

CHCRUS

This is the accepted manuscript made available via CHORUS. The article has been published as:

Quasiparticle anisotropic hydrodynamics for central collisions

Mubarak Alqahtani, Mohammad Nopoush, and Michael Strickland Phys. Rev. C **95**, 034906 — Published 10 March 2017 DOI: 10.1103/PhysRevC.95.034906

2

3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

Quasiparticle anisotropic hydrodynamics for central collisions

Mubarak Algahtani, Mohammad Nopoush, and Michael Strickland

Department of Physics, Kent State University, Kent, OH 44242 United States

(Dated: February 14, 2017)

We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boostinvariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state (EoS). We compare results obtained using the quasiparticle method with the standard method of imposing the EoS in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio η/s . We find that the three methods agree well for small shear viscosity to entropy density ratio, η/s , but differ at large η/s , with the standard anisotropic EoS method showing suppressed production at low transverse-momentum compared to the other two methods considered. Finally, we demonstrate explicitly that, when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative at large p_T . Such a behavior is not seen in either anisotropic hydrodynamics approach, irrespective of the value of η/s .

PACS numbers: 12.38.Mh, 24.10.Nz, 25.75.-q, 51.10.+y, 52.27.Ny

Keywords: Quark-gluon plasma, Relativistic heavy-ion collisions, Anisotropic hydrodynamics, Equation of state, Quasiparticle model, Boltzmann equation

56

57

22

I. INTRODUCTION

Ultrarelativistic heavy-ion collision experiments at the ⁵⁸ 23 Relativistic Heavy Ion Collider (RHIC) and the Large ⁵⁹ 24 Hadron Collider (LHC) study the quark-gluon plasma ⁶⁰ 25 (QGP) using high energy nuclear collisions. The collec-⁶¹ 26 tive behavior seen in these experiments is quite success- ⁶² 27 fully described by relativistic fluid dynamics. In early ⁶³ 28 works, relativistic ideal hydrodynamics was applied as-⁶⁴ 29 suming the QGP to behave like a perfect fluid [1-3]. ⁶⁵ 30 Later on, to include the dissipative (viscous) effects, ⁶⁶ 31 viscous hydrodynamics has been applied [4-37]. Re-⁶⁷ 32 cently, due to the large momentum anisotropies gener-68 33 ated during heavy-ion collisions, a new framework called ⁶⁹ 34 anisotropic hydrodynamics has been developed [38–61]⁷⁰ 35 (for a recent review, see Ref. [62]). This new framework ⁷¹ 36 has been compared to traditional viscous hydrodynam-⁷² 37 ics in many ways. For boost-invariant and transversely $^{\rm 73}$ 38 homogeneous systems, by comparing to exact solutions ⁷⁴ 30 it has been shown that anisotropic hydrodynamics more ⁷⁵ 40 accurately describes the dynamics in all cases considered 76 41 [49, 54, 55, 63-65]. In addition, it has been shown that 77 42 anisotropic hydrodynamics best reproduces exact solu-78 43 tions of Boltzmann equation subject to 1+1d Gubser flow 79 44 [66-68]. Finally, we also mention that it has been shown $_{80}$ 45 that anisotropic hydrodynamics shows better agreement 81 46 with data from ultracold Fermi gases experiments than 82 47 viscous hydrodynamics [69, 70]. 48 83

The anisotropic hydrodynamics program is now fo- ⁸⁴ cused on making phenomenological predictions for heavy- ⁸⁵ ion physics, including anisotropic freeze-out and a real- ⁸⁶ istic lattice-based equation of state (EoS) [57]. In a re- ⁸⁷ cent paper it was demonstrated how to impose a realistic ⁸⁸ EoS assuming approximate conformality of the QGP [57]. ⁸⁹ In Ref. [59] a different method for imposing a realis- ⁹⁰

tic EoS was proposed in which the non-conformality of the QGP is taken into account by modeling the QGP as a gas of massive quasiparticles with temperaturedependent masses. This quasiparticle approach is motivated by perturbative results such as hard thermal loop (HTL) resummation, where the quarks and gluons can have temperature-dependent masses [71–79]. In the quasiparticle anisotropic hydrodynamics framework one introduces a single-finite temperature mass which is fit to available lattice data for the QCD EoS. Once m(T)is determined, the realistic EoS together with the nonequilibrium energy momentum tensor can be used to derive the dynamical equations for such a quasiparticle gas using Boltzmann equation [59]. In this work, we extend the previous 0+1d work of Ref. [59] to 1+1d and we also use "anisotropic Cooper-Frye freeze-out" to compute the primordial particle spectra [57]. We limit our considerations to 1+1d because full 2+1d or 3+1d simulations using the quasiparticle method would currently require large scale computational resources.

Here we compare results of quasiparticle anisotropic hydrodynamics to those obtained using the standard anisotropic hydrodynamics [57] and second-order viscous hydrodynamics. We will refer to the three methods considered herein as "aHydroQP", "aHydro" and "vHydro", respectively. For our calculations, we use the general 3+1d dynamical equations derived in our previous paper [59]. We solve the equations numerically and perform self-consistent hadronic freeze-out in order to compare the total number of charged particles $N_{\rm chg}$, the average transverse momentum $\langle p_T \rangle$ for pions, kaons, and protons, and also their differential spectra predicted by each approach. We find that the three methods agree well for small shear viscosity to entropy density ratio, η/s , but differ at large η/s . We find, in particular, that when

The structure of the paper is as follows. In Sec. II,145 96 two approaches used for implementing realistic EoS146 97 In Sec. III, dynamical equations for₁₄₇ is explained. 98 two anisotropic hydrodynamics methods are presented₁₄₈ 99 for azimuthally-symmetric boost-invariant systems. In149 100 Sec. IV we discuss anisotropic Cooper-Frye freeze-out in₁₅₀ 101 the context of leading-order anisotropic hydrodynamics.151 102 In Sec. V, our numerical results obtained using the three 103 methods for central Pb-Pb and p-Pb collisions at LHC 104 energies are presented. Sec. VI contains our conclusions¹⁵² 105 and an outlook for the future. In App. A, we review the 106 notation and conventions. App. B is about anisotropic₁₅₃ 107 distribution function used in the formulation. In App. C,154 108 we present details about second-order viscous hydrody-155 109 namics equations. Finally, all necessary identities and 156 110 function definitions are collected in Apps. D and E. 111 157

112

II. EQUATION OF STATE

For the temperatures close to QCD phase transition,¹⁶² 113 significant corrections to the Stefan-Boltzmann limit¹⁶³ 114 (ideal gas limit) are observed and, as the temperature¹⁶⁴ 115 decreases, the relevant degrees of freedom change from 165 116 quarks and gluons to hadrons. The standard way to de-166 117 termine the QGP EoS is to use non-perturbative lattice¹⁶⁷ 118 QCD calculations. For this purpose, we use an ana-168 119 lytic parameterization of lattice QCD data taken from 169 120 the Wuppertal-Budapest collaboration [80]. We refer the¹⁷⁰ 121 reader to the Ref. [59] for more details. Herein we con-171 122 sider a system at finite temperature and zero chemical¹⁷² 123 potential. 124

125

Method 1: Standard

In the "standard approach" for imposing a realis-126 tic EoS in anisotropic hydrodynamics, one exploits the 127 conformal multiplicative factorization of the energy-128 momentum tensor components [38, 39] even though con-129 formal system is explicitly broken. This approach is jus-130 tified a priori by the smallness of corrections to factoriza-131 tion in the non-nonconformal case in the near-equilibrium 132 limit [57]. For details concerning this method, we refer 133 134 the reader to Ref. [57, 59]. 173

135

Method 2: Quasiparticle

¹⁷⁵ Since the standard method is only approximate, one ¹³⁷ needs an alternative implementation of the EoS which₁₇₆ ¹³⁸ can be applied to non-conformal systems. In the quasi-¹³⁹ particle EoS method, the QGP is taken to be gas of massive quasiparticles whose mass is temperature dependent. However, naive substitution of m(T) into the thermodynamic relations obtained for constant-mass system would violate thermodynamic consistency [81]. As discussed before, thermodynamic consistency can be ensured by adding a temperature-dependent contribution to the energy-momentum tensor in equilibrium limit. Herein, we use the formalism developed in Ref. [59] which generalizes this idea to anisotropic hydrodynamics, in which case the mean-field contribution evolves as a nonequilibrium system parameter. For details concerning this approach, we refer readers to [59].

III. DYNAMICAL EQUATIONS

In what follows, the 1+1d anisotropic hydrodynamics equations for both quasiparticle and massless (standard) systems are presented [59]. The equations are based on moments of the Boltzmann equation for massive quasiparticles with a temperature-dependent mass. As a simplification, the collisional kernel is taken in the relaxation-time approximation. The derivations are based on an (ellipsoidally) anisotropic distribution function with a diagonal anisotropy tensor which includes the effect of bulk degree of freedom, Φ . Herein, $\alpha_i =$ $(1+\xi_i+\Phi)^{-1/2}$ where ξ_i 's are the diagonal momentumspace anisotropy parameters and λ is a temperaturelike scale which represents the temperature only in the isotropic limit. For details, about the precise form of the distribution function and the various parameters, see App. B. Choosing two equations from the first moment, three from the second moment, together with the matching condition (which ensures the energy-momentum conservation), we end up with six equations for six independent variables $\boldsymbol{\alpha}, \lambda, T$, and θ_{\perp} as

158

159

160

161

174

$$D_{u}\mathcal{E} + \mathcal{E}\theta_{u} + \mathcal{P}_{x}D_{x}\theta_{\perp} + \frac{\mathcal{P}_{y}}{r}\sinh\theta_{\perp} + \frac{\mathcal{P}_{z}}{\tau}\cosh\theta_{\perp} = 0, (1)$$

$$D_x \mathcal{P}_x + \mathcal{P}_x \theta_x + \mathcal{E} D_u \theta_\perp - \frac{\mathcal{P}_y}{r} \cosh \theta_\perp - \frac{\mathcal{P}_z}{\tau} \sinh \theta_\perp = 0, (2)$$

$$\frac{D_u \mathcal{L}_x}{\mathcal{I}_x} + \theta_u + 2D_x \theta_\perp = \frac{1}{\tau_{\text{eq}}} \left(\frac{\mathcal{L}_{\text{eq}}}{\mathcal{I}_x} - 1\right),\tag{3}$$

$$\frac{D_u \mathcal{I}_y}{\mathcal{I}_y} + \theta_u + \frac{2}{r} \sinh \theta_\perp = \frac{1}{\tau_{\text{eq}}} \left(\frac{\mathcal{I}_{\text{eq}}}{\mathcal{I}_y} - 1 \right), \tag{4}$$

$$\frac{D_u \mathcal{I}_z}{\mathcal{I}_z} + \theta_u + \frac{2}{\tau} \cosh \theta_\perp = \frac{1}{\tau_{\rm eq}} \left(\frac{\mathcal{I}_{\rm eq}}{\mathcal{I}_z} - 1 \right),\tag{5}$$

$$\mathcal{E}_{\text{kinetic}} = \mathcal{E}_{\text{kinetic,eq}}, \qquad (6)$$

where the derivatives D_{α} and divergences θ_{α} , with $\alpha \in \{u, x, y, z\}$, are defined in App. D.

Massive gas

For the system of massive quasiparticles one has

$$\mathcal{E} = \mathcal{H}_3(\boldsymbol{\alpha}, \hat{m}) \,\lambda^4 + B \,,$$

with $\mathcal{I}_{eq}(\lambda, m) = 4\pi \tilde{N} \lambda^5 \hat{m}^3 K_3(\hat{m})$ and $\hat{m} \equiv m/\lambda$. As is discussed in [59], in order to find *B* one needs to integrate

$$\frac{dB_{\rm eq}}{dT} = -4\pi \tilde{N}m^2 T K_1(\hat{m}_{\rm eq})\frac{dm}{dT}.$$
(8)

189

196

197

198

199

228

229

230

231

with m(T) obtained from thermodynamics relation

$$\mathcal{E}_{\rm eq} + \mathcal{P}_{\rm eq} = T \mathcal{S}_{\rm eq} = 4\pi \tilde{N} T^4 \, \hat{m}_{\rm eq}^3 K_3 \left(\hat{m}_{\rm eq} \right). \qquad (9)_{_{191}}^{_{190}}$$

with the matching condition, $\mathcal{H}_3(\boldsymbol{\alpha}, \hat{m})\lambda^4 = ^{_{192}}_{_{193}}$ $\mathcal{H}_{3,eq}(\hat{m}_{eq})T^4$ where $\hat{m}_{eq} \equiv m/T$ and $\mathcal{H}_{3,eq}(\hat{m}_{eq}) \equiv ^{_{193}}_{_{194}}$ $\mathcal{H}_3(\mathbf{1}, \hat{m}_{eq}).$

183

Massless gas

¹⁸⁴ The energy density and pressures in massless case are₂₀₀

$$\begin{aligned} \mathcal{E} &= \mathcal{E}_{eq}(\lambda) \,\hat{\mathcal{H}}_{3}(\boldsymbol{\alpha}) , & \overset{201}{2} \\ \mathcal{P}_{i} &= \mathcal{P}_{eq}(\lambda) \,\hat{\mathcal{H}}_{3i}(\boldsymbol{\alpha}) , & \overset{202}{2} \\ \mathcal{I}_{i} &= \alpha \, \alpha_{i}^{2} \,\mathcal{I}_{eq}(\lambda) \,; & (i = x, y, z) , & (10)^{204} \end{aligned}$$

with $\mathcal{I}_{eq}(\lambda) = 32\pi \tilde{N}\lambda^5$ and the matching condition²⁰⁵ ₁₈₅ $\mathcal{E}_{eq}(\lambda)\hat{\mathcal{H}}_3(\boldsymbol{\alpha}) = \mathcal{E}_{eq}(T).$ ²⁰⁷

IV. ANISOTROPIC FREEZE-OUT

At the late times, the system undergoes freeze-out procedure for particle production. For this purpose we perform "anisotropic Cooper-Frye freeze-out" using Eq. (B2) as the form for the one-particle distribution function. The advantage of this freeze-out method is that the anisotropic distribution function is guaranteed to be positive-definite, by construction, in all regions in phase space and the microscopic parameters can be taken directly from the aHydro evolution evaluated on the freezeout hypersurface. In this paper, we follow the procedure derived in [57]; however, here we take into account the breaking of conformality. The only change required is in the argument of the distribution function itself, where the combination $p^{\mu} \Xi_{\mu\nu} p^{\nu}$ has additional terms associated with the bulk degree of freedom $\Phi = \frac{1}{3} \sum_{i} \alpha_{i}^{-2} - 1$. Parameterizing the particle momentum in the lab frame as $p^{\mu} \equiv (m_{\perp} \cosh y, p_{\perp} \cos \varphi, p_{\perp} \sin \varphi, m_{\perp} \sinh y)$ where $m_{\perp} = \sqrt{p_{\perp}^2 + m^2}, y = \tanh^{-1}(p^z/p^0)$ is the particle's rapidity, and φ is the particle's azimuthal angle, one obtains

$$p^{\mu} \Xi_{\mu\nu} p^{\nu} = (1+\Phi) \left[m_{\perp} \cosh\theta_{\perp} \cosh(y-\varsigma) - p_{\perp} \sinh\theta_{\perp} \cos(\phi-\varphi) \right]^{2} + \xi_{x} \left[m_{\perp} \sinh\theta_{\perp} \cosh(y-\varsigma) - p_{\perp} \cosh\theta_{\perp} \cos(\phi-\varphi) \right]^{2} + \xi_{y} p_{\perp}^{2} \sin^{2}(\phi-\varphi) + \xi_{z} m_{\perp}^{2} \sinh^{2}(y-\varsigma) - \Phi m^{2}.$$
(11)

Note that $p^{\mu} \Xi_{\mu\nu} p^{\nu}$ is Lorentz invariant, and by calculat-225 ing it in LRF, one can show that this is positive definite 226 in any frame. 227

211

V. RESULTS

We now turn to our numerical results. We present com-²³² parisons of results obtained using the dynamical equa-²³³ tions of anisotropic hydrodynamics presented in Sec. III²³⁴ and the second-order viscous hydrodynamics equations²³⁵ from Denicol et al. [29, 33]. For details about the vHy-²³⁶ dro equations solved herein we refer the reader to App. C.²³⁷

²¹⁸ *Pb-Pb collisions:* For all results presented in this sec-²¹⁹ tion we use smooth Glauber wounded-nucleon overlap to ²²⁰ set the initial energy density. As our test case we con-²²¹ sider Pb-Pb collisions with $\sqrt{s_{\rm NN}} = 2.76$ GeV. The in-²²² elastic nucleon-nucleon scattering cross-section is taken ²²³ to be $\sigma_{\rm NN} = 62$ mb. For the aHydro results, we use ²²⁴ 200 points in the radial direction with a lattice spacing of $\Delta r = 0.15$ fm and temporal step size of $\Delta \tau = 0.01$ fm/c. For the vHydro results, we use 600 points in the radial direction with a lattice spacing of $\Delta r = 0.05$ fm and temporal step size of $\Delta \tau = 0.001$ fm/c.¹ In all cases, we use fourth-order Runge-Kutta integration for the temporal updates and fourth-order centered differences for the evaluation of all spatial derivatives.² We take the central initial temperature to be $T_0 = 600$ MeV at $\tau_0 = 0.25$ fm/c and assume that the system is initially isotropic, i.e. $\alpha_x(\tau_0) = \alpha_y(\tau_0) = \alpha_z(\tau_0) = 1$ for anisotropic hydrodynamics and $\pi^{\mu\nu}(\tau_0) = \Pi(\tau_0) = 0$ for second-order viscous hydrodynamics. We take the freezeout temperature to be $T_{\rm eff} = T_{\rm FO} = 150$ MeV in all cases

¹We found that the vHydro code was more sensitive to the spatial lattice spacing and required a smaller temporal step size for stability.

²Since the initial conditions considered herein are smooth, naive centered differences generally suffice.

vHydro

aHydro

2.5

4*πη*/s=3

2.5

3.0

3.0

3.0

aHydroQF

0.5

100.0

10.0

1.0

0.1

10.0

1.0

0.1

0.01

0.0

 $dN/2\pi p_T dp_T dy$

252

0.0

0.5

 π^0

1.0

ĸ

1.0

1.5

2.0

1.5

2.0

 $dN/2\pi p_T dp_T dy$

FIG. 1. Comparison of the neutral pions, kaons (K^+) , and protons spectra as a function of transverse momentum p_T obtained using aHydroQP, aHydro and vHydro. The shear viscosity to entropy density ratio is $4\pi\eta/s = 1$.

²⁵³ shown. For the freeze-out we use 371 hadronic resonances ²⁵⁴ ($M_{\rm hadron} \leq 2.6 \; {\rm GeV}$), with the masses, spins, etc. taken ²⁵⁵ from the SHARE table of hadronic resonances [82–84].²⁵⁶ ²⁴⁰ We do not perform resonance feed down, hence all spec-²⁵⁷ ²⁴² trum shown herein are primordial spectra.²⁵⁸

In Figs. 1-3 we present our results for the primordial₂₅₉ 243 pion, kaon, and proton spectra produced for $4\pi\eta/s =_{260}$ 244 1, 3, and 10, respectively. In each case, we have held₂₆₁ 245 the initial conditions fixed and only varied η/s . In each₂₆₂ 246 of these figures the solid black line is the result from 263 247 standard second-order viscous hydrodynamics (vHvdro), 264 248 the red short-dashed line is the result from standard₂₆₅ 249 anisotropic hydrodynamics (aHydro), and the blue long-266 250 dashed line is the result from quasiparticle anisotropic hy-267 251

FIG. 2. Same as Fig. 1, except here the shear viscosity to entropy density ratio was taken to be $4\pi\eta/s = 3$.

drodynamics (aHydroQP). As can be seen from Fig. 1, for $4\pi\eta/s = 1$, both aHydro approaches are in good agreement over the entire p_T range shown with the largest differences occurring at low momentum. The second-order viscous hydrodynamics result, however, shows a significant downward curvature in the pion spectrum resulting in many fewer high- p_T pions. The trend is the same for the kaon and proton spectra, however, for the larger mass hadrons the downturn is less severe. We note that although we plot only up to $p_T = 3$ GeV, these plots can be extended to larger p_T , in which case one finds that eventually the primordial pion spectrum predicted by vHydro becomes negative, which is clearly unphysical. This can be seen more clearly in Figs. 2 and 3 which show the same results for $4\pi\eta/s = 3$ and 10, respectively. As these figures demonstrate, for larger η/s the vHydro

FIG. 3. Same as Fig. 1, except here the shear viscosity to entropy density ratio was taken to be $4\pi\eta/s = 10$.

²⁶⁸ primordial particle spectra become unphysical at lower ²⁶⁹ momenta. For example, for $4\pi\eta/s = 3$ the differential²⁸⁵ ²⁷⁰ pion spectrum goes negative at $p_T \sim 1.6$ GeV while for²⁸⁶ ²⁷¹ $4\pi\eta/s = 10$ it goes negative at $p_T \sim 0.9$ GeV. ²⁸⁷

This behavior is a result of the bulk-viscous correc-288 272 tion to the one-particle distribution function specified in₂₈₉ 273 Eq. (C22). We have checked that if we neglect the bulk- $_{290}$ 274 viscous correction to the distribution function, then the₂₉₁ 275 resulting spectra are positive definite in the range of $p_{T^{292}}$ 276 shown in Figs. 1-3. We have verified that this is a known²⁹³ 277 issue with the bulk-viscous correction in the second-order²⁹⁴ 278 viscous hydrodynamics approach. The same form for₂₉₅ 279 the bulk correction (C22) was used by the authors of₂₉₆ 280 Ref. [35] and they also observed a downward curvature²⁹⁷ 281 turning into negatively-valued spectra at large p_T [85].298 282 This problem does not occur in either aHydro approach₂₉₉ 283 because the one-particle distribution function is positive-300 284

FIG. 4. Comparison of the total number of pions (π^0) , kaons (K^0) , and protons as a function of $4\pi\eta/s$ obtained using aHydroQP, aHydro, and vHydro.

definite by construction in this framework.

Next, we turn to a discussion of Fig. 4. In this figure we plot the total number of π^0 's (top), K^0 's (middle), and p's (bottom) obtained by integrating the differential yields over transverse momentum as a function of $4\pi\eta/s$. The line styles are the same as in Figs. 1-3. From this figure we see that at small η/s all approaches are in agreement, however, at large η/s the three methods can give dramatically different results. We, in particular, note that the number of pions from vHydro drops much quicker than the two aHydro approaches. This is primarily due to the fact that in vHydro one sees a negative number of pions at large p_T . As shown in Fig. 4 (top), the total number of pions predicted by vHydro goes negative at $4\pi\eta/s \sim 22$. This is a signal of the breakdown of viscous hydrodynamics and should come as no surprise

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

338

FIG. 5. Comparison of the neutral pions, kaons (K^+) , and protons average transverse momentum as a function of $4\pi\eta/s^{335}$ obtained using aHydroQP, aHydro, and vHydro.

³³⁹ since this approach is intended to be applicable only in the case of small η/s and p_T . Finally, we note that although aHydro and aHydroQP are in reasonably good₃₄₂ agreement for the pion and kaon spectra, we see a rather strong dependence on the way the EoS is implemented₃₄₄ in the proton spectra and, hence, the total number of sof primordial protons.

As an additional way to compare the three methods₃₄₇ 308 considered, in Fig. 5 we present the average p_T for π^{0} 's₃₄₈ 309 (top), K^+ 's (middle), and p's (bottom). The line styles₃₄₉ 310 are the same as in Figs. 1-3. From this figure we see 350 311 that both aHvdro approaches predict a weak dependence₃₅₁ 312 of the pion and kaon $\langle p_T \rangle$ on the assumed value of η/s_{352} 313 whereas vHydro predicts a much more steep decrease in₃₅₃ 314 $\langle p_T \rangle$ for the pions and kaons. Once again, we see that the 354 315

FIG. 6. The number of total charged particles as a function of $4\pi\eta/s$ obtained using aHydroQP, aHydro, and vHydro.

vHydro $\langle p_T \rangle$ for pions becomes negative for $4\pi\eta/s \gtrsim 5$. This rapid decrease stems directly from the negativity of the pion spectra at high p_T which is more important in this case since the integrand is more sensitive to the high- p_T part of the spectra. Finally, we note that once again the proton spectra and hence $\langle p_T \rangle$ for protons is sensitive to the way in which the EoS is implemented when comparing the two aHydro approaches.

Finally, in Fig. 6 we plot the total number of charged particles as a function of $4\pi\eta/s$ predicted by each of the three approaches considered. Once again the line styles are the same as in Figs. 1-3. As this figure demonstrates, for small η/s all three frameworks are in agreement and approach the ideal result as η/s tends to zero. All three frameworks predict that $N_{\rm chg}$ at first increases, then reaches a maximum, and then begins to decrease. The precise turnover point depends on the method with the lowest turnover seen using vHydro around $4\pi\eta/s \sim 3$; however, this turnover is due in large part to the fact that the total pion number drops precipitously in vHydro.

p-Pb collisions: We now turn to the case of an asymmetric collision between a proton and a nucleus. For this purpose, we use the same parameters as used for the Pb-Pb collisions considered previously, except for p-Pb we use a lower initial temperature of $T_0 = 400$ MeV. In addition, for the aHydro results, we use a lattice spacing of $\Delta r = 0.06$ fm and for vHydro results, we use a lattice spacing of $\Delta r = 0.02$ fm. The smaller lattice spacings simply reflect the smaller system size of the QGP created in a p-Pb collision.

In Figs. 7-8 we present our results for the primordial pion, kaon, and proton spectra produced for $4\pi\eta/s = 1$, and 3, respectively in p-Pb collisions. As we can see from Fig. 7, both aHydro approaches are in a good agreement at high p_T , however, there are some quantitative differences at low p_T . Comparing the low p_T difference with that seen in Pb-Pb collisions, we find that there is a larger variation in the p-Pb spectra comparing aHydro and aHydroQP. This variation is a bit worrisome since it

FIG. 7. Comparisons of the p-Pb neutral pions, kaons (K^+) , and protons spectra as a function of transverse momentum p_T obtained using aHydroQP, aHydro, and vHydro. The shear viscosity to entropy density ratio is $4\pi\eta/s = 1$.

366

367

368

369

indicates a kind of theoretical uncertainty in the aHydro370 355 approach. Importantly, however, we mention that the₃₇₁ 356 two aHydro results are quite different than the vHydro₃₇₂ 357 result. For p-Pb collisions, the vHydro result shows the373 358 same behavior seen in the Pb-Pb collisions, namely that₃₇₄ 359 the particle spectra goes negative at high p_T . In Fig. 8,375 360 one can clearly see the unphysical behavior in the vHvdro₃₇₆ 361 primordial spectra. As a result, there is even larger the-377 362 oretical uncertainty associated with applications of vHy-378 363 dro to p-Pb collisions. 379 364

FIG. 8. Same as Fig. 7, except here the shear viscosity to entropy density ratio was taken to be $4\pi\eta/s = 3$.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we compared three different viscous hydrodynamics approaches: aHydro, aHydroQP, and vHydro. For all three cases we included both shear and bulk-viscous effects using the relaxation time approximation scattering kernel. In the standard aHydro approach one uses the standard method for imposing an equation of state in anisotropic hydrodynamics, which is to obtain conformal equations and then break the conformality only when introducing the EoS itself. In aHydroQP, one takes into account the breaking of conformality at the outset by modeling the QGP as a quasiparticle gas with a single temperature-dependent mass m(T) which is fit to available lattice data for the EoS. Finally, for our comparisons with viscous hydrodynamics we used the formalism of Denicol et al [29, 33] specialized to the case of 432 relaxation time approximation. 433

For each method, we specialized to the case of $1+1d_{434}$ 382 boost-invariant and azimuthally-symmetric collisions us-435 383 ing smooth Glauber initial conditions. We specialized 436 384 to this case because of the computational intensity of437 385 the aHydroQP approach which requires real-time evalu-438 386 ate of complicated multi-dimensional integrals which are⁴³⁹ 387 functions of all three anisotropy parameters and the lo-440 388 cal temperature-dependent mass. Using the resulting nu-441 389 merical evolution, we then extracted fixed energy density⁴⁴² 390 freeze-out hypersurfaces in each case and implemented₄₄₃ 391 the scheme-appropriate freeze-out to hadrons allowing444 392 us to have an apples-to-apples comparison between the₄₄₅ 393 three different approaches. We found that the primor- $_{446}$ 394 dial particle spectra, total number of charged particles, 395 and average transverse momentum predicted by the three 396 methods agree well for small shear viscosity to entropy 397 density ratio, η/s , but differ at large η/s . Finally we 398 demonstrated that, when using standard viscous hydro-447 399 dynamics, the bulk-viscous correction can drive the pri-400 mordial particle spectra negative at large p_T . Such a 401 behavior is not seen in either aHydro approach, irrespec-402 tive of the value of η/s . Finally, and most importantly, 403 we find a reasonable agreement between the two aHydro 404 EoS implementations. 405

Looking to the future, it is feasible to extend the 406 aHydroQP approach to 3+1d, however, this will be numerically intensive and require parallelization to imple-407 408 ment fully. One possibility is to use polynomial fits to 451 409 parametrize the various massive \mathcal{H} -functions necessary⁴⁵² 410 instead of evaluating them on-the-fly in the code. If this 453 411 is possible, then a HydroQP could become a viable al- 454 412 ternative to the standard method of implementing the⁴⁵⁵ 413 EoS in aHydro and, since it takes into account the non-414 conformality of the system from the beginning, this could 415 give us an idea of the theoretical uncertainty associated 416 with the EoS method used in phenomenological applica-417 tions. For now, this work will serve as a reference $point_{457}$ 418 for possible differences between the two approaches to_{458} 419 imposing the aHydro EoS. 420 459

421

ACKNOWLEDGMENTS

460

461

462

463

We thank G. Denicol and B. Schenke for useful discus-464
sions. M. Strickland and M. Nopoush were supported by465
the U.S. Department of Energy, Office of Science, Office
of Nuclear Physics under Awards No. DE-SC0013470. M.
Alqahtani was supported by a PhD fellowship from the

427 University of Dammam.

428 Appendix A: Conventions and Notation

In this section, we summarize the general conven-467 tions we used in the derivations. A parentheses in the the derivations indices indicates a symmetrized form, e.g. $A^{(\mu\nu)} \equiv_{469}$ $(A^{\mu\nu} + A^{\nu\mu})/2$. The metric is taken to be in the "west coast convention" such that in Minkowski space with $x^{\mu} \equiv (t, x, y, z)$ the measure is $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = dt^2 - dx^2 - dy^2 - dz^2$. We also use the standard transverse projector, $\Delta^{\mu\nu} \equiv g^{\mu\nu} - u^{\mu}u^{\nu}$. When studying relativistic heavy-ion collisions, it is convenient to transform to Milne coordinates defined by $\tau = \sqrt{t^2 - z^2}$, which is the longitudinal proper time, and $\varsigma = \tanh^{-1}(z/t)$, which is the longitudinal spacetime rapidity. For a system which is azimuthally symmetric with respect to the beam-line, it is convenient to transform to polar coordinates in the transverse plane with $r = \sqrt{x^2 + y^2}$ and $\phi = \tan^{-1}(y/x)$. In this case, the new set of coordinates $x^{\mu} = (\tau, r, \phi, \varsigma)$ defines polar Milne coordinates. Also, $\tilde{N} \equiv N_{\rm dof}/(2\pi)^3$ with $N_{\rm dof}$ being the number of degrees of freedom.

Appendix B: Ellipsoidal distribution function

We introduce the anisotropy tensor in non-conformal anisotropic hydrodynamics as [44, 53]

$$\Xi^{\mu\nu} = u^{\mu}u^{\nu} + \xi^{\mu\nu} - \Delta^{\mu\nu}\Phi, \qquad (B1)$$

where u^{μ} is four-velocity, $\xi^{\mu\nu}$ is a symmetric and traceless tensor, and Φ is associated with the bulk degree of freedom. The quantities u^{μ} , $\xi^{\mu\nu}$, and Φ are functions of spacetime and obey $u^{\mu}u_{\mu} = 1$, $\xi^{\mu}{}_{\mu} = 0$, $\Delta^{\mu}{}_{\mu} = 3$, and $u_{\mu}\xi^{\mu\nu} = 0$; therefore, one has $\Xi^{\mu}{}_{\mu} = 1 - 3\Phi$. The one-particle distribution function at leading order in the aHydro expansion is of the form

$$f(x,p) = f_{\rm iso}\left(\frac{1}{\lambda}\sqrt{p_{\mu}\Xi^{\mu\nu}p_{\nu}}\right),\tag{B2}$$

where λ has dimensions of energy and can be identified only with the temperature in the isotropic equilibrium limit ($\xi^{\mu\nu} = 0$ and $\Phi = 0$). Herein, we assume that the distribution function is of Boltzmann form and chemical potential is taken to be zero. To good approximation one can assume that $\xi^{\mu\nu} = \text{diag}(0, \boldsymbol{\xi})$ with $\boldsymbol{\xi} \equiv (\xi_x, \xi_y, \xi_z)$ because the most important viscous corrections are to the diagonal components of $T^{\mu\nu}$. In this case, Eq. (B2) in the LRF gives

$$f(x,p) = f_{eq}\left(\frac{1}{\lambda}\sqrt{\sum_{i}\frac{p_i^2}{\alpha_i^2} + m^2}\right),$$
 (B3)

where $i \in \{x, y, z\}$ and the scale parameters α_i are

$$\alpha_i \equiv (1 + \xi_i + \Phi)^{-1/2} \,. \tag{B4}$$

For compactness, one can collect the three anisotropy parameters into vector $\boldsymbol{\alpha} \equiv (\alpha_x, \alpha_y, \alpha_z)$. In the isotropic equilibrium limit, where $\xi_i = \Phi = 0$ and $\alpha_i = 1$, one has

we use the three variables α_i as the dynamical anisotropy

parameters since, by using Eq. (B4) and the tracelessness of $\xi^{\mu\nu}$, one can write Φ in terms of the anisotropy parameters, $\Phi = \frac{1}{3} \sum_{i} \alpha_{i}^{-2} - 1$.

470 $p_{\mu} \Xi^{\mu\nu} p_{\nu} = E^2$ and $\lambda \to T$ and, hence,

$$f(x,p) = f_{eq}\left(\frac{E}{T(x)}\right).$$
 (B5)⁴⁷⁵₄₇₆

471 Note that, out of the four anisotropy and bulk parame-

 $_{\rm 472}$ $\,$ ters there are only three independent ones. In practice,

Appendix C: Second-order viscous hydrodynamics

473

⁴⁷⁸ The second order viscous hydrodynamics equations including bulk viscosity are [29, 33]

$$(\mathcal{E} + \mathcal{P} + \Pi)D_u u^\mu = \nabla^\mu (\mathcal{P} + \Pi) - \Delta^\mu_\nu \nabla_\sigma \pi^{\nu\sigma} + \pi^{\mu\nu} D_u u_\nu , \qquad (C1)$$

$$D_u \mathcal{E} = -(\mathcal{E} + \mathcal{P} + \Pi)\theta_u + \pi^{\mu\nu}\sigma_{\mu\nu} , \qquad (C2)$$

$$\tau_{\Pi} D_u \Pi + \Pi = -\zeta \theta_u - \delta_{\Pi\Pi} \Pi \theta_u + \varphi_1 \Pi^2 + \lambda_{\Pi\pi} \pi^{\mu\nu} \sigma_{\mu\nu} + \varphi_3 \pi^{\mu\nu} \pi_{\mu\nu} \,, \tag{C3}$$

$$\tau_{\pi}\Delta^{\mu\nu}_{\alpha\beta}D_{u}\pi^{\alpha\beta} + \pi^{\mu\nu} = 2\eta\sigma^{\mu\nu} + 2\tau_{\pi}\pi^{\langle\mu}_{\alpha}\omega^{\nu\rangle\alpha} - \delta_{\pi\pi}\pi^{\mu\nu}\theta_{u} + \varphi_{7}\pi^{\langle\mu}_{\alpha}\pi^{\nu\rangle\alpha} - \tau_{\pi\pi}\pi^{\langle\mu}_{\alpha}\sigma^{\nu\rangle\alpha} + \lambda_{\pi\Pi}\Pi\sigma^{\mu\nu} + \varphi_{6}\Pi\pi^{\mu\nu}, \quad (C4)$$

where $\mathcal{E} \equiv \mathcal{E}_{eq}$ and $\mathcal{P} \equiv \mathcal{P}_{eq}$ are the equilibrium energy density and pressure, τ_{π} and τ_{Π} are the shear and bulk relaxation time, and $\tau_{\pi\pi}$ is the shear-shear-coupling transport coefficient. The various notations used are

$$d_{\mu}u^{\nu} \equiv \partial_{\mu}u^{\nu} + \Gamma^{\nu}_{\mu\alpha}u^{\alpha}, \qquad \sigma^{\mu\nu} \equiv \nabla^{\langle \mu}u^{\nu \rangle}, D_{u} \equiv u_{\mu}d^{\mu}, \qquad A^{\langle \mu\nu\rangle} \equiv \Delta^{\mu\nu}_{\alpha\beta}A^{\alpha\beta}, \theta_{u} \equiv \nabla_{\mu}u^{\mu}, \qquad \Delta^{\mu\nu}_{\alpha\beta} \equiv \frac{1}{2} \left(\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta}\Delta^{\nu}_{\alpha} - \frac{2}{3}\Delta^{\mu\nu}\Delta_{\alpha\beta} \right), \nabla^{\mu} \equiv \Delta^{\mu\nu}d_{\nu}, \qquad \omega^{\mu\nu} \equiv \frac{1}{2} (\nabla^{\mu}u^{\nu} - \nabla^{\nu}u^{\mu}).$$
(C5)

The non-vanishing Christoffel symbols for polar Milne coordinates are $\Gamma_{\zeta\zeta}^{\tau} = \tau$, $\Gamma_{\zeta\tau}^{c} = 1/\tau$, $\Gamma_{\phi\phi}^{r} = -r$, and $\Gamma_{r\phi}^{\phi} = 1/r$. Also, we note that for the smooth initial conditions considered herein in 1+1d, the vorticity tensor vanishes. As shown in Ref. [86], the terms $\varphi_1 \Pi^2$, $\varphi_3 \pi^{\mu\nu} \pi_{\mu\nu}$, $\varphi_6 \Pi \pi^{\mu\nu}$, and $\varphi_7 \pi_{\alpha}^{\langle \mu} \pi^{\nu \rangle \alpha}$ appear only because the collision term is nonlinear in the single-particle distribution function. In the case of the RTA, the collision term is assumed to be linear in the distribution function and one has $\varphi_1 = \varphi_3 = \varphi_6 = \varphi_7 = 0$. In this case, the shear and bulk relaxation times, τ_{π} and τ_{Π} , respectively, are equal to the microscopic relaxation time τ_{eq} , i.e., $\tau_{\Pi} = \tau_{\pi} = \tau_{eq}$ [33]. The coefficients appearing in the equation for the bulk and shear corrections are [33]

$$\frac{\zeta}{\tau_{\Pi}} = \left(\frac{1}{3} - c_s^2\right)(\mathcal{E} + \mathcal{P}) - \frac{2}{9}(\mathcal{E} - 3\mathcal{P}), \qquad \qquad \frac{\eta}{\tau_{\pi}} = \frac{4}{5}\mathcal{P} + \frac{1}{15}(\mathcal{E} - 3\mathcal{P}), \qquad \qquad \frac{\tau_{\pi\pi}}{\tau_{\pi}} = \frac{10}{7}, \\
\frac{\delta_{\Pi\Pi}}{\tau_{\Pi}} = \frac{1}{3} - c_s^2, \qquad \qquad \frac{\delta_{\pi\pi}}{\tau_{\pi}} = \frac{4}{3}, \qquad \qquad \frac{\delta_{\pi\pi}}{\tau_{\pi}} = \frac{4}{3}, \qquad \qquad \frac{\lambda_{\pi\Pi}}{\tau_{\pi}} = \frac{6}{5},$$
(C6)

with $c_s^2 \equiv d\mathcal{P}/d\mathcal{E}$ being the speed of sound squared and $\tau_{\rm eq} = 15\bar{\eta}(\mathcal{E}+\mathcal{P})/(\mathcal{E}+9\mathcal{P})/T$.

1+1d viscous hydrodynamics equations of motion

In the boost-invariant and azimuthally-symmetric case, one has $u^{\mu} = (u^{\tau}, u^{r}, 0, 0)$ and, as a result, $v \equiv \tanh \theta_{\perp} = u^{r}/u^{\tau}$. In addition, for this case, the shear tensor has the following form

$$\pi^{\mu\nu} = \begin{pmatrix} \pi^{\tau\tau} & \pi^{\tau r} & 0 & 0\\ \pi^{\tau r} & \pi^{r r} & 0 & 0\\ 0 & 0 & \pi^{\phi\phi} & 0\\ 0 & 0 & 0 & \pi^{\varsigma\varsigma} \end{pmatrix}.$$
 (C7)

477

In this case, expanding Eqs. (C1), (C2), and (C3) in polar Milne coordinates one obtains six equations where only five of them are independent

$$(\mathcal{E} + \mathcal{P} + \Pi)D_u u^\tau = -(u^r)^2 \Big[\partial_\tau (\mathcal{P} + \Pi) - d_\nu \pi_\tau^\nu\Big] - u^\tau u^r \Big[\partial_r (\mathcal{P} + \Pi) - d_\nu \pi_r^\nu\Big],\tag{C8}$$

$$(\mathcal{E} + \mathcal{P} + \Pi)D_u u^r = -u^\tau u^r \Big[\partial_\tau (\mathcal{P} + \Pi) - d_\nu \pi_\tau^\nu\Big] - (u^\tau)^2 \Big[\partial_r (\mathcal{P} + \Pi) - d_\nu \pi_r^\nu\Big],\tag{C9}$$

$$D_u \mathcal{E} = -(\mathcal{E} + \mathcal{P} + \Pi)\theta_u - \pi_r^r (1 - v^2)^2 \nabla^{\langle r} u^{r\rangle} - r^2 \pi_\phi^\phi \nabla^{\langle \phi} u^{\phi\rangle} - \tau^2 \pi_\varsigma^\varsigma \nabla^{\langle \varsigma} u^{\varsigma\rangle}, \tag{C10}$$

494 and

$$\tau_{\Pi} D_{u} \Pi + \Pi = -\zeta \theta_{u} - \delta_{\Pi\Pi} \Pi \theta_{u} - \lambda_{\Pi\pi} \left[2r^{2} \pi_{\phi}^{\phi} \nabla^{\langle \phi} u^{\phi \rangle} + 2\tau^{2} \pi_{\varsigma}^{\varsigma} \nabla^{\langle \varsigma} u^{\varsigma \rangle} + r^{2} \pi_{\varsigma}^{\varsigma} \nabla^{\langle \phi} u^{\phi \rangle} + \tau^{2} \pi_{\phi}^{\phi} \nabla^{\langle \varsigma} u^{\varsigma \rangle} \right],$$
(C11)

$$\tau_{\pi} D_{u} \pi_{\phi}^{\phi} + \pi_{\phi}^{\phi} = -2r^{2} \eta \nabla^{\langle \phi} u^{\phi \rangle} - \delta_{\pi\pi} \pi_{\phi}^{\phi} \theta_{u} - \frac{\tau_{\pi\pi}}{3} \Big[-r^{2} \pi_{\phi}^{\phi} \nabla^{\langle \phi} u^{\phi \rangle} + 2\tau^{2} \pi_{\varsigma}^{\varsigma} \nabla^{\langle \varsigma} u^{\varsigma \rangle} + r^{2} \pi_{\varsigma}^{\phi} \nabla^{\langle \varsigma} u^{\varsigma \rangle} \Big] - r^{2} \lambda_{\pi\Pi} \Pi \nabla^{\langle \phi} u^{\phi \rangle} , \qquad (C12)$$

$$\tau_{\pi} D_{u} \pi_{\varsigma}^{\varsigma} + \pi_{\varsigma}^{\varsigma} = -2\tau^{2} \eta \nabla^{\langle\varsigma} u^{\varsigma\rangle} - \delta_{\pi\pi} \pi_{\varsigma}^{\varsigma} \theta_{u} - \frac{\tau_{\pi\pi}}{3} \Big[2r^{2} \pi_{\phi}^{\phi} \nabla^{\langle\phi} u^{\phi\rangle} - \tau^{2} \pi_{\varsigma}^{\varsigma} \nabla^{\langle\varsigma} u^{\varsigma\rangle} + r^{2} \pi_{\varsigma}^{\varsigma} \nabla^{\langle\phi} u^{\phi\rangle} + \tau^{2} \pi_{\phi}^{\phi} \nabla^{\langle\varsigma} u^{\varsigma\rangle} \Big] - \tau^{2} \lambda_{\pi\Pi} \Pi \nabla^{\langle\varsigma} u^{\varsigma\rangle} ,$$
(C13)

495 where

$$-d_{\nu}\pi_{\tau}^{\nu} = v^2 \partial_{\tau}\pi_r^r + v \partial_r \pi_r^r + \pi_r^r \Big[\partial_{\tau}v^2 + \partial_r v + \frac{v^2}{\tau} + \frac{v}{r}\Big] + \frac{1}{\tau}\pi_{\varsigma}^{\varsigma}, \qquad (C14)$$

$$d_{\nu}\pi_{r}^{\nu} = v \,\partial_{\tau}\pi_{r}^{r} + \partial_{r}\pi_{r}^{r} + \pi_{r}^{r} \Big[\partial_{\tau}v + \frac{v}{\tau} + \frac{2-v^{2}}{r}\Big] + \frac{1}{r}\pi_{\varsigma}^{\varsigma} \,. \tag{C15}$$

⁴⁹⁶ In addition, one needs the following identities

$$\nabla^{\langle r} u^{r\rangle} = -\partial_r u^r - u^r D_u u^r + \frac{1}{3} (u^\tau)^2 \theta_u \,, \tag{C16}$$

$$r^2 \nabla^{\langle \phi} u^{\phi \rangle} = -\frac{u^r}{r} + \frac{1}{3} \theta_u \,, \tag{C17}$$

$$\tau^2 \nabla^{\langle \varsigma} u^{\varsigma \rangle} = -\frac{u^\tau}{\tau} + \frac{1}{3} \theta_u \,, \tag{C18}$$

$$\theta_u \equiv \nabla_\alpha u^\alpha = d_\alpha u^\alpha = \partial_\tau u^\tau + \partial_r u^r + \frac{u^\tau}{\tau} + \frac{u^r}{r}, \qquad (C19)$$

where $\pi_{\tau}^{r} = -v \pi_{r}^{r}$ and $\pi_{\phi}^{\phi} = -\pi_{\varsigma}^{\varsigma} - (1 - v^{2})\pi_{r}^{r}$ which are a consequence of the transversality of the shear-stress tensor, $u_{\mu}\pi^{\mu\nu} = 0$. This system of equations has to be closed by providing an equation of state (EoS), e.g. $\mathcal{P}_{eq} = \mathcal{P}_{eq}(\mathcal{E}_{eq})$.

Viscous hydrodynamics freeze-out

The distribution function on the freeze-out hypersurface can be computed assuming that there is a linear correction to the equilibrium one due to shear and bulk viscosities [87, 88]

$$f(p,x) = f_{eq}(p,x) + \delta f_{shear}(p,x) + \delta f_{bulk}(p,x), \qquad (C20)$$

502 where

$$\delta f_{\text{shear}}(p,x) = f_{\text{eq}}(1 - af_{\text{eq}}) \frac{p_{\mu}p_{\nu}\pi^{\mu\nu}}{2(\mathcal{E} + \mathcal{P})T^2} , \qquad (C21)$$

$$\delta f_{\rm bulk}(p,x) = -f_{\rm eq}(1 - af_{\rm eq}) \left[\frac{m_i^2}{3\,p_\mu u^\mu} - \left(\frac{1}{3} - c_s^2\right) p_\mu u^\mu \right] \frac{\Pi}{C_{\Pi}} \,, \tag{C22}$$

503 with

$$C_{\Pi} = \frac{1}{3} \sum_{i=1}^{N} m_i^2 (2s_i + 1) \int \frac{d^3 p}{(2\pi)^3 E_i} f_{\text{eq}} (1 - af_{\text{eq}}) \left[\frac{m_i^2}{3 p_\mu u^\mu} - \left(\frac{1}{3} - c_s^2\right) p_\mu u^\mu \right], \tag{C23}$$

where m_i is the hadron mass, s_i is the hadron spin, and N is the number of hadrons included in the freezeout. The components of the four-momentum in polar Milne coordinates are

$$p_{\tau} = p_t \cosh \varsigma - p_z \sinh \varsigma = m_{\perp} \cosh(y - \varsigma),$$

$$p_r = p_x \cos \phi + p_y \sin \phi = p_{\perp} \cos(\phi - \varphi),$$

$$p_{\phi} = -p_x \frac{\sin \phi}{r} + p_y \frac{\cos \phi}{r} = -\frac{p_{\perp}}{r} \sin(\phi - \varphi),$$

$$p_{\varsigma} = -p_t \frac{\sinh \varsigma}{\tau} + p_z \frac{\cosh \varsigma}{\tau} = \frac{m_{\perp}}{\tau} \sinh(y - \varsigma).$$
(C24)

⁵⁰⁶ Using Eq. (C7) and expanding $p_{\mu}p_{\nu}\pi^{\mu\nu}$ in polar Milne coordinates one has

$$p_{\mu}p_{\nu}\pi^{\mu\nu} = -\left(\frac{\pi_{\phi}^{\phi} + \pi_{\varsigma}^{\varsigma}}{v^2 - 1}\right) \left(m_{\perp}v\cosh(y - \varsigma) - p_{\perp}\cos(\phi - \varphi)\right)^2 - \pi_{\phi}^{\phi}p_{\perp}^2\sin^2(\phi - \varphi) - \pi_{\varsigma}^{\varsigma}m_{\perp}^2\sinh^2(y - \varsigma).$$
(C25)

Appendix D: Explicit formulas for derivatives

In this section, we introduce the notations used in hydrodynamics dynamical equations. In the case of boostinvariant and azimuthally-symmetric flow one can use the basis vectors presented in Ref. [59] to obtain

$$D_{u} = u^{\mu}\partial_{\mu} = \cosh\theta_{\perp}\partial_{\tau} + \sinh\theta_{\perp}\partial_{r}, \qquad \theta_{u} = \partial_{\mu}u^{\mu} = \cosh\theta_{\perp}\left(\frac{1}{\tau} + \partial_{r}\theta_{\perp}\right) + \sinh\theta_{\perp}\left(\frac{1}{r} + \partial_{\tau}\theta_{\perp}\right),$$

$$D_{x} = X^{\mu}\partial_{\mu} = \sinh\theta_{\perp}\partial_{\tau} + \cosh\theta_{\perp}\partial_{r}, \qquad \theta_{x} = \partial_{\mu}X^{\mu} = \sinh\theta_{\perp}\left(\frac{1}{\tau} + \partial_{r}\theta_{\perp}\right) + \cosh\theta_{\perp}\left(\frac{1}{r} + \partial_{\tau}\theta_{\perp}\right),$$

$$D_{y} = Y^{\mu}\partial_{\mu} = \frac{1}{r}\partial_{\phi}, \qquad \theta_{y} = \partial_{\mu}Y^{\mu} = 0,$$

$$D_{z} = Z^{\mu}\partial_{\mu} = \frac{1}{\tau}\partial_{\varsigma}, \qquad \theta_{z} = \partial_{\mu}Z^{\mu} = 0.$$
(D1)

Appendix E: special functions

In this section, we provide definitions of the special functions appearing in the body of the text. We start by introducing 12

$$\mathcal{H}_2(y,z) = \frac{y}{\sqrt{y^2 - 1}} \left[(z^2 + 1) \tanh^{-1} \sqrt{\frac{y^2 - 1}{y^2 + z^2}} + \sqrt{(y^2 - 1)(y^2 + z^2)} \right],\tag{E1}$$

$$\mathcal{H}_{2T}(y,z) = \frac{y}{(y^2 - 1)^{3/2}} \left[\left(z^2 + 2y^2 - 1 \right) \tanh^{-1} \sqrt{\frac{y^2 - 1}{y^2 + z^2}} - \sqrt{(y^2 - 1)(y^2 + z^2)} \right],\tag{E2}$$

$$\mathcal{H}_{2L}(y,z) = \frac{y^3}{(y^2 - 1)^{3/2}} \left[\sqrt{(y^2 - 1)(y^2 + z^2)} - (z^2 + 1) \tanh^{-1} \sqrt{\frac{y^2 - 1}{y^2 + z^2}} \right],\tag{E3}$$

507

513 and

$$\mathcal{H}_{2x1}(y,z) = \frac{1}{(y^2 - 1)} \Big[\frac{2(y^2 + z^2)\mathcal{H}_{2L}(y,z)}{(1 + z^2)} - y^2 \mathcal{H}_{2T}(y,z) \Big],$$
(E4)

$$\mathcal{H}_{2x2}(y,z) = \frac{y^2}{(y^2 - 1)} \Big[2\mathcal{H}_{2L}(y,z) - \mathcal{H}_{2T}(y,z) \Big],$$
(E5)

$$\mathcal{H}_{2B}(y,z) \equiv \mathcal{H}_{2T}(y,z) + \frac{\mathcal{H}_{2L}(y,z)}{y^2} = \frac{2}{\sqrt{y^2 - 1}} \tanh^{-1} \sqrt{\frac{y^2 - 1}{y^2 + z^2}}.$$
(E6)

514 Derivatives of these functions satisfy the following relations

$$\frac{\partial \mathcal{H}_2(y,z)}{\partial y} = \frac{1}{y} \Big[\mathcal{H}_2(y,z) + \mathcal{H}_{2L}(y,z) \Big], \qquad \qquad \frac{\partial \mathcal{H}_{2T}(y,z)}{\partial y} = \frac{1}{y(y^2 - 1)} \Big[2\mathcal{H}_{2L}(y,z) - \mathcal{H}_{2T}(y,z) \Big], \\
\frac{\partial \mathcal{H}_2(y,z)}{\partial z} = \frac{1}{z} \Big[\mathcal{H}_2(y,z) - \mathcal{H}_{2L}(y,z) - \mathcal{H}_{2T}(y,z) \Big], \qquad \qquad \frac{\partial \mathcal{H}_{2T}(y,z)}{\partial z} = \frac{-2z}{y^2(1+z^2)} \mathcal{H}_{2L}(y,z).$$
(E7)

1. Massive Case

 $_{516}$ The \mathcal{H} -functions appearing in definitions of components of the energy-momentum tensor in the massive case are

$$\mathcal{H}_{3}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \alpha_{x} \alpha_{y} \int_{0}^{2\pi} d\phi \, \alpha_{\perp}^{2} \int_{0}^{\infty} d\hat{p} \, \hat{p}^{3} f_{\text{eq}} \left(\sqrt{\hat{p}^{2} + \hat{m}^{2}} \right) \mathcal{H}_{2} \left(\frac{\alpha_{z}}{\alpha_{\perp}}, \frac{\hat{m}}{\alpha_{\perp} \hat{p}} \right), \tag{E8}$$

$$\mathcal{H}_{3x}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \alpha_x^3 \alpha_y \int_0^{2\pi} d\phi \, \cos^2 \phi \int_0^{\infty} d\hat{p} \, \hat{p}^3 f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2} \right) \mathcal{H}_{2T} \left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}} \right), \tag{E9}$$

$$\mathcal{H}_{3y}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \alpha_x \alpha_y^3 \int_0^{2\pi} d\phi \, \sin^2 \phi \int_0^\infty d\hat{p} \, \hat{p}^3 f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2} \right) \mathcal{H}_{2T} \left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}} \right), \tag{E10}$$

$$\mathcal{H}_{3T}(\boldsymbol{\alpha}, \hat{m}) \equiv \frac{1}{2} \Big[\mathcal{H}_{3x}(\boldsymbol{\alpha}, \hat{m}) + \mathcal{H}_{3y}(\boldsymbol{\alpha}, \hat{m}) \Big], \tag{E11}$$

$$\mathcal{H}_{3L}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \alpha_x \alpha_y \int_0^{2\pi} d\phi \, \alpha_\perp^2 \int_0^\infty d\hat{p} \, \hat{p}^3 f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2} \right) \mathcal{H}_{2L} \left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}} \right), \tag{E12}$$

$$\mathcal{H}_{3B}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \alpha_x \alpha_y \int_0^{2\pi} d\phi \int_0^{\infty} d\hat{p} \, \hat{p} f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2} \right) \mathcal{H}_{2B} \left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}} \right), \tag{E13}$$

517 The relevant derivatives are

$$\frac{\partial \mathcal{H}_{3}}{\partial \alpha_{x}} = \frac{1}{\alpha_{x}} (\mathcal{H}_{3} + \mathcal{H}_{3x}), \qquad \qquad \frac{\partial \mathcal{H}_{3x}}{\partial \alpha_{x}} = \frac{1}{\alpha_{x}} (3\mathcal{H}_{3x} - \mathcal{H}_{3x1}), \\
\frac{\partial \mathcal{H}_{3}}{\partial \alpha_{y}} = \frac{1}{\alpha_{y}} (\mathcal{H}_{3} + \mathcal{H}_{3y}), \qquad \qquad \frac{\partial \mathcal{H}_{3x}}{\partial \alpha_{y}} = \frac{1}{\alpha_{y}} (\mathcal{H}_{3x} - \mathcal{H}_{3x2}), \\
\frac{\partial \mathcal{H}_{3}}{\partial \alpha_{z}} = \frac{1}{\alpha_{z}} (\mathcal{H}_{3} + \mathcal{H}_{3L}), \qquad \qquad \frac{\partial \mathcal{H}_{3x}}{\partial \alpha_{z}} = \frac{1}{\alpha_{z}} \mathcal{H}_{3x3}, \\
\frac{\partial \mathcal{H}_{3}}{\partial \hat{m}} = \frac{1}{\hat{m}} (\mathcal{H}_{3} - \mathcal{H}_{3L} - 2\mathcal{H}_{3T} - \mathcal{H}_{3m}), \qquad \qquad \frac{\partial \mathcal{H}_{3x}}{\partial \hat{m}} = \frac{1}{\hat{m}} (\mathcal{H}_{3m1} - \mathcal{H}_{3m2}),$$
(E14)

518 with

$$\mathcal{H}_{3x1}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \frac{\alpha_x^5 \alpha_y}{\alpha_z^2} \int_0^{2\pi} d\phi \, \cos^4 \phi \int_0^{\infty} d\hat{p} \, \hat{p}^3 f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2}\right) \mathcal{H}_{2x1}\left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}}\right),\tag{E15}$$

$$\mathcal{H}_{3x2}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \frac{\alpha_x^3 \alpha_y^3}{\alpha_z^2} \int_0^{2\pi} d\phi \, \cos^2 \phi \sin^2 \phi \int_0^\infty d\hat{p} \, \hat{p}^3 f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2}\right) \mathcal{H}_{2x1}\left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}}\right),\tag{E16}$$

$$\mathcal{H}_{3x3}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \frac{\alpha_x^3 \alpha_y}{\alpha_z^2} \int_0^{2\pi} d\phi \,\alpha_{\perp}^2 \,\cos^2\phi \int_0^{\infty} d\hat{p} \,\hat{p}^3 f_{\rm eq} \left(\sqrt{\hat{p}^2 + \hat{m}^2}\right) \mathcal{H}_{2x2}\left(\frac{\alpha_z}{\alpha_{\perp}}, \frac{\hat{m}}{\alpha_{\perp}\hat{p}}\right),\tag{E17}$$

$$\mathcal{H}_{3m}(\boldsymbol{\alpha}, \hat{m}) \equiv \tilde{N} \alpha_x \alpha_y \hat{m}^2 \int_0^{2\pi} d\phi \, \alpha_\perp^2 \int_0^\infty d\hat{p} \, \hat{p}^3 \frac{f_{\rm eq}\left(\sqrt{\hat{p}^2 + \hat{m}^2}\right)}{\sqrt{\hat{p}^2 + \hat{m}^2}} \mathcal{H}_2\left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}}\right),\tag{E18}$$

$$\mathcal{H}_{3m1}(\boldsymbol{\alpha}, \hat{m}) \equiv \mathcal{H}_{3x1}(\boldsymbol{\alpha}, \hat{m}) + \mathcal{H}_{3x2}(\boldsymbol{\alpha}, \hat{m}) - \mathcal{H}_{3x3}(\boldsymbol{\alpha}, \hat{m}),$$
(E19)

$$\mathcal{H}_{3m2}(\boldsymbol{\alpha},\hat{m}) \equiv \tilde{N}\alpha_x^3 \alpha_y \hat{m}^2 \int_0^{2\pi} d\phi \, \cos^2 \phi \int_0^\infty d\hat{p} \, \hat{p}^3 \frac{f_{\rm eq}\left(\sqrt{\hat{p}^2 + \hat{m}^2}\right)}{\sqrt{\hat{p}^2 + \hat{m}^2}} \mathcal{H}_{2T}\left(\frac{\alpha_z}{\alpha_\perp}, \frac{\hat{m}}{\alpha_\perp \hat{p}}\right),\tag{E20}$$

520 where $\alpha_{\perp}^2 \equiv \alpha_x^2 \cos^2 \phi + \alpha_y^2 \sin^2 \phi$.

2. Massless Case

 $_{522}$ The \mathcal{H} -functions used in definition of bulk variables in the standard (massless) case are

$$\hat{\mathcal{H}}_{3}(\boldsymbol{\alpha}) \equiv \frac{1}{24\pi\tilde{N}} \lim_{m \to 0} \mathcal{H}_{3}(\boldsymbol{\alpha}, \hat{m}) = \frac{1}{4\pi} \alpha_{x} \alpha_{y} \int_{0}^{2\pi} d\phi \, \alpha_{\perp}^{2} \bar{\mathcal{H}}_{2}\left(\frac{\alpha_{z}}{\alpha_{\perp}}\right), \tag{E21}$$

$$\hat{\mathcal{H}}_{3x}(\boldsymbol{\alpha}) \equiv \frac{1}{8\pi\tilde{N}} \lim_{m \to 0} \mathcal{H}_{3x}(\boldsymbol{\alpha}, \hat{m}) = \frac{3}{4\pi} \alpha_x^3 \alpha_y \int_0^{2\pi} d\phi \, \cos^2\phi \, \bar{\mathcal{H}}_{2T}\left(\frac{\alpha_z}{\alpha_\perp}\right),\tag{E22}$$

$$\hat{\mathcal{H}}_{3y}(\boldsymbol{\alpha}) \equiv \frac{1}{8\pi\tilde{N}} \lim_{m \to 0} \mathcal{H}_{3y}(\boldsymbol{\alpha}, \hat{m}) = \frac{3}{4\pi} \alpha_x \alpha_y^3 \int_0^{2\pi} d\phi \, \sin^2 \phi \, \bar{\mathcal{H}}_{2T}\left(\frac{\alpha_z}{\alpha_\perp}\right),\tag{E23}$$

$$\hat{\mathcal{H}}_{3L}(\boldsymbol{\alpha}) \equiv \frac{1}{8\pi\tilde{N}} \lim_{m \to 0} \mathcal{H}_{3L}(\boldsymbol{\alpha}, \hat{m}) = \frac{3}{4\pi} \alpha_x \alpha_y \int_0^{2\pi} d\phi \, \alpha_\perp^2 \bar{\mathcal{H}}_{2L}\left(\frac{\alpha_z}{\alpha_\perp}\right),\tag{E24}$$

⁵²³ where $\bar{\mathcal{H}}_{2,2T,2L}(y) \equiv \mathcal{H}_{2,2T,2L}(y,0)$.

- [1] P. Huovinen, P. F. Kolb, U. W. Heinz, P. V. Ruuska-551
 nen, and S. A. Voloshin, Phys. Lett. B503, 58 (2001),552
 arXiv:hep-ph/0101136.
- T. Hirano and K. Tsuda, Phys. Rev. C66, 054905 (2002),554
 arXiv:nucl-th/0205043.
- [3] P. F. Kolb and U. W. Heinz, In Hwa, R.C. (ed.) et al.:556
 Quark gluon plasma, 634 (2003), arXiv:nucl-th/0305084.557
- 531
 [4] A. Muronga, Phys. Rev. Lett. 88, 062302 (2002),558

 532
 arXiv:nucl-th/0104064.
- [5] A. Muronga, Phys. Rev. C69, 034903 (2004), arXiv:nucl-560
 th/0309055. 561
- 535 [6] A. Muronga and D. H. Rischke, (2004), arXiv:nucl-562
 536 th/0407114 [nucl-th]. 563
- [7] U. W. Heinz, H. Song, and A. K. Chaudhuri, Phys.Rev.564
 C73, 034904 (2006), arXiv:nucl-th/0510014 [nucl-th]. 565
- [8] R. Baier, P. Romatschke, and U. A. Wiedemann, 566
 Phys.Rev. C73, 064903 (2006), arXiv:hep-ph/0602249567
 [hep-ph]. 568
- [9] P. Romatschke and U. Romatschke, Phys. Rev. Lett. 99,569
 172301 (2007), arXiv:0706.1522 [nucl-th].
- [10] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, 571
 and M. A. Stephanov, JHEP 0804, 100 (2008), 572
 arXiv:0712.2451 [hep-th].
- 547 [11] K. Dusling and D. Teaney, Phys. Rev. C77, 034905574
 (2008), arXiv:0710.5932 [nucl-th].
- [12] M. Luzum and P. Romatschke, Phys. Rev. C78, 034915576
 (2008), arXiv:0804.4015 [nucl-th].

- [13] H. Song and U. W. Heinz, J.Phys.G G36, 064033 (2009), arXiv:0812.4274 [nucl-th].
- [14] U. W. Heinz, Relativistic Heavy Ion Physics, Landolt-Boernstein New Series, I/23, edited by R. Stock, Springer Verlag, New York, Chap. 5 (2010), arXiv:0901.4355 [nucl-th].
- [15] P. Bozek and I. Wyskiel, Phys.Rev. C79, 044916 (2009), arXiv:0902.4121 [nucl-th].
- [16] P. Bozek, Phys.Rev. C81, 034909 (2010), arXiv:0911.2397 [nucl-th].
- [17] A. El, Z. Xu, and C. Greiner, Phys. Rev. C81, 041901 (2010), arXiv:0907.4500 [hep-ph].
- [18] J. Peralta-Ramos and E. Calzetta, Phys. Rev. D80, 126002 (2009), arXiv:0908.2646 [hep-ph].
- [19] J. Peralta-Ramos and E. Calzetta, Phys.Rev. C82, 054905 (2010), arXiv:1003.1091 [hep-ph].
- [20] G. Denicol, T. Kodama, and T. Koide, J.Phys.G G37, 094040 (2010), arXiv:1002.2394 [nucl-th].
- [21] G. Denicol, T. Koide, and D. Rischke, Phys.Rev.Lett. 105, 162501 (2010), arXiv:1004.5013 [nucl-th].
- [22] B. Schenke, S. Jeon, and C. Gale, Phys.Rev.Lett. 106, 042301 (2011), arXiv:1009.3244 [hep-ph].
- [23] B. Schenke, S. Jeon, and C. Gale, Phys.Lett. B702, 59 (2011), arXiv:1102.0575 [hep-ph].
- [24] P. Bozek, Phys.Lett. B699, 283 (2011), arXiv:1101.1791 [nucl-th].

- 577 [25] P. Bozek, Phys.Rev. **C85**, 034901 (2012),641 578 arXiv:1110.6742 [nucl-th]. 642
- 579 [26] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnár,643
 580 and D. H. Rischke, Phys.Rev.Lett. 106, 212302 (2011),644
 581 arXiv:1101.2442 [nucl-th]. 645
- [27] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnár, and 646
 D. H. Rischke, Phys. Rev. C 86, 014909 (2012). 647
- [28] P. Bożek and I. Wyskiel-Piekarska, Phys. Rev. C 85,648
 064915 (2012).
- [29] G. S. Denicol, H. Niemi, E. Molnár, and D. H. Rischke,650
 Phys. Rev. D 85, 114047 (2012).
- [30] G. Denicol, E. Molnár, H. Niemi, and D. Rischke, Eur. 652
 Phys. J. A 48, 170 (2012), arXiv:1206.1554 [nucl-th]. 653
- 590 [31] J. Peralta-Ramos and E. Calzetta, Phys.Rev. D87,654
 591 034003 (2013), arXiv:1212.0824 [nucl-th]. 655
- 592 [32] E. Calzetta, Phys. Rev. D92, 045035 (2015),656
 593 arXiv:1402.5278 [hep-ph]. 657
- [33] G. S. Denicol, S. Jeon, and C. Gale, Phys. Rev. C90,658
 024912 (2014), arXiv:1403.0962 [nucl-th].
- [34] W. Florkowski, A. Jaiswal, E. Maksymiuk, R. Ryblewski, 660
 and M. Strickland, Phys. Rev. C91, 054907 (2015), 661
 arXiv:1503.03226 [nucl-th].
- [35] S. Ryu, J. F. Paquet, C. Shen, G. S. Denicol, B. Schenke,663
 S. Jeon, and C. Gale, Phys. Rev. Lett. 115, 132301664
 (2015), arXiv:1502.01675 [nucl-th].
- [36] H. Niemi, K. J. Eskola, R. Paatelainen, and K. Tuomi-666
 nen, Phys. Rev. C93, 014912 (2016), arXiv:1511.04296667
 [hep-ph].
- [37] H. Niemi, K. J. Eskola, R. Paatelainen, and K. Tuominen669
 (2015) arXiv:1512.05132 [hep-ph].
- [38] M. Martinez and M. Strickland, Nucl. Phys. A848, 183671
 (2010), arXiv:1007.0889 [nucl-th].
- [39] W. Florkowski and R. Ryblewski, Phys. Rev. C83, 034907673
 (2011), arXiv:1007.0130 [nucl-th].
- 611 [40] R. Ryblewski and W. Florkowski, J.Phys.G G38, 015104675 612 (2011), arXiv:1007.4662 [nucl-th]. 676
- 613 [41] M. Martinez and M. Strickland, Nucl.Phys. A856, 68677 614 (2011), arXiv:1011.3056 [nucl-th]. 678
- [42] R. Ryblewski and W. Florkowski, Eur.Phys.J. C71, 1761679
 (2011), arXiv:1103.1260 [nucl-th].
- [43] W. Florkowski and R. Ryblewski, Phys. Rev. C85, 044902681
 (2012), arXiv:1111.5997 [nucl-th].
- [44] M. Martinez, R. Ryblewski, and M. Strickland,683
 Phys.Rev. C85, 064913 (2012), arXiv:1204.1473 [nucl-684
 th].
- 622 [45] R. Ryblewski and W. Florkowski, Phys. Rev. C85,686 623 064901 (2012), arXiv:1204.2624 [nucl-th]. 687
- [46] W. Florkowski, R. Maj, R. Ryblewski, and M. Strick-688
 land, Phys.Rev. C87, 034914 (2013), arXiv:1209.3671689
 [nucl-th].
- [47] W. Florkowski and R. Maj, Acta Phys.Polon. B44, 2003691
 (2013), arXiv:1309.2786 [nucl-th].
- ⁶²⁹ [48] R. Ryblewski, J.Phys. **G40**, 093101 (2013).
- [49] D. Bazow, U. W. Heinz, and M. Strickland, Phys.Rev. 694
 C90, 054910 (2014), arXiv:1311.6720 [nucl-th].
- [50] L. Tinti and W. Florkowski, Phys.Rev. C89, 034907696
 (2014), arXiv:1312.6614 [nucl-th].
- [51] W. Florkowski, R. Ryblewski, M. Strickland, and 698
 L. Tinti, Phys.Rev. C89, 054909 (2014), arXiv:1403.1223699
 [hep-ph]. 700
- ⁶³⁷ [52] W. Florkowski and O. Madetko, Acta Phys.Polon. **B45**,701
 ⁶³⁸ 1103 (2014), arXiv:1402.2401 [nucl-th].
- [53] M. Nopoush, R. Ryblewski, and M. Strickland,
 Phys.Rev. C90, 014908 (2014), arXiv:1405.1355 [hep-704

ph].

- [54] G. S. Denicol, W. Florkowski, R. Ryblewski, and M. Strickland, Phys.Rev. C90, 044905 (2014), arXiv:1407.4767 [hep-ph].
- [55] L. Tinti, R. Ryblewski, W. Florkowski, and M. Strickland, Nucl. Phys. A946, 29 (2016), arXiv:1505.06456 [hep-ph].
- [56] D. Bazow, U. W. Heinz, and M. Martinez, Phys.Rev. C91, 064903 (2015), arXiv:1503.07443 [nucl-th].
- [57] M. Nopoush, M. Strickland, R. Ryblewski, D. Bazow, U. Heinz, and M. Martinez, Phys. Rev. C92, 044912 (2015), arXiv:1506.05278 [nucl-th].
- [58] D. Bazow, M. Martinez, and U. W. Heinz, Phys. Rev. D93, 034002 (2016), [Phys. Rev.D93,034002(2016)], arXiv:1507.06595 [nucl-th].
- [59] M. Alqahtani, M. Nopoush, and M. Strickland, Phys. Rev. C92, 054910 (2015), arXiv:1509.02913 [hep-ph].
- [60] W. Florkowski, E. Maksymiuk, R. Ryblewski, and L. Tinti, Phys. Rev. C92, 054912 (2015), arXiv:1508.04534 [nucl-th].
- [61] E. Molnar, H. Niemi, and D. H. Rischke, (2016), arXiv:1602.00573 [nucl-th].
- [62] M. Strickland, Acta Phys. Polon. B45, 2355 (2014), arXiv:1410.5786 [nucl-th].
- [63] W. Florkowski, R. Ryblewski, and M. Strickland, Nucl. Phys. A916, 249 (2013), arXiv:1304.0665 [nucl-th].
- [64] W. Florkowski, R. Ryblewski, and M. Strickland, Phys. Rev. C88, 024903 (2013), arXiv:1305.7234 [nucl-th].
- [65] W. Florkowski, E. Maksymiuk, R. Ryblewski, and M. Strickland, Phys. Rev. C89, 054908 (2014), arXiv:1402.7348 [hep-ph].
- [66] M. Nopoush, R. Ryblewski, and M. Strickland, Phys. Rev. **D91**, 045007 (2015), arXiv:1410.6790 [nucl-th].
- [67] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and M. Strickland, Phys. Rev. Lett. **113**, 202301 (2014), arXiv:1408.5646 [hep-ph].
- [68] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha, and M. Strickland, Phys. Rev. **D90**, 125026 (2014), arXiv:1408.7048 [hep-ph].
- [69] M. Bluhm and T. Schaefer, Phys. Rev. Lett. 116, 115301 (2016), arXiv:1512.00862 [cond-mat.quant-gas].
- [70] M. Bluhm and T. Schaefer, Phys. Rev. A92, 043602 (2015), arXiv:1505.00846 [cond-mat.quant-gas].
- [71] H. A. Weldon, Phys. Rev. **D26**, 1394 (1982).
- [72] H. A. Weldon, Phys. Rev. **D26**, 2789 (1982).

- [73] E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990).
- [74] J.-P. Blaizot and E. Iancu, Phys. Rept. **359**, 355 (2002), arXiv:hep-ph/0101103 [hep-ph].
- [75] J. O. Andersen, E. Braaten, and M. Strickland, Phys. Rev. Lett. 83, 2139 (1999), arXiv:hep-ph/9902327 [hepph].
- [76] J. O. Andersen, E. Petitgirard, and M. Strickland, Phys.Rev. **D70**, 045001 (2004), arXiv:hep-ph/0302069 [hep-ph].
- [77] J. O. Andersen and M. Strickland, Annals Phys. 317, 281 (2005), arXiv:hep-ph/0404164 [hep-ph].
- [78] J. O. Andersen, L. E. Leganger, M. Strickland, and N. Su, JHEP 08, 053 (2011), arXiv:1103.2528 [hep-ph].
- [79] N. Haque, A. Bandyopadhyay, J. O. Andersen, M. G. Mustafa, M. Strickland, and N. Su, JHEP 05, 027 (2014), arXiv:1402.6907 [hep-ph].
- [80] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, et al., JHEP 1011, 077 (2010), arXiv:1007.2580

705 [hep-lat].

[81] M. I. Gorenstein and S. N. Yang, Physical Review D 52,718
 5206 (1995).

- [82] G. Torrieri, S. Steinke, W. Broniowski, W. Florkowski, 720
 J. Letessier, and J. Rafelski, Comput. Phys. Commun. 721
 167, 229 (2005), arXiv:nucl-th/0404083 [nucl-th]. 722
- [83] G. Torrieri, S. Jeon, J. Letessier, and J. Rafelski,
 Comput. Phys. Commun. 175, 635 (2006), arXiv:nucl-724
 th/0603026 [nucl-th].
- 714 [84] M. Petran, J. Letessier, J. Rafelski, and G. Tor-726
- rieri, Comput. Phys. Commun. 185, 2056 (2014),727
 arXiv:1310.5108 [hep-ph]. 728

- [85] G. Denicol and B. Schenke, private communication (2016).
- [86] E. Molnr, H. Niemi, G. S. Denicol, and D. H. Rischke, Phys. Rev. **D89**, 074010 (2014), arXiv:1308.0785 [nuclth].
- [87] J.-B. Rose, J.-F. Paquet, G. S. Denicol, M. Luzum, B. Schenke, S. Jeon, and C. Gale, *Proceedings*, 24th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions (Quark Matter 2014), Nucl. Phys. A931, 926 (2014), arXiv:1408.0024 [nucl-th].
- [88] D. Teaney, Phys. Rev. C68, 034913 (2003), arXiv:nuclth/0301099 [nucl-th].