parameters by fitting these expressions to experimental

data on the proton. For this purpose, we treat the phenomenological parametrization of

Kelly [62] as a proxy for the world’s experimental data and global fits thereof [63, 64],

rather than preferencing individual sets; we may then minimize the numerical badness-of-fit

measure

χ2 ≡
1

2np

np∑

i=1

(
GE(q̃

2
i )−Gphen.

E (q̃ 2
i )

Gphen.
E (q̃ 2

i )

)2

+

(
GM(q̃ 2i )−Gphen.

M (q̃ 2
i )

Gphen.
M (q̃ 2i )

)2

. (12)

This analysis is intended as a demonstration of the basic foundations of a ECQM, and

hence we restrict our attention to the proton. Evaluating the Ward Identity based upon

the triangle diagram of Fig. 1(a) gives q̃ · J = 0, thus proving gauge invariance and guar-

anteeing the conservation of charge within the quark-diquark picture. In the model under

consideration, wherein a quark interacts with an external electromagnetic current while the

scalar diquark is a recoiling spectator, the struck quark carries the full charge of the proton,

and the formulation as presented here is sufficient. On the other hand, to describe experi-

mental information on the neutron and proton simultaneously, a more elaborate spin-flavor

wave function is necessary, as well as additional axial-vector modes for the spectator diquark

as studied on the light-front in Ref. [10], for instance. We regard such embellishments as

beyond the scope of this article, and delay them for future analysis.
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FIG. 2. (Color online) (a) A plot of the fitted electromagnetic form factors GE,M (q̃2), where we

constrain fits with the phenomenological parametrization of Kelly [62] for q̃ ≤ 1 GeV. Here, solid

lines give the result of our fitted model for the parameters listed in Table I, while the dashed lines

are the phenomenological fits of Ref. [62], with GE given in black and GM in red in both cases.

(b) A similar comparison, but in this case for the form factor ratios with respect to the well-known

dipole parametrization [62] GD(q̃
2) ≡ (1 + q̃2

/
Λ2
D)

−2, where Λ2
D = 0.71 GeV2.

We note that to ensure the numerical validity of the hyperspherical Euclidean space for-

malism given later in Sec. III, we in practice find it necessary to constrain the value of the

diquark mass to be no less than that of the proton, mD ≥M , while the other parameters are

allowed to float freely over a broad range. This condition is a generic artifact of hyperspher-

ical techniques as applied to massive theories [35], and for QED can be circumvented with

an appropriate deformation of the integration contour in the complex k̃2 plane. For the am-

plitudes under consideration here, however, such an approach meets further complications

due to the presence of quark denominators ∼(k̃2+m2)−2, which can produce singularities in

the timelike region k̃2 < 0 into which the contour over k̃2 is deformed; we therefore opt for

the simpler mD ≥ M condition in this initial study. We note of course that this procedure

confers the added benefit of simulating the effects of a confining potential in the sense that

the nucleon is thereby prohibited from decaying into its constituents (m+mD ≥M , for any

choice of m).

Also, for the sake of describing the nucleon axial-singlet charge (which is defined at

q̃ 2 = 0) we concentrate our fits at low photon virtualities, and hence only constrain them
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χ2 m mD Λ g µp (µN ) a0 M1
f1

M1
a0

0.00297 0.637 0.947 0.228 79.104 2.843 0.784 0.1985 0.08125

TABLE I. The collection of parameters that follow from constraining our model to the proton

electromagnetic form factors GE and GM at low q̃ ≤ 1 GeV as given by [62]. The parameters

given in the first enclosed box are fitted directly, while those in the open box at the far right are

predicted by the fitted model. Note that the interaction strength g and bare axial-singlet charge a0

determined in Sec. II are dimensionless, while the final two columns give the first moments of the

electric and axial-singlet quark charge EDFs M1
f1

and M1
a0

in GeV2; units elsewhere are in GeV

unless otherwise noted.

with experimental information for q̃ ≤ 1 GeV. Doing so, we find that fitting our scalar

diquark model to the Kelly prediction for GE and GM at 5 uniformly-chosen points in the

domain 0 ≤ q̃ ≤ 1 GeV [i.e., np = 5 in Eq. (12) above] results in the description plotted

in Fig. 2, which corresponds to a χ2 per datum of 0.003 for the specific parameter values

given in Table I. The numerical values of the fitting parameters imply a mass for the diquark

comparable to that of the nucleon (consistent with Faddeev Equation studies, e.g., Ref. [65]),

and a rather large constituent quark mass m ∼ 600 MeV.

In particular, the two panels of Fig 2 compare this fitted model to the parametrization

of Ref. [62] for the proton, both at the level of the separate form factors GE and GM

themselves (a), as well as for the instructive ratios (b) with respect to the one-parameter

dipole approximation [62] GD(q̃
2) ≡ (1 + q̃ 2

/
Λ2

D)
−2, with Λ2

D = 0.71 GeV2 — the latter

serving to draw attention to subtleties in the form factors’ behavior at larger q̃ 2. In both

panels also, solid curves represent the output of our fitted model, while dashed lines are the

prediction of Ref. [62].

For the region of interest (q̃ 2 & 0), fitted results agree especially well with GM , matching

its qualitative dependence on q̃ 2 quite closely; for GE , however, the agreement is somewhat

weaker, as especially highlighted by the relatively steep downturn of the solid-black curve

of Fig. 2(b). At the same time, we adjudicate the better-than ∼ 10% agreement at low-

est q̃ 2 . 0.2 GeV2 for GE and percent-level agreement for GM to be fully adequate for

our demonstration of the hyperspherical formalism here, which we pursue in the following
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sections only for quantities defined in the real limit, q̃ 2 = 0, including the axial charge a0.

B. Axial-singlet charge

The total quark helicity contribution to the nucleon spin in Eq. (1) may be identified

with the matrix element for the axial-singlet charge of the proton [66], a0 =
∑

q ∆q, which

we write explicitly as

2MS̃µ a0 ≡ 〈p̃, s| q γµγ5 q |p̃, s〉 , S̃µ ≡
1

2M
u(p̃) γµγ5 u(p̃) , (13)

in which S̃µ represents the nucleon’s Euclidean spin 4-vector, which obeys S̃ · p̃ = 0 and

S̃2 = −1. For the non-pointlike proton basis states consistent with the bare quark+diquark

picture, the matrix element of Eq. (13) can be realized diagrammatically in a triangle graph

akin to that which produced Eqs. (6) and (7) for the proton’s electromagnetic substructure

— albeit with the appropriate ∼ γµγ5 operator entering at the axial current-quark vertex.

This is shown explicitly in Fig. 1(b), wherein p̃ ′ = p̃, as is relevant for the axial-singlet

charge defined at q̃ = 0. Using our established Euclidean conventions, this then gives the

amplitude

2MS̃µ a0 =
1

(2π)4

∫
d4k̃ u(p̃)

(
1

i6̃k +m

)
γµγ5

(
1

i6̃k +m

)
u(p̃)

(
|ϕ(k̃2)|2

[p̃− k̃]2 +m2
D

)
. (14)

Thus we can follow a procedure similar to that used in the electromagnetic sector to compute

the bare (i.e., undressed) quark + scalar diquark model prediction for the proton’s axial-

singlet charge, keeping in mind that we will ultimately match our ECQM formalism to the

standard calculation in Sec. IIIC, constituting a vital test. We find

2MS̃µa0 = Γ(5)
g2Λ4

(2π)4

∫
d4l̃

(l̃2 +∆2)5

∫
dx dy dz xy δ

(
1− [x+ y + z]

)

× u(p̃)
(
−i(l̃/ + zp̃/) +m

)
γµγ5

(
−i(l̃/ + zp̃/) +m

)
u(p̃) ; (15)

again using textbook [60] covariant methods, this can be manipulated to yield

a0 = −

(
gΛ2

4π

)2 ∫ 1

0

dy

∫ 1−y

0

dz y(1− y − z)

([
1

∆2

]2
− 2(m+ zM)2

[
1

∆2

]3)
, (16)

where here the explicit expression for the denominator in terms of masses and Feynman

parameters is

∆2 = (1− y − z)m2 + yΛ2 + zm2
D − z(1− z)M2 , (17)
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and we have implemented the shift k̃µ → l̃µ = k̃µ − z p̃µ, and made use of Eq. (A8). Thus,

Eq. (16) is fully defined, and may be computed with the model parameters determined in the

electromagnetic sector — i.e., the values contained within the inner box of Table I. Inserting

these, we get a0 = 0.784, which we also report in the rightmost partition of Table I. We

reproduce this value via hyperspherical techniques in Sec. IIIC.

III. HYPERSPHERICAL FORMALISM

A. Euclidean density function

Here we introduce the framework necessary to obtain 4-dimensional Euclidean quark-level

densities — for the proton’s electromagnetic charge in Sec. III B, and its axial-singlet charge

in Sec. IIIC.

Formally, we seek 4-dimensional densities dependent on the interacting quark’s Euclidean

momentum k̃. Such quantities would be analogous to the squares of Bethe-Salpeter wave

functions Ψ(k; p) from which LFWFs can be derived via the appropriate integral over
∫
dk−

at fixed LF time [25, 26] as described in Sec. I. Properly formulated, in our case these density

functions will allow the recovery of bulk properties of the nucleon from radial integrals in

Euclidean space governed by the parameters of a constituent quark model. That is, the

total nucleon charge and axial-singlet charge follow from the zeroth moment of the Euclidean

density functions (EDFs) f 1(k̃
2) and a0(k̃

2), respectively:

F1(q̃
2=0) =

∫
dk̃2 f 1(k̃

2) , (18)

a0 =

∫
dk̃2 a0(k̃

2) , (19)

where the integrations over
∫
dk̃2 remain after summing over angles, and EDFs for other

charges may also be constructed. In fact, inasmuch as EDFs enjoy the proper support (in

this case, vanishing in the limit k̃2 → ∞), their lowest moments in k̃2 may also be computed:

Mn
f̄1

≡

∫
dk̃2

(
k̃2
)n

f 1(k̃
2) , (20)

Mn
ā0

≡

∫
dk̃2

(
k̃2
)n

a0(k̃
2) , (21)

for which the choice (n = 0) corresponds to the expressions in Eqs. (18) and (19), while the

nontrivial first moments (n = 1), corresponding to M1 ∼ 〈k̃2〉, provide information on the
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mean k̃2 of the electromagnetic and axial-charge densities. We determine these explicitly in

Secs. III B and IIIC below, and ultimately plot their associated integrands in Fig. 3.

Pending this more detailed calculation, the proton’s charge EDF f 1(k̃
2) may be described

to first approximation in the spirit of Feynman et al. [67], using a Euclideanized Gaussian

wave function ψ(k̃2) ∼ exp(−R2k̃2
/
2):

F1(q̃
2=0) =

1

(2π)4

∫
d4k̃

∣∣ψ(k̃2)
∣∣2 = 1

→ ψ(k̃2) =
(
4πR2

)
exp

{
−
1

2
R2 k̃2

}
, (22)

for which the dependence of the wave function on the quark momentum k̃ is governed purely

by the proton RMS radius, R ≡ 〈r2p〉
1/2 ≈ 0.88 fm = 1

/
(0.227GeV) [68]. Noting Eq. (B2),

we conclude

f
WF

1 (k̃2) = R4 k̃2 exp
{
−R2 k̃2

}
, (23)

a simple result to which we compare the model results of Secs. III B and IIIC below as an

instructive benchmark. Plotting the integrand 2k̃ f
WF

1 (k̃2) of F1(0) against k̃ in Fig. 3, the

resulting distribution peaks predictably near k̃ & 0.2 GeV due to our numerical choice of R,

but then has a sharper momentum dependence at higher k̃ not found for the more realistic

model calculations presented below; this fact alone highlights the necessity for the more

detailed hyperspherical treatment of nucleon spin structure outlined in Secs. III B–IIIC.

Ultimately, in a utilitarian sense the EDFs of Eqs. (18) and (19) also permit an interface

with the output of traditional Euclidean field-theoretic approaches, as emphasized in Sec. I.

Whereas the formalism of Sec. II is adequate for the determination of the total proton

charge and helicity in the bare quark model, we ultimately wish to absorb the results of

BSE analyses into our ECQM to assess the gluon dressing effect. For this purpose, however,

BSEs describe the impact of soft gluon exchange in the form of vertex functions of the quark’s

Euclidean momentum, and there is no straightforward way to incorporate such quantities

into the bare calculation of Sec. II B, especially given the reliance of the latter upon shifting

loop momenta away from those given in Fig. 1(b).

On the other hand, given their status as vertex functions of the quark momentum, BSE

results may be incorporated directly into the integrated EDFs typified by Eq. (19) as quark

momentum-dependent smearing functions fg(k̃
2). It is precisely such a scheme that we

pursue here for the quark helicity contribution to the nucleon spin, a0. Thus, with the

13



EDF a0(k̃
2) and the smearing function fg(k̃

2) for the gluon-dressing effect in hand, one may

compute the impact of soft gluon exchange upon the total quark helicity contribution to the

proton spin, leading to a corrected axial-singlet charge

a′0 =

∫
dk̃2 a0(k̃

2) fg(k̃
2) , (24)

where in practice we identify the gluonic smearing function with the nonperturbative axial-

vector vertex factor of BSE studies, fg(k̃
2) = FR(k̃

2, 0), which we take from Refs. [53, 55] and

describe in greater detail in Sec. IV. Moreover, we point out that assuming the perturbative

result expected to hold at k̃ ≫ 0 for the gluon dressing function, fg(k̃
2) = 1, in Eq. (24)

simply recovers the bare ECQM calculation given by Eq. (19).

We can in fact achieve the specifics of the general formalism described above, and this

amounts to the main result of the present paper. We derive the EDFs of Eqs. (18) and (19)

by closely following the analogous calculation for the hadronic vacuum polarization effect in

the muon’s anomalous magnetic moment [33]; viz., we now evaluate Eq. (5) for p̃ ′ = p̃ in

Sec. III B and Eq. (14) in Sec. IIIC using a hyperspherical formalism originally adapted to

QED [34–36].

B. Quark charge distribution

The hyperspherical formalism we describe below is of sufficient generality that it may

be deployed in the evaluation of various Euclidean momentum distributions. As an initial

demonstration, however, we highlight the calculation of the EDF for the proton’s electric

charge: i.e., the integrand leading to F1(q̃
2 = 0) of Eq. (18). As will be the case for the

subsequent determination of a0(k̃), we start at amplitude-level, in this case with Eq. (5),

which at q̃ 2 = 0 yields

2i p̃µ F1(0) =
1

(2π)4

∫
d4k̃ u(p̃)

(
1

i6̃k +m

)
γµ

(
1

i6̃k +m

)
u(p̃)

( ∣∣ϕ(k̃2)
∣∣2

[p̃− k̃]2 +m2
D

)
(25)

=
g2Λ4

(2π)4

∫
dk̃4

u(p̃)
[
−2 6̃k k̃µ +

(
k̃2 +m2

)
γµ − im{γµ, 6̃k}

]
u(p̃)

(k̃2 +m2)2 (k̃2 + Λ2)2
(
[p̃− k̃]2 +m2

D

) , (26)

where we have again used Eq. (A10) for the general form of the electromagnetic vertex given

in App. A. To apply the hyperspherical formalism, we must express the numerator algebra
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leading to F1(0) in terms of inner products. For this example, we achieve this by contracting

both sides of Eq. (26) with p̃µ and using the identities of App. A, which brings us to the

expression

F1(0) =
g2Λ4

(2π)4

∫
dk̃4

k̃2 +m2 − 2
p̃2

(
p̃ · k̃

)2
+ 2

p̃2mM
(
p̃ · k̃

)

(k̃2 +m2)2 (k̃2 + Λ2)2
(
[p̃− k̃]2 +m2

D

) . (27)

More critically, rather than shifting away the term in the denominator ∼(p̃ · k̃) as in the

standard covariant calculations involving Feynman parameters [Eqs. (6) – (7) and (16)], we

instead make an expansion of the scalar diquark propagator:

1

[p̃− k̃]2 +m2
D

=
Zpk

p̃ k̃

∞∑

n=0

(
Zpk

)n
Cn

(
p̂ · k̂

)
, (28)

where explicitly,

Zpk ≡
1

2p̃ k̃

(
p̃ 2 + k̃2 +m2

D −

√
(p̃ 2 + k̃2 +m2

D)
2 − 4p̃ 2k̃2

)
, (29)

and we sometimes find it convenient to work in terms of the dimensionful object Z ≡ Zpk

/
p̃ k̃.

In Eq. (28), the Cn are Gegenbauer polynomials with the normalization and orthogonality

properties described in App. B, and p̂ is a unit vector in Euclidean space in the direction of p̃µ.

We can exploit these properties in App. B to perform the necessary angular integrations by

first rendering the numerator of Eq. (27) in terms of a linear combination of the Gegenbauer

polynomials

(p̃ · k̃) =
p̃ k̃

2
C1(p̂ · k̂) , (30)

(p̃ · k̃)2 =
1

4
p̃ 2 k̃2

(
C2(p̂ · k̂) + C0(p̂ · k̂)

)
. (31)

Inserting everything into Eq. (27) and using Eq. (B2) then results in

F1(0) =
g2Λ4

(2π)4

∫
dk̃2

2

k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

∫
dΩk̂

( ∞∑

n=0

(
p̃ k̃ Z

)n
Cn(p̂ · k̂)

)

×

(
−
k̃2

2

(
C2(p̂ · k̂) + C0(p̂ · k̂)

)
+
mM

p̃ 2
p̃ k̃ C1(p̂ · k̂) + (m2 + k̃2)C0(p̂ · k̂)

)
; (32)

and we may use Eq. (B3) to evaluate the angular integral
∫
Ωk̂. Before doing so, however, it

is imperative to note that Eq. (32) is defined in general for spacelike 4-momenta (including

the external nucleon 4-momentum p̃2 ≥ 0). It is therefore necessary to perform an analytic
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continuation of the proton momentum into the timelike region where it is explicitly on-shell

and thus physical: p̃ 2 = −M2. By merit of our requirement that mD ≥ M , the integration

contour k̃2 ∈ [0,∞) remains unmenaced by branch points or singularities, and the nucleon

momentum may be straightforwardly continued to p̃ → iM . Doing so after evaluating the

angular integrals, we finally obtain

F1(0) =

(
gΛ2

4π

)2 ∫
dk̃2

k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

(
k̃2

2
+
M2

2

(
k̃2Z

)2
+mMk̃2Z +m2

)
,

(33)

in which Z represents the analytic continuation of the rational function Z of Eq. (29), given

explicitly by

Z = −
1

2M2k̃2

(
k̃2 + δ2 −

√
(k̃2 + δ2)2 + 4M2k̃2

)
, (34)

having defined the shorthand δ2 ≡ m2
D −M2.

It is notable also that the expression given in Eq. (33) constitutes an important check

of the hyperspherical formalism which we use in Sec. IIIC below for a0, and one may

straightforwardly verify that it yields F1(0) = 1 for the parameters of Table I. From it, we

may at last extract the Euclidean density function f 1(k̃
2) for the proton’s quark-level charge

through direct matching with Eq. (18),

f 1(k̃
2) =

(
gΛ2

4π

)2
k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

(
k̃2

2
+
M2

2

(
k̃2Z

)2
+mMk̃2Z +m2

)
; (35)

we plot this EDF in Fig. 3 alongside the analoguous quantity for the axial-singlet charge

a0(k̃
2) derived in Sec. IIIC below.

Having determined the quark-level EDF for the proton’s electric charge in Eq. (35), we

may use this result to evaluate higher moments of the charge distribution given in Eq. (20):

M1
f̄1

= 0.1985 GeV2 . (36)

In this case, this value corresponds roughly to the center of the peak of the heavy-solid

line in Fig. 3; more directly, we also plot the integrand over k̃ for the moment M1
f̄1

as the

thin-solid line, multiplied by a factor of 2 for ease of comparison.

C. Quark helicity

While the formalism in Sec. II B above was sufficient to determine the bare quark helicity

contribution to the proton axial-singlet charge a0, we must ultimately interface our quark-
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FIG. 3. (Color online) A comparison of EDFs for the proton’s charge 2k̃ f1(k̃
2) [Eq. (35), black-

solid] and axial-singlet charge 2k̃ a0(k̃
2) [Eq. (42), maroon-dashed] carried by the struck quark in

the scalar diquark ECQM as functions of its Euclidean momentum k̃; for illustration, we contrast

these with the result of using the Gaussian wave function, 2k̃ f
WF
1 (k̃2) from Eq. (23) [red-dotted].

The thin lines and associated shaded regions at bottom correspond to the integrands of these

distributions’ first moments in k̃2, i.e., M1 ∼ 〈k̃2〉 of Eqs. (20) and (21). Note that these latter

moments have been rescaled by a factor of 2 for comparison.

diquark framework with the results of BSE analyses to estimate the gluon dressing effect as

mentioned above. In this case, the BSE calculations we aim to incorporate are k̃-dependent

vertex factors as noted in Sec. IIIA, and thus we require an axial charge momentum distri-

bution along the lines of Eq. (35) to evaluate Eq. (24).

Hence, analogously to the calculation in Sec. III B, we now proceed by contracting both

sides of Eq. (14) with the nucleon spin 4-vector S̃µ to obtain

2Ma0 = −
g2Λ4

(2π)4

∫
d4k̃

S̃µ u(p̃)
(
−i6̃k +m

)
γµγ5

(
−i6̃k +m

)
u(p̃)

(k̃2 +m2)2 (k̃2 + Λ2)2
(
[p̃− k̃]2 +m2

D

)

= −
g2Λ4

(2π)4

∫
d4k̃

2M
(
2(S̃ · k̃)2 + (m2 − k̃2)S̃2

)
− 4m(p̃ · k̃)

(k̃2 +m2)2 (k̃2 + Λ2)2
(
[p̃− k̃]2 +m2

D

) , (37)

17



and here we require an additional inner product:

(S̃ · k̃)2 =
1

4
S̃2k̃2

(
C2(Ŝ · k̂) + C0(Ŝ · k̂)

)
. (38)

Using this and Eq. (30) to re-write the inner products of Eq. (37) above, we incorporate the

polynomial expansion for
(
[p̃− k̃]2 +m2

D

)−1
; here this leads to

a0 =
g2Λ4

(2π)4

∫
dk̃2

2

k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

∫
dΩk̂

( ∞∑

n=0

(
p̃ k̃ Z

)n
Cn(p̂ · k̂)

)
(39)

×
( k̃2
2

(
C2(Ŝ · k̂) + C0(Ŝ · k̂)

)
−
m

M
p̃ k̃ C1(p̂ · k̂) + (m2 − k̃2)C0(Ŝ · k̂)

)

=

(
gΛ2

4π

)2 ∫
dk̃2

k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

×
( k̃2
2

(
p̃ k̃ Z

)2C2(Ŝ · p̂)

3
−
m

M
p̃ k̃
(
p̃ k̃ Z

)C1(p̂ · p̂)

2
+ (m2 −

k̃2

2
)C0(Ŝ · p̂)

)
. (40)

As before, we analytically extend p̃ into the timelike region where it is on-shell, leading to

a0 =

(
gΛ2

4π

)2 ∫
dk̃2

k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

(
−
k̃2

2
+
M2

6

(
k̃2Z

)2
+mMk̃2Z +m2

)
,

(41)

and Z is again given by the expression in Eq. (34). Lastly, we deduce the EDF appearing

in Eq. (19) [and Eq. (24)] from Eq. (41) by simple matching, as had been done for f̄1(k̃
2):

a0(k̃
2) =

(
gΛ2

4π

)2
k̃2Z

(k̃2 +m2)2 (k̃2 + Λ2)2

(
−
k̃2

2
+
M2

6

(
k̃2Z

)2
+mMk̃2Z +m2

)
; (42)

in summary, we emphasize that to obtain Eqs. (37)–(42) we have contracted both sides of

the first equation with S̃µ and expanded the diquark propagator à la Eq. (28).

With these expressions, one may proceed to compute the bare quark contribution to the

proton spin using the set of parameters determined from fits to the proton electromagnetic

form factors, given in Table I. Using these values in the conventional formalism of Sec. II B

that led to Eq. (16), we found a0 = 0.784 — a value which may also be recovered from the

hyperspherical formalism as given by Eq. (41). Incidentally, this figure is in accord with the

moment of the scalar diquark contribution to the quark helicity PDF obtained in a typical

light-front quark model (see Eqs. (61) and (62) of Ref. [10]):

∆qs =
1

3
(2∆u − ∆d) ≈ 0.75 ; (43)
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FIG. 4. (Color online) (a) The diagram leading to the DSE for a quark of momentum k̃ dressed

by a nonperturbative gluon carrying loop momentum L̃. (b) The corresponding diagram for the

quark axial-vector vertex BSE, responsible for the k̃-dependent gluonic dressing correction to the

axial charge of an individual quark. In the flavor-singlet channel, additional unquenching loop

diagrams also contribute, as described in Ref. [55].

this latter expression assumed an SU(2)⊗ SU(2) structure for the proton’s spin-flavor wave

function.

We point out as well that the axial-singlet EDF a0(k̃
2) given by Eq. (42) is not restricted

to be positive-definite, unlike the analogous electromagnetic charge EDF f 1(k̃
2) of Eq. (35),

which is related to the zeroth moments of traditional probabilistic quark density functions.

In fact, for certain parameter combinations, a0(k̃
2) may experience substantial negative

downturns at larger spacelike quark momenta, k̃ ≥ 1 GeV. However, for the set of fitting

parameters that best describes proton form factor data, this effect is not evident, and the

axial-singlet EDF a0(k̃) is instead dominated by a soft peak centered roughly at k̃ . 0.2

GeV, as shown in Fig. 3 as the maroon-dashed line.

Owing mainly to the similarity of the explicit k̃2 dependence appearing in Eqs. (35)

and (42), the shapes of these distributions closely track each other, with f1(k̃
2) ≈ a0(k̃

2),

particularly for k̃2 ≪ m2. Ultimately, we interpret this behavior as following from the

common origin of both expressions in the diagrams of Fig. 1, which at q̃ = 0 differ only by

the appearance of γ5.

Moreover, for the higher ∼〈k̃2〉 moment of the axial-singlet EDF, we obtain the value

M1
ā0

= 0.08125 GeV2 , (44)

implying the proton’s distribution of axial-singlet charge is relatively softer than the charge

distribution [Eq. (36)] in the bare model.

19



IV. GLUON DRESSING EFFECT

We now incorporate numerical estimates of the effect of dressing the quark-axial current

vertex with gluon exchange, which in principle may be determined from DSE-BSE analyses.

Here, the relevant diagrams are displayed in Fig. 4, wherein panel (a) illustrates the dressed

propagator responsible for QCD’s quark DSE, while panel (b) demonstrates the realization

of the BSE for the quark-level coupling of the axial-vector current dressed by soft gluon

exchange. Naturally, the infrared momenta at which this effect is of interest demands the use

of nonperturbative methods, and the standard procedure requires a prescription-dependent

truncation of the quark-gluon vertex (shown as the blobs in Fig. 4).

In the context of BSE analyses [15, 50–53], the dressed axial-vector vertex is represented

by the structure Γfg
5µ(K̃; P̃ ), which is understood to connect an incoming quark of flavor

g and momentum K̃− = K̃ − (1 − η)P̃ to an outgoing quark of flavor f and momentum

K̃+ = K̃ + ηP̃ ; here P̃ and K̃ represent the total and relative momentum of the quark

pair, and η is a dimensionless parameter upon which calculations cannot depend. Thus, for

our purposes, we require the case P̃ = 0, such that K̃+ = K̃− = K̃ ≡ k̃, and we take the

diagonal isospin-independent vertex f = g, as described in Ref. [53]. Then the structure of

the quark-axial vector vertex of relevance here is simply

u(k̃) Γ5µ(k̃; 0) u(k̃) = u(k̃) γ5

[
γµFR(k̃; 0) + . . .

]
u(k̃) , (45)

and the ellipsis in Eq. (45) above represents additional components of the vertex that do

not contribute in the present analysis.

We therefore make the identification fg(k̃) ≡ FR(k̃; 0) mentioned in Sec. IIIA, and directly

insert the numerical results reported in Ref. [53] to smear the bare model axial charge as

in Eq. (24). We also note that Ref. [53] was aimed at the quark’s isovector axial vertex,

and therefore neglected the “unquenching” effect of higher-order quark loops within the

dressing diagram of Fig. 4(b), as such corrections are charge-independent and thus cancel

for nonsinglet combinations. Unquenching effects do in principle contribute to the axial-

singlet matrix element, however, and have been considered in Refs. [54, 55]. We assess the

potential impact of this additional physics below.

The behavior of fg(k̃) depends crucially on the truncation scheme used to obtain the

effective quark-gluon vertices in the panels of Fig. 4. To get a sense for this source of pre-

scription dependence within the quenched calculation, we compute the correction following
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FIG. 5. (Color online) (a) The gluon dressing function fg(k̃
2) under several different scenarios:

the perturbative limit, fg(k̃
2) = 1 (solid black); using an improved dynamical chiral symmetry-

breaking kernel in the quenched BSE, fDB
g (k̃2) (red-dashed); with the quenched rainbow-ladder

truncation method fRL
g (k̃2) (blue-dotted); and using the result of a calculation [55] that included

the effects of unquenching which contribute to the axial-singlet charge (green-short-dashed). (b)

A plot of the integrand of Eq. (24) 2k̃ a0(k̃
2) fg(k̃

2), taking for fg(k̃
2) the gluon dressing functions

shown in panel (a), retaining the aforementioned linestyles.

from both schemes treated in Ref. [53] — the rainbow-ladder scheme (RL), and an ansatz

based on a specific realization of dynamical symmetry breaking (DB), which we take nu-

merically from Fig. 1 of Ref. [53]. Referring to these as fRL
g (k̃) (blue-dotted) and fDB

g (k̃)

(red-dashed), we plot both dressing functions against k̃ in Fig. 5(a). Plainly, both truncation

schemes predict a suppression of the quark’s axial charge for the lowest infrared momenta

k̃ . 0.3 GeV, but substantial enhancements beyond — particularly for the RL prescription,

which overhangs the DB scheme by ∼25% for k̃ ∼ 1 GeV. Having determined the axial

EDF of Eq. (42) we may fold these extractions for the quenched gluon dressing function

into Eq. (24) to determine the overall effect, plotting the integrands responsible for a′0,

2k̃ fRL
g (k̃2) a0(k̃

2) (blue-dotted) and 2k̃ fDB
g (k̃2) a0(k̃

2) (red-dashed), in Fig. 5(b) alongside

the bare or “undressed” scenario, fg(k̃
2) = 1 (black-solid).

From this, we find the net correction to the quark helicity contribution from quenched
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gluon dressing to be
(
a′0
a0

)
− 1 = −0.04% (DB scheme) , (46)

= +2.98% (RL scheme) . (47)

The magnitude of the effect from quenched gluon dressing is therefore quite small, and in the

present analysis, actually consistent with zero in the sense that, depending upon the choice

of truncation scheme, one may obtain a modest enhancement (RL) or tiny suppression (DB)

of the proton’s total quark helicity. The smallness of the effect can be understood from the

momentum dependence shown in Fig. 5(b), in which the interplay of the shapes of fg(k̃
2)

and a0(k̃
2) are such that the axial-singlet charge is slightly suppressed at low k̃ and enhanced

at higher k̃. These two effects largely cancel, however, in the integral over k̃ involved in the

computation of a′0 according to Eq. (24), such that a′0 ≈ a0, and we conclude the quenched

dressing effect in a0 to be minimal.

As pointed out above, while the diagram of Fig. 4(b) figures in the dressing of both

isovector and isoscalar (i.e., flavor singlet) axial-vector quark vertices, the latter can receive

additional contributions from higher-order diagrams involving the coupling of the axial-

vector current to virtual quark loops closely connected to axial anomaly triangle graphs

shown, e.g., in Fig. 12 of Ref. [55]. As is typical of unquenched nonperturbative calculations,

obtaining a systematic treatment of the dynamical quark loop effect is challenging. There is

a significant level of dependence on renormalization scales, and the calculation in Ref. [55]

employed a two-flavor approximation.

In the end, this procedure leads to the unquenched dressing function funq.
g (k̃2) plotted as

the green-short-dashed curve in Fig. 5(a), with a very sharp suppression of the quark’s axial-

singlet charge at low k̃, which even attains negative values for k̃ . 0.4 GeV. Including this

unquenching effect as computed in Ref. [55] — again using Eq. (24) — we find a dramatic

suppression of the nucleon’s axial-singlet charge, which in fact becomes slightly negative:

a′0 = −0.111 (unquenched scheme) , (48)

a value representing −14% of the bare axial-singlet nucleon charge, and which corresponds

to the integrand plotted as the green-short-dashed line in Fig. 5(b).

We therefore conclude unquenching virtual quark loop diagrams have the potential to

suppress the nucleon’s axial-singlet charge (and total quark helicity), despite the tiny size
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of the corresponding effect from the quenched calculation.

V. CONCLUSION

In this paper we have proposed a model in Euclidean space formulated in terms of con-

stituent quark degrees of freedom. The essential products of the resulting ECQM technology

are density functions of the quark’s Euclidean momentum (the EDFs) obtained from hy-

perspherical angular integrations of 4-dimensional amplitudes. The special value of these

derived quantities is their ability to recover nucleon charges through integrals over the in-

ternal momenta of their constituent quarks, a fact that empowered us to couple them to

predictions of other Euclidean analyses — in this case, BSEs.

Thus, having introduced this formalism, we tested it preliminarily by computing both

the nucleon’s quark charge density, as well as its axial-singlet charge. For the latter, this

test assumed the form of an assessment of the impact of BSE calculations for the dressed

quark axial-vector vertex. There are of course various sources of model dependence on the

side of both our ECQM for the nucleon-quark interaction and of the BSE analyses. Despite

these sources of model-dependence, we find the effect of the quenched gluon dressing to be

small by itself — at most a several percent correction to the total quark helicity in the bare

ECQM. In constrast, we find that unquenching quark loop contributions highly suppress

the nucleon’s quark helicity component, a point requiring further study.

Naturally, the analysis presented here is essentially exploratory, and if anything, suggests

the need for further refinements. For instance, the scalar diquark picture alone cannot

realistically approximate the nucleon’s full spin structure as evidenced by the large value

we obtain for the bare axial-singlet charge (a0 = 0.784); a fuller calculation would therefore

involve spin-1 diquark exchanges, which in general are necessary to obtain an authentic

flavor decompostion of the nucleon helicity.

At the same time, it is reasonable to expect that the qualitative shape obtained for a0(k̃)

shown in Fig. 5 for the present scalar diquark ECQM would hold also for amplitudes involv-

ing spin-1 exchanges, so that the essential details of such a calculation would resemble our

presentation here. That being the case, our ultimate conclusion is unlikely to change: mod-

els formulated with bare constituent quarks receive vanishing corrections to the total quark

helicity from quenched gluon loops, but can experience huge suppressions of the quark spin
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from higher-order unquenching diagrams. This finding places an increased premium upon

elucidating the details of how the unquenched dressing effect enters the the spin decompo-

sition of Eq. (1), and its interaction with the quark and gluon angular momenta contained

therein.

Similarly, it should be noted that other possible considerations have not been treated sys-

tematically, including the momentum dependence of the constituent quark’s dynamical mass,

the implementation of which would require a self-consistent scheme not typical of the fitted

constituent quark model presented here. Such issues, as well as continued improvements

to the Euclidean hyperspherical formalism and BSEs for the axial-vertex dressing functions

will be of enormous value in extending the current state-of-the-art regarding quark helicity,

the nucleon spin problem, and Euclidean modeling of nucleon structure.
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manaka, and Xilin Zhang for helpful exchanges. The work of TJH and GAM was supported

by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences program

under Award Number DE-FG02-97ER-41014. The work of MA was supported under NSF

Grant No. 1516105.

Appendix A: Euclidean space conventions

We proceed using the Minkowski ↔ Euclidean transcription dictionary as outlined in,

e.g., Refs. [17, 20], wherein 4-momenta and Dirac matrices transform according to

k0 = ik4 , kj = −kj ,

γ0 = γ4 , γj = iγj ; j ∈ {1, 2, 3} . (A1)

The Dirac algebra in this setting is then specified by

{
γµ, γν

}
= 2 δµν , (A2)

such that the Euclidean inner product for any two 4-vectors ãµ , b̃µ is

ã · b̃ ≡
∑

µ

ãµb̃µ = ã1 b̃1 + · · ·+ ã4 b̃4 , (A3)
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and, by extension,

p̃/ ≡ γ1 p̃1 + · · ·+ γ4 p̃4 . (A4)

We also note the definition

γ5 = −γ1 γ2 γ3 γ4 . (A5)

We may give explicit expressions for the Euclidean Dirac spinors, which we obtain fol-

lowing the conventional Wick rotation as

uλ(p) =
√
M + p0


 χλ

σ·p
M+p0

χλ


 → uλ(p̃) =

√
M + ip̃4


 χλ

−σ·p̃
M+ip̃4

χλ


 , (A6)

where the helicity states χ[λ=↑↓] =


 1

0


 ,


 0

1


 are proportional to the standard eigen-

vectors of σ3. These spinors are endowed with the typical normalization,

uu = 2M, u(p̃) γµ u(p̃) = 2i p̃µ , (A7)

and obey the Dirac Equation

u(p̃ ′)(ip̃/
′

+M) = (ip̃/ +M)u(p̃) = 0 . (A8)

Moreover, in Euclidean space, the Gordon Identity assumes the slightly altered form

u(p̃ ′) γµ u(p̃) =
1

2M
u(p̃ ′)

{
−iP̃µ + σµν q̃ν

}
u(p̃) , (A9)

where we have defined P̃µ ≡ p̃ ′
µ+ p̃µ and σµν ≡ (i/2)[γµ, γν]. By similar logic, we obtain the

general form for the extended electromagnetic vertex of the proton,

u(p̃ ′) Γµ

(
p̃ ′, p̃

)
u(p̃) = u(p̃ ′)

{
F1(q̃

2) γµ + F2(q̃
2) σµν

q̃ν
2M

}
u(p̃) . (A10)

Appendix B: Hyperspherical formalism

In the hyperspherical formalism [33–36], numerator algebra leads to covariant expressions

involving inner products which we represent in terms of the Gegenbauer polynomials, of

which only the lowest are relevant for the present analysis:

C0(x) = 1 , C1(x) = 2x ,

C2(x) = 4x2 − 1 . (B1)

25



Hyperspherical integrals may be separated into radial and angular parts according to

∫
ddk̃ =

∫
dk̃ k̃d−1

∫
dΩ

(d)

k̂
, (B2)

and we of course take d = 4 in the integrations over dΩk̂ ≡ dΩ
(4)

k̂

(
= sin2 ψ sin θ dφ dθ dψ

)
in

Sec. III; these can then be carried out in practice using well-known orthogonality properties:

∫
dΩb̂ Cm

(
â · b̂

)
Cn

(
b̂ · ĉ
)

=
2π2δmn

n + 1
Cn

(
â · ĉ

)
. (B3)

These relations can be determined from an appropriate choice of hyperspherical coordinates,

with a common selection [60] being

kµ =
√
k̃ 2




sinψ sin θ cosφ

sinψ sin θ sin φ

sinψ cos θ

cosψ




. (B4)
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