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Background: While diproton emission was first theorized in 1960 and first measured in 2002, it was first observed only in
2012. The measurement of 14Be in coincidence with two neutrons suggests that 16Be does decay through the simultaneous
emission of two strongly correlated neutrons.

Purpose: In this work, we construct a full three-body model of 16Be (as 14Be + n + n) in order to investigate its configuration
in the continuum and in particular, the structure of its ground state.

Method: In order to describe the three-body system, effective n-14Be potentials were constructed, constrained by the experi-
mental information on 15Be. The hyperspherical R-matrix method was used to solve the three-body scattering problem,
and the resonance energy of 16Be was extracted from a phase-shift analysis.

Results: In order to reproduce the experimental resonance energy of 16Be within this three-body model, a three-body inter-
action was needed. For extracting the width of the ground state of 16Be, we use the full width at half maximum of the
derivative of the three-body eigenphase shifts and the width of the three-body elastic scattering cross section.

Conclusions: Our results confirm a dineutron structure for 16Be, dependent on the internal structure of the subsystem 15Be.

PACS numbers: 24.10.Eq, 24.30.Gd
Keywords: dineutron, two-neutron decay, hyperspherical harmonics, R-matrix, rare isotopes

I. INTRODUCTION

Exotic nuclei are found across the nuclear chart. Pro-
ton and neutron halos are found near the proton and neu-
tron dripline, respectively, not only in the lightest mass
nuclei but also possibly in nuclei as heavy as neon [1].
Two-nucleon halo systems can be Borromean, where, if
we think of these nuclei in terms of a core plus two neu-
trons or protons, the three-body system is bound but
each of the two-body subsystems is unbound [2] (Ch. 9).
Unsurprisingly, beyond the dripline, novel structures can
give rise to exotic decay paths.

Two-proton decay was first theorized in 1960 [3].
When two nucleons decay from a nucleus A, there are
three possible mechanisms. First, A can decay through
the simultaneous emission of the two valence nucleons,
in a true three-body decay. If there is a state in the A-1
nucleus below the ground state of the parent nucleus, the
two nucleons are likely to be emitted sequentially from A,
stepping through the intermediate A-1 state. However,
if the ground state in the A-1 nucleus is energetically
inaccessible to the emission of one nucleon and there is
correlation between the two nucleons before the decay,
dinucleon emission is the likely alternative.

Because of the Coulomb interaction, the diproton phe-
nomena is extremely hard to observe; the two protons
are repelled from one another as soon as they exit the
nucleus, making it difficult to reconstruct the diproton
angular correlations that were present in the parent nu-
cleus. Nevertheless, it has been observed in many nuclei.
The dineutron decay, on the other hand, poses its own
challenges. The neutron dripline is harder to reach than
the proton dripline, and the statistics for neutron-rich nu-
clear decays beyond the neutron dripline, involving two-

neutron coincidences, are very low. In both, dineutron
and diproton decay, the differentiation between a cor-
related decay and an uncorrelated three-body decay is
made based on model considerations and therefore is not
free from ambiguity.

Two-proton emission from the ground state of a nu-
cleus was experimentally observed for the first time in
45Fe [4, 5], over forty years after the initial prediction.
Since then, many examples of two-proton emission have
been seen from ground states [6–8], as well as from ex-
cited states [9]. Because the relevant degrees of freedom
are those related to the emission of the two protons from
the parent nucleus, three-body models have been used to
theoretically describe these decays. Different structural
configurations of the parent nucleus give rise to differ-
ent values for its width and half-life, as well as different
ways of sharing the energy between the three particles.
It is only through the comparison of model calculations
to the data that insights into the nature of the decay can
be obtained [10, 11].

In comparison to the large number of two-proton emit-
ters that have been studied experimentally and theoret-
ically, two-neutron emitters have not been as well inves-
tigated. In one of the first theoretical studies of two-
neutron emission, Grigorenko [12] discussed the existence
of one-, two-, and four-neutron emitters, as well as com-
parisons of their widths in a three-body framework. Re-
cently, a few cases of two-neutron emission have been ob-
served [13–15]. The first of these was observed in a 2012
experiment at the National Superconducting Cyclotron
Laboratory [13] through the decay of 16Be to 14Be plus
two neutrons. As the ground state energy of 16Be was
found to be 1.35 MeV (with a width of 0.8 MeV) and a
lower limit of 1.54 MeV had previously been placed on
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the ground state of 15Be [16], 16Be is an ideal candidate
for simultaneous two-neutron emission. Depending on
the width of the ground state of 15Be, sequential neutron
decay from 16Be to 14Be could be energetically inaccessi-
ble. A later experiment [17] determined that the lowest
state in 15Be is an l = 2 state at 1.8 MeV with a width
of 575 ± 200 keV.

Although comparisons of the 16Be data in [13] to dineu-
tron, sequential, and three-body decay models showed
the data best matched the dineutron emission, there was
some controversy over this finding [18, 19]. Extreme
models were used to show the difference between dineu-
tron emission and a three-body decay. The dineutron was
modeled as a cluster and the decay as a two-body 16Be→
14Be + 2n, in an s-wave relative motion. The three-body
breakup corresponded to phase space only. A more real-
istic, full three-body model (14Be + n + n) is necessary
to help clarify the mode of decay of this exotic nucleus.
Several three-body models have been successfully used
to describe the continuum states of 26O [20, 21] but no
application to 16Be is thus far available. This is the goal
of the present study.

This paper is organized into the following sections. In
Section II, we introduce the three-body hyperspherical
R-matrix theory used in this work. In Section III, details
about the two- and three-body potentials are presented,
as well as a convergence study of our calculations. Our
results, assuming either a 1d5/2 or a 2s1/2 ground state

for 15Be, are discussed in Section IV, and in Section V,
we discuss the consequences of these models. Finally, we
conclude in Section VI.

II. THEORETICAL FRAMEWORK

In this work, the 16Be system is assumed to take the
form of core + n + n and therefore should satisfy the
three-body Schrödinger equation:

(Tr + Ts + Vcn1
+ Vcn2

+ Vnn + V3b)Ψ = E3BΨ , (1)

where ~r an ~s are the standard Jacobi coordinates, as
shown in Figure 1, where r is the distance between two of
the bodies, and s is the distance between the third body
and the center of mass of the first two. Vcni and Vnn are
the pairwise interactions. Typically, when the degrees
of freedom in the core are frozen, the final three-body
system becomes under-bound. Traditionally, three-body
interactions are then introduced to take into account the
additional binding needed to reproduce the experimental
ground state. This is the role of V3b in Eqn. (1).

Eqn. (1) is a 6-dimensional equation, where the co-
ordinates ~r and ~s do not separate due to the fact that
the pairwise interactions depend on both. The hyper-
spherical harmonic method makes a particular choice of
coordinates and basis functions such that this three-body
Schrödinger equation becomes a set of 1-dimensional cou-
pled hyper-radial equations. This is briefly described
here.

FIG. 1: Three Jacobi coordinate systems, a) Jacobi X system,
b) Jacobi Y system, and c) Jacobi T system. Because the two
neutrons are identical, the X and Y coordinate systems are
identical.

A. Hyperspherical harmonic method

For a three-body system, there are three sets of Jacobi
coordinates that can be defined, Figure 1. We will use i
to denote one of the three Jacobi systems, X, Y, or T. We
assume the T coordinate system for convenience (i = 3,
which we omit through the rest of this work). Now, ~x and
~y are the scaled Jacobi coordinates [2] (Ch. 9), defined
by

~x =
~r√
2

(2)

and

~y =

√
2A3

A3 + 2
~s, (3)

where A3 is the mass number of the core. From here, we
can define the hyperspherical coordinates

ρ2 = x2 + y2, (4)

and

tanθ =
x

y
. (5)

Note that ρ is invariant among the three Jacobi coordi-
nate systems, but θ depends on i. Using these coordi-
nates, the kinetic energy operator can be written as:

T =− ~2

2m

[
1

ρ5
∂

∂ρ

(
ρ5

∂

∂ρ

)
+

1

ρ2sin22θ

∂

∂θ

(
sin22θ

∂

∂θ

)
− L2

x

ρ2sin2θ
−

L2
y

ρ2cos2θ

]
,

(6)
where m is the unit mass, here m = 938.0 MeV/c2.

We perform the standard partial wave decomposition
of the wavefunction,

ΨJM =
∑

lxlylSjI

ψlSjIJlxly
(x, y)

{([
Ylx ⊗ Yly

]
l
⊗ [Xσ1

⊗Xσ2
]S
)
j
⊗ φI

}
JM

,

(7)
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where l is the total orbital angular momentum, lx is the
relative orbital angular momentum in the 2n system, ly is
the relative orbital angular momentum in the core+(2n)
system, I is the spin of the core, S is the total spin of
the two neutrons, and j is the total angular momentum
of the two neutrons relative to the core. Next we expand
the part dependent on (x, y) in hyperspherical functions

ϕ
lxly
K (θ),

ψlSjIJlxly
(x, y) = ρ−5/2

Kmax∑
K=0

χlSIjJKlxly
(ρ)ϕ

lxly
K (θ) (8)

where ϕ
lxly
K (θ) is set to an eigenfunction of the angular

operator in Eqn. (6) with eigenvalue K(K + 4). Its
explicit form is:

ϕ
lxly
K (θ) = N

lxly
K (sinθ)lx(cosθ)lyP lx+1/2,ly+1/2

n (cos2θ),(9)

where P
lx+1/2,ly+1/2
n (cos2θ) are the Jacobi Polynomials,

and N
lxly
K is a normalization factor resulting from the

condition:

π/2∫
0

ϕ
lxly
K (θ)ϕ

lxly
K′ (θ)sin2θcos2θdθ = δKK′ . (10)

For compactness, we introduce the hyperspherical har-
monic functions,

YJMγ (Ω5, σ1, σ2, ξ) = ϕ
lxly
K (θ){([
Ylx ⊗ Yly

]
l
⊗ [Xσ1 ⊗Xσ2 ]S

)
j
⊗ φI

}
JM

,
(11)

with γ representing the set {KlSIjlxly}, so that the total
wave function can be written in the form:

ΨJM = ρ−5/2
∑

χJγ (ρ)YJMγ (Ω5, σ1, σ2, ξ) . (12)

In this work, we focus on (J,M) = (0, 0), corresponding
to the spin of the 16Be ground state.

Substituting Eqn.(12) into Eqn. (1), we are left with
the following set of coupled hyper-radial equations:(

− ~2

2m

[
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

]
− E3B

)
+
∑
γ′

Vγγ′(ρ)χJγ′(ρ) = 0,
(13)

where the coupling potentials are defined as

Vγγ′(ρ) = 〈YJMγ′ (Ω5, σ1, σ2, ξ)|
3∑

j>i=1

Vij |YJMγ (Ω5, σ1, σ2, ξ)〉.(14)

Eqn. (13) must be solved under the condition that
the wavefunction is regular at the origin and behaves
asymptotically as,

χJγγi →
i

2

[
δγγiH

−
K+3/2(κρ)− SJγγiH

+
K+3/2(κρ)

]
, (15)

when ρ→∞, where the γi are the components of a plane
wave.

It is important also to note that the final wave function
will have to be summed over γi, as we do not assume a
specific incoming wave for our 16Be system.

B. Hyperspherical R-matrix method

The set of coupled hyper-radial equations could, in
principle, be solved by direct numerical integration.
However, at low scattering energies, the centrifugal bar-
rier - (K + 3/2)(K + 5/2) - found in every channel, in-
cluding K = 0, would likely cause this method to develop
numerical inaccuracies. Instead, we use the hyperspher-
ical R-matrix method [2] (Ch. 6).

In the hyperspherical R-matrix method, we first cre-
ate a basis, wnγ , by solving the uncoupled equations, cor-
responding to Eqn. (13) with all couplings set to zero
except for the diagonal, in a box of size ρmax,

[Tγ(ρ) + Vγγ(ρ)− εnγ ]wnγ (ρ) = 0. (16)

By enforcing all logarithmic derivatives,

β =
dln(wnγ (ρ))

dρ
, (17)

to be equal for ρ = ρmax, the set of functions, wnγ , form
a complete, orthogonal basis within the box. Then, the
scattering equation inside the box can be solved by ex-
panding in this R-matrix basis:

gpγ(ρ) =

N∑
n=1

cpnγ wnγ (ρ). (18)

The corresponding coupled channel equations are:

[Tγ(ρ) + Vγγ(ρ)] gpγ(ρ)

+
∑
γ′ 6=γ

Vγγ′(ρ)gpγ′(ρ) = epg
p
γ(ρ). (19)

To find the coefficients cnpγ , we insert Eqn. (18) into

Eqn. (19), multiply the resulting equation by wn
′

γ′ and
integrate over the box size. This results in a matrix equa-
tion:

εnγc
np
γ +

∑
γ′ 6=γ

∑
n′

〈wnγ (ρ)|Vγγ′(ρ)|wn
′

γ′ (ρ)〉

= epc
pn
γ ,

(20)

which, when solved, provides the coefficients cnpγ of the
expansion Eqn. (18). Since gpγ(ρ) are only complete in-
side the box, and do not have the correct normalization,
the full three-body scattering wavefunction is given by a
superposition of these solutions which is then matched to
the correct asymptotic form:

χJγγi(ρ) =

P∑
p=1

Apγig
p
γ(ρ) . (21)
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The new expansion parameter p corresponds to the num-
ber of poles considered in the R-matrix. The normal-
ization coefficients, Apγi , connect the inside wavefunction
with the asymptotic behavior of Eqn. (15). The explicit
relation is [2] (Ch. 6),

Apγi =
~2

2m

1

ep − E
∑
γ′

gpγ′(ρmax)

[
δγγ′

(
H−′K+3/2(κγ′ρmax)− βH−K+3/2(κγ′ρmax)

)
−Sγ′γi

(
H+′
K+3/2(κγ′ρmax)− βH+

K+3/2(κγ′ρmax)
)]
.

From the values of the gpγ(ρ) function at the surface,
one can determine the R-matrix [2] (Ch. 6),

Rγγ′ =
~2

2mρmax

P∑
p=1

gpγ(ρmax)gpγ′(ρmax)

ep − E3B
. (22)

Once the R-matrix is obtained, the S-matrix can be di-
rectly computed:

S =
[
H+ − ρmaxR(H+′ − βH+)

]−1
∗
[
H− − ρmaxR(H−′ − βH−)

] (23)

along with the phase shifts for each channel, from the
diagonal elements of the S-matrix, Sγγ = e2iδγγ (more
details in [2]). However, the S-matrix is not necessarily
diagonal, and due to all of the off-diagonal terms, the
diagonal does not have special significance. Instead of
using only Sγγ directly, it is common to diagonalize the
S-matrix and extract the eigenphases, δe [22]. The res-
onance energies and widths can then be extracted from
these eigenphases.

C. Width calculation

If one assumes a Breit-Wigner shape, resonant prop-
erties for a single-channel calculation can be directly ex-
tracted from the phase shift through the relation:

tanδ =
Γ/2

E3B − Eres
, (24)

where Γ is the width of the resonance and Eres is the reso-
nance energy. If this is valid, the width can be computed
as the full width at half maximum (FWHM) from the
energy derivative of the phase shift, Γ = 2/(∂δ/∂E3B).
In the case of multiple channels with weak coupling, one
can add the various partial widths to obtain the total
width of the three-body resonance. For this potentially
strongly coupled three-body problem, we do not expect
the pure Breit-Wigner approach to be valid. Neverthe-
less, for completeness, we do try to identify channels for
which such an approach may be applicable.

We can also construct the total three-body cross sec-
tion as a function of energy which would be measured

during an elastic scattering experiment, as defined in [22],

σJ3:3(E3B) ∝ 1

4κ5

[∑
γ

|1− Sγγ(E3B)|2 +
∑
γγ′
|Sγγ′(E3B)|2

]
,(25)

in which we might see a resonance as a peak. Theoreti-
cally, three-body elastic scattering could be measured if
the 14Be and two neutrons could be impinged upon one
another simultaneously with total energy, E3B . Because
this quantity includes a sum over all K, this method can
justify that the resonance energies extracted from a sin-
gle phase shift do indeed represent the resonance energy
of the total system, as all channels are included in this
calculation.

III. NUMERICAL DETAILS

A. Input interactions versus data

In the three-body model, each of the two-body inter-
actions must be constrained, typically from experimen-
tal data. However, very little is known about 15Be [17],
so shell model calculations are used to supplement the
available data. Shell model calculations for 15Be were
provided [23] using the WBP interaction [24]. Since the
ground state in the shell model calculation was an l = 2
state and was 1 MeV higher than the experimentally ob-
served l = 2 state in 15Be [17], the levels that were used
to constrain the 14Be-n interactions were the shell models
levels lowered by 1 MeV, shown in Figure 2.

FIG. 2: Level scheme for 15Be. The first column shows the
shell model calculation provided by [23], while the second col-
umn shows the 15Be levels that we used in this work; here,
the shell model levels are lower by 1 MeV so the 1d5/2 state in
the shell model calculation reproduces the experimental l = 2
energy from [17], as shown in the third column.

The 14Be-n interaction for each partial wave has a
Woods-Saxon shape with a = 0.65 fm and R = 1.2A1/3

fm, where A is the mass number of the 14Be core. The
depths depend on angular momentum, and are obtained
by fitting the single-particle resonances in 15Be, described
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in Fig. 2, using the code poler [25]. The core deforma-
tion is taken into account by allowing an l-dependence in
the potential. A spin-orbit interaction was also included
with the same geometry as the central nuclear force with
the depth adjusted to reproduce the split between the
1d5/2 and 1d3/2 states. We use the definition of the spin-
orbit strengths of FaCE [26]. Potential depths for the
various models included are as indicated in Table I.

The lowest s- and p-orbitals in 14Be are assumed to be
full. In order to remove the effect of these occupied states
in the 14Be core, the 1s1/2, 1p3/2, and 1p1/2 states were
projected out through a supersymmetric transformation
[26].

B. Description of models

There are four three-body models for 16Be that we con-
sider in this work. In D3B, the ground state of 15Be is a
1d5/2 state and a three-body force is included to repro-
duce the experimental three-body ground state energy of
16Be. This three-body force is also of Woods-Saxon form
with radius of 3.02 fm and diffuseness of 0.65 fm. In D,
the ground state of 15Be is a 1d5/2 state but no three-

body force is included. In S, the ground state of 15Be is
a 2s1/2 state but no three-body force is included.

All models D3B, D, and S include the GPT NN interac-
tion [27], as in previous three-body studies [28–31]. This
interaction reproduces NN observables up to 300 MeV.
Although it is simpler than the AV18 [32] and Reid soft-
core [33] interactions, its range is more than suitable for
the energy scales used in this work. We also consider the
effects of removing the NN interaction completely. This
model is named DNN. In Table I, we provide the depths
for the various terms of the interaction and the coefficient
αNN by which we multiply the GPT force in each of our
calculations.

In Table II, we summarize the energies for the 1d5/2
and 2s1/2 states in the subsystem 15Be as well as the

ground state energy of 16Be in the various models con-
sidered in Table I. For all of the models considered, the
1d3/2 state was placed at 6.0 MeV.

Parameter D3B D DNN S

Vs –26.182 –26.182 –26.182 –41.182

Vp –30.500 –30.500 –30.500 30.500

Vd –42.73 –42.730 –42.730 –42.730

Vso (l6=2) –10.000 –10.000 –10.00 –10.000

Vso (l=2) –33.770 –33.770 –33.770 –33.770

V3B –7.190 0.000 –7.190 0.000

αNN 1.000 1.000 0.000 1.000

TABLE I: Interaction parameters for the various models con-
sidered. All depths are given in MeV. Details in the text.

D3B D DNN S
15Be(1d5/2) 1.80 1.80 1.80 1.80
15Be(2s1/2) ∼3 ∼3 ∼3 0.48
16Be(gs) 1.32 1.88 3.08 1.60∗

TABLE II: Energy levels, in MeV, for 16Be and 15Be for the
various models considered. Energies are measured with re-
spect to the 14Be threshold. Details in the text. ∗This is an
excited state.

C. Convergence

Our methods rely on basis expansions, and our model
space is determined by a number of numerical parame-
ters. In this section we demonstrate convergence for vari-
ous quantities, including the ground state energy of 16Be
and the phase shifts. The truncation of the expansion
in hyperspherical harmonics is controlled by the hyper-
momentum, K. In Figure 3, we show the convergence
of the lowest 0+ three-body resonance energy of 16Be as
Kmax increases. The width of 16Be with respect to Kmax

shows the same trend. Our results are converged within
0.05 MeV by Kmax = 28 for both observables.

Our results are very sensitive to the the number of R-
matrix basis functions N (which essentially determines
the hyper-radial discretization) as well as the maximum
box size, ρmax. In Tables III and IV, we show the con-
vergence of the three-body resonance energy of several
parameters for the K = 0, L = 0, S = 0 channel. The
convergence with respect to the number of R-matrix ba-
sis functions is shown in Table III. Convergence is slow
but results are very close to converged for N = 95.

We also needed to check the dependence on the box
size, ρmax. When increasing the box size, one also needs
to increase the number of R-matrix basis functions that
span the radial space for consistency. These results are
given in Table IV. We summarize the minimum conver-
gence requirements in Table V.

N E3B (MeV)

70 2.06

75 1.95

80 1.84

85 1.78

90 1.74

95 1.71

100 1.69

105 1.67

TABLE III: Convergence of E3B as a function of the number
of radial R-matrix functions, N, for ρmax = 60 fm.
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FIG. 3: Convergence of the three-body energy as a function
of the maximum K value included in the model space.

ρmax (fm) N E3B (MeV)

50 80 1.70

60 95 1.71

70 110 1.72

TABLE IV: As the box size, ρmax, increases, a greater number
of R-matrix radial functions, N, are need to keep the same
resonance energy, E3B .

IV. RESULTS

Using model D, we calculated the eigenphases for 16Be.
The converged eigenphases can be found in Figure 4
(solid). As we would expect for this type of system, the
resonance energy in model D is above the experimental
energy observed for the ground state. We include a three-
body force, as described in Table I. The eigenphases,
including this three-body interaction (model D3B), are
shown in Figure 4 (dashed).

One can also extract a resonance energy from the
three-body total cross section, shown in Figure 5 as a
function of three-body energy. This observable also con-
tains contributions from all of the channels included in
the model space. If one investigates the structure of the
wavefunction of model D3B for the pole closest to the res-
onance energy, we conclude that the state is 37% K = 0,
lx = ly = 0, 30% K = 2, lx = ly = 0, and 13% K = 4,
lx = ly = 0.

Although the lowest experimentally observed state in
15Be was an l = 2 state, we wanted to investigate the
possibility of an s-wave ground state in 15Be, below the
observed state. Such a state exists in 10Li and was only
observed after other higher lying resonances were well
known [34]. With this in mind, we developed model S,
described in Table I. We use the same model space as in

Parameter Value

Kmax 28

lx(max), ly(max) 10

NJac 65

ρmax (fm) 60

N 95

TABLE V: Minimum convergence values for the three-body
wave function expansion.

FIG. 4: Eigenphases as a function of three-body energy for
16Be models D (solid, black), D3B (dashed, red), DNN (dot-
ted, green), and S (double-dash dotted, blue).

Table V. The dot-dashed line in Figure 4 shows the cor-
responding eigenphases for model S. The resulting cross
section is also depicted in Figure 5 by the dot-dashed
line. The clear evidence for the resonance seen in mod-
els D and D3B, is washed out in model S; however, there
does appear to be a resonant-like shape in the eigenphase,
just above the resonance in D3B at 1.60 MeV. We will
come back to this in Section V.

Finally we also consider the results when the NN in-
teraction is switched off (model DNN). A resonance is
still seen in δe(E) (Figure 4, dotted), around 3 MeV,
demonstrating the importance of the NN correlations in
producing the observed state in 16Be. Our results show
that the configuration of the system is strongly modified
by switching off the NN interaction.

V. DISCUSSION

To investigate whether or not dineutron emission is
the predominant form of decay for 16Be, we can study
the structure of the 16Be through the spatial density dis-
tribution. Two spatially correlated neutrons should be
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FIG. 5: Three-body cross section as a function of three-body
energy for 16Be models D(solid, black), D3B (dashed, red),
DNN (dotted, green), S (double-dash dotted, blue).

primarily emitted via dineutron emission - rather than a
three-body decay.

In calculating the spatial probability distribution of the
three-body system,

P (x, y) =

∫
|ΨJM (x,y)|2dΩxdΩy (26)

we can determine the location of the two neutrons with
respect to the core. The wave function used here is that
of Eqn. 7, calculated at the resonance energy, E = 1.32
MeV. The calculation includes the wave function up to
ρmax, and no additional binning is included to localize
the resonance. Note, also, that P (x, y) contains the con-
tribution of all components, and not just a single K.
From this density distribution we can determine the con-
figuration of the two neutrons in 16Be - dineutron, heli-
copter, or triangle (Figure 6 a, b, and c, respectively).

FIG. 6: Three-body configurations, a) dineutron (two neu-
trons close together and far from the core), b) helicopter (two
neutrons are close to the core and far from each other), and
c) three-body (the three bodies are equally spaced).

Figure 7 shows the resulting density distribution for
the 16Be system with the D3B model. The density dis-
tribution mainly shows a dineutron configuration, al-
though a small component of a helicopter configuration
is present. This is consistent with what was seen in [13].
Even though the three-body resonance energy shifts up
by about 0.5 MeV when the three-body interaction is re-
moved, this does not change the relative strength of the
dineutron component of the density distribution.

FIG. 7: Three-body density as a function of the distance be-
tween the two neutrons (r) and the distance between the nn
pair and the core (s) for D3B. The scale on the right is given
in fm−5.

There are several quantities that we can look at to ex-
tract a width for this system. If we extract the width
from the FWHM of the derivative of the three-body
eigenphase shift in Figure 4 we obtain 0.17 MeV (con-
sistent with the observed width of the nearest R-matrix
pole, 0.17 MeV). Both of these are smaller than the 0.8
MeV width found by experiment [13]. This discrepancy
is most likely due to the effect of experimental resolution
(etc.), which has not been taken into account when com-
paring our calculations with experiment. Work to include
these effects is currently ongoing. To further calculate
the yield of 16Be when produced from a proton removal
of 17B, as in [13], a reaction model would be needed that
includes the overlap functions between the original 17B
and the resulting three-body continuum states in 16Be.

When we switch off the NN interaction (model DNN),
the density distribution shown in Figure 8 has equal con-
tributions from the dineutron and the helicopter config-
urations. Increasing or decreasing the strength of the
three-body interaction does not change this picture. This
illustrates that it is indeed the NN interaction that is re-
sponsible for the strong dineutron character of the 16Be
ground state.

For comparison with all of these models, Figure 9
shows the density distribution for a 16Be that has both
the NN and n-15Be interactions removed (all K compo-
nents have been summed). This system does not contain
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FIG. 8: Same as Fig. 7 for the model DNN.

any resonance, so the density distribution is calculated
at the 16Be experimental resonance energy, 1.35 MeV.
The distribution has less structure and is pushed farther
away from the center of the system.

FIG. 9: Same as Fig. 7 for a plane wave solution of 16Be, at
E3B = 1.35 MeV, for comparison.

Let us now turn our attention back to the hypothesis
of there being a lower s-wave resonance in 15Be (model
S). Although δe(E) goes through 90◦, there is no clear
signature of a resonance in the total cross section. Indeed
the 16Be system becomes bound, also indicated by the
double hump structure 4 (double-dash dotted). Only by
using a much shallower s-wave potential could we regain a
resonance in the low energy 16Be spectrum. These results
make it much less likely that 15Be has an s-wave ground
state.

Using three-neutron coincidences, Kuchera, et. al.
proposed that there is a small chance of finding the 1d3/2
state in 15Be at 2.69 MeV [35]. Including this state, keep-
ing the 1d5/2 at 1.8 MeV, and using the same s-wave

as models D and D3B, the ground state energy of 16Be
produced by our model had E3B = 1.05 MeV, without
including a three-body interaction. The density distri-
bution was nearly identical to that shown in Figure 7.
In this case, the only way to reproduce the experimen-
tal ground state of 16Be would be to include a repulsive
three-body interaction, which is unusual.

VI. CONCLUSIONS

In summary, a three-body model for 16Be was devel-
oped to investigate the properties of the system in the
continuum. The hyperspherical R-matrix method was
used to solve the three-body scattering problem, with
the n-14Be interactions constrained by experimental data
on 15Be. As usual in three-body models, we included
a three-body potential to reproduce the experimental
ground state energy of 16Be. We obtained convergence
results for phase shifts, density distributions, and three-
body cross sections.

We study the properties of the resulting three-body
continuum around the resonant energy of 16Be and con-
clude that it has a strong dineutron configuration, consis-
tent with experimental observations [13]. The estimate
of the width obtained from our calculations is consistent
among the various methods of extraction but is smaller
than the experimental value [13]. We find that the NN
interaction is important in producing the strong dineu-
tron configuration in the ground state of 16Be, since the
structure of the resonance is completely different when
switching off the NN interaction. In contrast, the three-
body force needed to shift the resonance energy to the
observed experimental energy of 16Be ground state, has
little effect on the structure of the state. We also explore
a possible s-wave ground state in 15Be and find that the
results are incompatible with the observed 16Be ground
state [13]. In fact, the structure of the 15Be ground state
being a d5/2-wave is crucial to reproducing the 16Be ex-
perimental results. Only with a 1d5/2 ground state and

higher lying 2s1/2 and 1d3/2 state in 15Be can a reso-

nance energy of 1.35 MeV be reproduced in 16Be with a
physical three-body interaction.

The 16Be experiment [13] provided a variety of corre-
lation observables that would be very interesting to com-
pare to our model. However, our predictions need to be
introduced into a full experimental simulation code that
includes the appropriate three-body assumptions as well
as efficiencies and acceptance of the detector setup. Work
along these lines is currently underway.
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