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With a newly improved isospin- and momentum-dependent interaction and an isospin-dependent
Boltzmann-Uehling-Uhlenbeck transport model, we have investigated the effects of the slope pa-
rameter L of the nuclear symmetry energy and the isospin splitting of the nucleon effective mass
m∗

n−p = (m∗

n − m∗

p)/m on the centroid energy of the isovector giant dipole resonance and the
electric dipole polarizability in 208Pb. With the isoscalar nucleon effective mass m∗

s = 0.7m con-
strained by the empirical optical potential, we obtain a constraint of L = 64.29 ± 11.84(MeV)
and m∗

n−p = (−0.019 ± 0.090)δ, with δ being the isospin asymmetry of nuclear medium. With
the isoscalar nucleon effective mass m∗

s = 0.84m extracted from the excitation energy of the
isoscalar giant quadruple resonance in 208Pb, we obtain a constraint of L = 53.85±10.29(MeV) and
m∗

n−p = (0.216 ± 0.114)δ.

PACS numbers: 24.30.Cz, 21.65.+f, 21.30.Fe, 24.10.Lx

I. INTRODUCTION

One of the main tasks of nuclear physics is to under-
stand the in-medium nuclear interactions and the equa-
tion of state (EoS) of nuclear matter. The uncertainties
of the isospin-dependent part of the EoS, i.e., the nu-
clear symmetry energy (Esym), has hampered our accu-
rate understanding of nuclear matter properties, while it
has important ramifications in heavy-ion reactions, astro-
physics, and nuclear structures [1–8]. Thanks to the great
efforts made by nuclear physicists in the past decade, a
more stringent constraint on Esym at subsaturation den-
sities has been obtained from various analysis, with the
slope parameter of the nuclear symmetry energy so far
constrained within L = 60 ± 20 MeV [9–11], although
further verifications are still needed. On the other hand,
the in-medium isospin splitting of the nucleon effective
mass m∗

n−p = (m∗

n −m∗

p)/m has become a hot topic re-
cently. Compared to the bare nucleon mass in free space,
the in-medium nucleon effective mass comes from the
momentum-dependent potential in non-relativistic mod-
els (see, e.g., Chapter 3 of Ref. [7]). The isospin splitting
of the in-medium nucleon effective mass is thus related to
the momentum dependence of the symmetry potential in
non-relativistic models [12]. It has been found that the
isospin splitting of the nucleon effective mass is as im-
portant as the nuclear symmetry energy in understanding
the isospin dynamics in nuclear reactions [13–19], and has
ramifications in the thermodynamic properties of isospin
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asymmetric nuclear matter as well [20, 21]. Moreover,
the neutron-proton effective mass splitting is actually
inter-related to the nuclear symmetry energy through the
Hugenholtz-Van Hove theorem [10, 22]. For a recent re-
view on the isospin splitting of the nucleon effective mass,
we refer the reader to Ref. [23].

Giant resonances of nuclei serve as a useful probe of
nuclear interactions and the EoS of nuclear matter at
subsaturation densities. The studies on giant resonances
mainly follow two methods, i.e., the random-phase ap-
proximation and the transport model calculations. As a
breathing oscillation mode in the radial direction of a nu-
cleus, the isoscalar giant monopole resonance (GMR) is a
good probe of the incompressibility of nuclear matter [24–
28], while the isoscalar giant quadruple resonance (IS-
GQR), an oscillation mode with quadruple deformation
of a nucleus, has been found to be much affected by the
isoscalar nucleon effective mass m∗

s [29–34]. On the other
hand, the isovector giant dipole resonance (IVGDR) and
the pygmy dipole resonance (PDR), with the former an
oscillation mode between the centers of mass of neutrons
and protons and the latter that between the neutron
skin and the nucleus core, are valuable probes of the nu-
clear symmetry energy at subsaturation densities [35–49].
Since the nuclear symmetry energy acts as a restoring
force for the IVGDR, the main frequency of the IVGDR
oscillation, i.e., the centroid energy E−1, is related to
Esym at subsaturation densities or its slope parameter L
at the saturation density [36, 45, 49]. The electric dipole
polarizability αD has a strong correlation with the neu-
tron skin thickness ∆rnp [38, 49], and αD times Esym at
the saturation density shows a good linear dependence
on L [44, 47, 48]. It was argued that the accurate knowl-
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edge of αD and ∆rnp can help constrain significantly the
nuclear symmetry energy at subsaturation densities [40].
The effect of the neutron-proton effective mass splitting
on the IVGDR properties was realized only recently [34].
It is also worth mentioning that the dynamical isovec-
tor dipole collective motion in fusion reactions could be
a probe of the nuclear symmetry energy as well from
transport model studies [50–55].
Recently we have improved our isospin- and

momentum-dependent interaction (MDI) [56, 57], which
was previously extensively used in the studies of ther-
modynamic properties of nuclear matter, dynamics of
nuclear reactions, and properties of compact stars (see
Ref. [58] for a review). In the improved isospin- and
momentum-dependent interaction (ImMDI) [21], the mo-
mentum dependence of the mean-field potential has been
fitted to that extracted from proton-nucleus scatterings
up to the nucleon kinetic energy of about 1 GeV, and
more isovector parameters are further introduced so that
the density dependence of the symmetry energy and the
momentum dependence of the symmetry potential, or
equivalently, the isospin splitting of the nucleon effec-
tive mass, can be mimicked separately. In the present
study, we are going to investigate the effect of the nuclear
symmetry energy and the neutron-proton effective mass
splitting on the centroid energy E−1 of IVGDR as well
as the electric dipole polarizability αD, by employing the
ImMDI interaction together with the isospin-dependent
Boltzmann-Uehling-Uhlenbeck (IBUU) transport model.
With the experimental data of E−1 and αD from the
IVGDR in 208Pb available [39, 47, 59], we are able to con-
strain both the slope parameter of the symmetry energy
and the isospin splitting of the nucleon effective mass,
once the isoscalar nucleon effective mass is well deter-
mined. Section II gives a brief introduction to the ImMDI
interaction and the necessary formalisms for IVGDR. De-
tailed studies on the extraction of m∗

s and the constraint
on L and m∗

n−p from IVGDR are presented in Sec. III.
We conclude in Sec. IV.

II. THEORY

A. An improved isospin- and

momentum-dependent interaction

The potential energy density functional in the asym-
metric nuclear matter with isospin asymmetry δ and nu-
cleon number density ρ from the ImMDI interaction can
be expressed as [21, 56]

V (ρ, δ) =
Auρnρp

ρ0
+

Al

2ρ0
(ρ2n + ρ2p) +

B

σ + 1

ρσ+1

ρσ0

× (1− xδ2) +
1

ρ0

∑

τ,τ ′

Cτ,τ ′

×

∫ ∫

d3pd3p′
fτ (~r, ~p)fτ ′(~r, ~p′)

1 + (~p− ~p′)2/Λ2
. (1)

The single-particle potential of a nucleon with isospin τ
and momentum ~p in the asymmetric nuclear matter with
the isospin asymmetry δ and nucleon number density ρ
can be expressed as

Uτ (ρ, δ, ~p) = Au
ρ−τ

ρ0
+ Al

ρτ
ρ0

+ B

(

ρ

ρ0

)σ

(1− xδ2)− 4τx
B

σ + 1

ρσ−1

ρσ0
δρ−τ

+
2Cl

ρ0

∫

d3p′
fτ (~r, ~p

′)

1 + (~p− ~p′)2/Λ2

+
2Cu

ρ0

∫

d3p′
f−τ (~r, ~p

′)

1 + (~p− ~p′)2/Λ2
. (2)

In the above, ρn and ρp are the number density of neu-
trons and protons, ρ0 is the saturation density, and
δ = (ρn − ρp)/ρ is the isospin asymmetry. fτ (~r, ~p) is
the phase-space distribution function with τ = 1(−1)
being the isospin label of neutrons (protons). The po-
tential energy density of Eq. (1) can be derived based
on the Hartree-Fock calculation from an effective inter-
action with a zero-range density-dependent term and a
finite-range Yukawa-type term [60].
In the ImMDI interaction [21], the isovector parame-

ters x, y, and z are introduced to vary respectively the
slope parameter of the symmetry energy, the momentum
dependence of the symmetry potential or the neutron-
proton effective mass splitting, and the value of the sym-
metry energy at the saturation density, via the following
relations

Al(x, y) = A0 + y + x
2B

σ + 1
,

Au(x, y) = A0 − y − x
2B

σ + 1
,

Cl(y, z) = Cl0 − 2(y − 2z)
p2f

Λ2 ln[(4p2f + Λ2)/Λ2]
,

Cu(y, z) = Cu0 + 2(y − 2z)
p2f

Λ2 ln[(4p2f + Λ2)/Λ2]
,

(3)

where pf = ~(3π2ρ0/2)
1/3 is the nucleon Fermi momen-

tum in symmetric nuclear matter at the saturation den-
sity. We set z = 0 all through the manuscript. The values
of the parameters A0, B, Cu0, Cl0, σ, Λ, x, and y can
be fitted or solved from the saturation density ρ0, the
binding energy E0 at ρ0, the incompressibility K0, the
mean-field potential U∞

0 at infinitely large nucleon mo-
mentum at ρ0, the isoscalar nucleon effective mass m∗

s at
ρ0, the symmetry energy Esym and its slope parameter
L at ρ0, and the isovector nucleon effective mass m∗

v at
ρ0, as detailed in APPENDIX A.

B. Isovector giant dipole resonance

The isovector giant dipole resonance (IVGDR) is a col-
lective vibration of protons against neutrons, with the
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isovector dipole operator defined as

D̂ =
NZ

A
X̂, (4)

where N , Z, and A = N+Z are the number of neutrons,
protons, and the mass number of the nucleus, respec-
tively, and X̂ is the distance between the centers of mass
of protons and neutrons in the nucleus. The strength
function of IVGDR can be calculated from the isovector
dipole moment via

S (E) =
−Im

[

D̃(ω)
]

πη
, (5)

where D̃(ω) =
∫ tmax

t0
D (t) eiωtdt is the fourier transfor-

mation of the isovector dipole moment with E = ~ω.
In order to initialize the isovector dipole oscillation, the
initial momenta of protons and neutrons are given a per-
turbation in the opposite direction according to [61]

pi →

{

pi − ηN
A (protons)

pi + ηN
A (neutrons)

, (6)

with pi being the momentum of the ith nucleon along
X̂, and the perturbation parameter η = 25 MeV/c used
in the present study. One sees that a larger η leads
to a larger amplitude of the oscillation D(t), while the
strength function S(E) is independent of η as the am-
plitude is cancelled from the denominator. Once the
strength function of IVGDR is obtained, the moments
of the strength function can be calculated from

mk =

∫

∞

0

dEEkS(E). (7)

Both the centroid energy and the electric dipole polar-
izability can be measured from photoabsorption experi-
ments. The centroid energy, corresponding to the peak
energy in the photoabsorption energy spectrum, is the
main frequency of IVGDR. The electric dipole polariz-
ability, characterizing the response of the nucleus to the
external electric field, is related to the photoabsorption
cross section σf via [39]

αD =
~c

2π2

∫

σf

ω2
dω. (8)

Since both the strength function S(E) and the photoab-
sorption cross section σf are related to the energy spec-
trum of the excited states in the nucleus, the centroid
energy and the electric dipole polarizability can be ex-
pressed in terms of the moments mk of the strength func-
tion as

E−1 =
√

m1/m−1 (9)

and

αD = 2e2m−1. (10)

We note that the relation between αD and m−1 is differ-
ent from that in Ref. [34], because we only consider one-
dimensional oscillation, and the definition of the isovec-
tor giant dipole operator is different from that used in
Ref. [34] based on a random-phase approximation ap-
proach.
In the following calculations, we fit the time evolution

of the isovector giant dipole moment with the function

D(t) = a sin(bt)e−ct, (11)

where a, b, and c are fitting constants characterizing
the amplitude, the frequency, and the damping time of
IVGDR, respectively. With the help of Eq. (11), the
strength function S(E), the moments of the strength
function m−1 and m1, the centroid energy E−1 of
IVGDR, and the electric dipole polarizability αD can be
expressed analytically in terms of the fitting constants
respectively as

S(E) =
−ac

2πη

[

1

c2 +
(

b+ E
~

)2 −
1

c2 +
(

b− E
~

)2

]

,

m−1 =
−ab

2η (b2 + c2)
,

m1 =
−ab

2η
,

E−1 =
√

m1/m−1 =
√

b2 + c2,

αD = 2e2m−1 =
−2e2ab

2η (b2 + c2)
. (12)

III. RESULTS AND DISCUSSIONS

In the following study, we employ the IBUU transport
model together with the ImMDI interaction to investi-
gate the giant resonances of nuclei. The positions of
the projectile and target in the IBUU transport model
are fixed, i.e., with zero beam energy. The initial den-
sity distribution is sampled according to that generated
from Skyrme-Hartree-Fock calculations with the same
physics quantities used in the ImMDI interaction, such
as L, m∗

v, etc., listed in Table I. The initial nucleon mo-
mentum is sampled accordingly to the local density from
the Thomas-Fermi approximation. We generate events
from 40 runs with each run 200 test particles. Since
the oscillation generally lasts for hunderds of fm/c, in
order to improve the stability in the calculation with
the momentum-dependent mean-field potential, we use
the nuclear matter approximation in the real calcula-
tion by taking the phase-space distribution function as
fτ (~r, ~p) =

2
h3Θ(pfτ − p) and using the analytical expres-

sion (Eqs. (2) and (A.23)) for the momentum-dependent
mean-field potential. This is similar to the spirit of the
Thomas-Fermi approximation in the case that the vibra-
tion compared to the stable distribution is small. With
this treatment, we found that up to t = 500 fm/c only
about 17% of the total nucleons become free particles.
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A. Extract the isoscalar nucleon effective mass

We first extract the isoscalar nucleon effective mass
from the optical potential. The single-particle potentials
in symmetric nuclear nuclear matter at the saturation
density, with different values of the isoscalar nucleon ef-
fective mass m∗

s but same other isoscalar properties of
the nuclear interaction, are displayed in Fig. 1. We can
see that only the parameter set that leads to m∗

s = 0.7m,
with m being the nucleon mass in free space, can de-
scribe reasonably well the real part of the optical poten-
tial extracted from proton-nucleus scatterings by Hama
et al. [62, 63].
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FIG. 1: (Color online) Single-particle potentials in symmetric
nuclear nuclear matter at the saturation density as a func-
tion of the nucleon energy subtracted by the nucleon rest
mass from the ImMDI interaction with different isoscalar nu-
cleon effective mass m∗

s. The real part of the optical poten-
tial extracted from proton-nucleus scatterings by Hama et
al. [62, 63] is shown by scatters for comparison.

Next, we extract the value of m∗

s from the isoscalar
giant quadruple resonance (ISGQR) in 208Pb, with the
operator written as

Q̂ =

A
∑

i=1

r2i Y20 (r̂i) =

A
∑

i=1

√

5

16π

(

3z2i − r2i
)

, (13)

where ri and zi are respectively the radial and z-direction
coordinate of the ith nucleon, and Y20 is the spherical
harmonic function. Noticing that the following scaling
relation in the ISGQR is observed (see, e.g., Ref. [64])











x → x/λ

y → y/λ

z → λ2z











px → λpx
py → λpy
pz → pz/λ

2

, (14)

we choose λ = 1.1 in our simulation to initialize the os-
cillation. The value of λ is close to 1 corresponding to a
small vibration with respect to the equilibrium distribu-
tion. Again, we found that the value of λ only affects the

amplitude but has almost no effect on the frequency of
ISGQR. The time evolution of the isoscalar giant quadru-
ple moment, with different values of the isoscalar nucleon
effective mass but same other isoscalar properties of nu-
clear interaction, is displayed in the left panel of Fig. 2.
It is seen that a smaller isoscalar nucleon effective mass
m∗

s leads to a larger frequency of the oscillation. From
the Fourier transformation of Q(t), the linear correlation
between the isoscalar nucleon effective mass m∗

s and the
excitation energy of ISGQR is observed in the right panel
of Fig. 2. It is found that the result from the isoscalar
nucleon effective mass m∗

s = 0.84m reproduces best the
excitation energyEx = 10.9±0.1MeV of ISGQR in 208Pb
extracted from α-nucleus scattering experiments [65].
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FIG. 2: (Color online) The time evolution of the isoscalar
giant quadruple moment in 208Pb (a) and the correlation
between the corresponding excitation energy Ex and the
isoscalar nucleon effective mass m∗

s (b).

The different values of the isoscalar effective mass m∗

s

extracted from the optical potential and from the excita-
tion energy of ISGQR in 208Pb represent the theoretical
uncertainties in the present study. In the following study,
we will thus employ the parameter Set I and Set II that
lead respectively to m∗

s = 0.7m and 0.84m together with
different combinations of the isovector parameters x and
y to study the isovector giant dipole resonances of nu-
clei. The values of the parameters and the corresponding
physics quantities are detailed in Table I.

B. Constrain the symmetry energy and the

neutron-proton effective mass splitting

We first employ the parameter Set I with m∗

s = 0.7m,
which is able to reproduce the empirical optical potential
as shown in Fig. 1, to study the properties of the IVGDR
in 208Pb. Three different parameter sets, with different
combinations of the slope parameter L of the symmetry
energy and the isovector effective massm∗

v detailed as Set
I(a), Set I (b), and Set I(c) in Table I, are employed in the



5

TABLE I: The physics quantities and the corresponding parameters for the ImMDI interaction as well as the results from the
IVGDR in 208Pb.

Set I(a) Set I(b) Set I(c) Set II(a) Set II(b) Set II(c)

A0 (MeV) -66.963 -66.963 -66.963 -96.799 -96.799 -96.799

B (MeV) 141.963 141.963 141.963 171.799 171.799 171.799

Cu0 (MeV) -99.70 -99.70 -99.70 -90.19 -90.19 -90.19

Cl0 (MeV) -60.49 -60.49 -60.49 -50.03 -50.03 -50.03

σ 1.2652 1.2652 1.2652 1.2704 1.2704 1.2704

Λ (pf ) 2.424 2.424 2.424 3.984 3.984 3.984

x 0 1 1 0 1 1

y (MeV) -115 -115 115 -115 -115 115

ρ0 (fm−3) 0.16 0.16 0.16 0.16 0.16 0.16

E0(ρ0) (MeV) -16 -16 -16 -16 -16 -16

K0 (MeV) 230 230 230 230 230 230

U∞

0 (MeV) 75 75 75 75 75 75

m∗

s (m) 0.7 0.7 0.7 0.84 0.84 0.84

Esym(ρ0) (MeV) 32.5 32.5 32.5 32.5 32.5 32.5

L (MeV) 58.57 8.70 60.00 72.63 11.24 36.03

m∗

v (m) 0.537 0.537 0.853 0.712 0.712 0.928

a (fm) -28.13±0.33 -27.16±0.25 -19.55±0.14 -24.30±0.21 -22.69±0.21 -19.34±0.16

b (fm−1) 0.0782±0.0001 0.0883±0.0001 0.0614±0.0001 0.0662±0.0001 0.0760±0.0001 0.0640±0.0001

c (fm−1) 0.0075±0.0001 0.0099±0.0001 0.0040±0.0001 0.0052±0.0001 0.0075±0.0001 0.0054±0.0001

E−1 (MeV) 15.50±0.0001 17.53±0.0001 12.13±0.0001 13.10±0.0001 15.06±0.0001 12.68±0.0001

αD (fm3) 20.5±0.2 17.5±0.2 18.3±0.1 21.0±0.2 17.0±0.2 17.3±0.1

study. The initial momenta of neutrons and protons are
modified with the perturbation parameter η as detailed
in Sec. IIB. The oscillation amplitude is proportional to η
while its frequency is found to be insensitive to the choice
of η. The resulting time evolution of the isovector dipole
moment is displayed in the left panel of Fig. 3. One sees
that the time evolution of D(t) follows a good damping
oscillation mode as in Eq. (11). In order to avoid oscilla-
tion in the Fourier transformation due to the finite tmax

in the transport model calculation, a damping factor of
exp(− γt

2~ ) with the width γ = 2 MeV is multiplied to the
isovector dipole moment D(t) in calculating the strength
function S(E) from Eq. (5) as in Ref. [61]. This slightly
affects the damping coefficient c in Eq. (11) but has very
small effects on the final results as can be seen from the
analytical formulaes of Eq. (12). The resulting strength
functions from the numerical Fourier transformation is
displayed in the right panel of Fig. 3. It is seen that with
a softer symmetry energy (Set I(b)), the main frequency,
i.e., the centroid energy in the IVGDR, is larger, due
to the larger symmetry energy at subsaturation densities
acting as a stronger restoring force. On the other hand,
the centroid energy is sensitive to the isovector nucleon
effective mass as well, with a larger isovector effective
mass (Set I(c)) leading to a smaller centroid energy of
IVGDR. This could be understood since the oscillation
frequency is smaller with a larger reduced mass of the
system, with the latter attributed to the larger isovector

effective mass once the isoscalar effective mass is fixed.
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FIG. 3: (Color online) The time evolution of the isovector gi-
ant dipole moment (a) and the corresponding strength func-
tion (b) in 208Pb with m∗

s = 0.7m.

The constants a, b, and c can be obtained from fitting
the isovector dipole moment D(t) according to Eq. (11),
and their detailed values for the three parameter sets are
listed in Table I. The resulting centroid energy E−1 and
the electric dipole polarizability αD calculated analytical
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FIG. 4: (Color online) The linear relations between the sym-
metry energy slope parameter L as well as the isovector nu-
cleon effective mass m∗

v and the centroid energy E−1 as well
as the electric dipole polarizability αD from the IVGDR in
208Pb, respectively, with the isoscalar nucleon effective mass
m∗

s = 0.7m.

according to Eq. (12) are also listed in Table I. It is seen
that for a given isovector effective massm∗

v, a larger slope
parameter L leads to a smaller centroid energy E−1 and
a larger electric dipole polarizability αD. Analogously,
for a given slope parameter L, a larger isovector effective
mass m∗

v leads to a smaller centroid energy E−1 and a
smaller electric dipole polarizability αD. The rigorous
tool to treat such a problem of multiple experimental
results with multiple parameters is the Bayesian frame-
work [66–69], which is beyond the scope of the present
study. On the other hand, we found both E−1 and αD are
linearly correlated with L andm∗

v, and the corresponding
relations based on our transport calculations turns out to
be

{

−0.041L− 10.480m∗

v + 23.512 = E−1,

0.061L− 7.405m∗

v + 20.951 = αD,
(15)

with L in MeV, m∗

v in m, E−1 in MeV, and αD in fm3.
The centroid energy of the IVGDR in 208Pb obtained
experimentally from the photoabsorption measurement
is E−1 = 13.46 MeV [59], while the electric dipole po-
larizability is αD = 19.6 ± 0.6 fm3 measured from pho-
toabsorption cross section by Tamii et al. [39] and with
further correction by subtracting quasideuteron excita-
tions [47]. With the above experimental data available,
the constraints on the slope parameter L and the isovec-
tor effective mass can be solved from Eq. (15) as

L = 64.29± 11.84 (MeV), (16)

m∗

v/m = 0.710± 0.046, (17)

where the error bars, which originate from the fitting and
the statistical error of a, b, and c listed in Table I, are
calculated from the error transfer. We found that the Im-
MDI parameterization with the mean values of L and m∗

v

in Eq. (16) gives very close results of E−1 and αD com-
pared with the experimental data, justifying the linear
relation of Eq. (15). The corresponding isospin splitting
of the nucleon effective mass deduced from Eq. (A.35) is

(m∗

n −m∗

p)/m = (−0.019± 0.090)δ. (18)

The above constraint is, however, different from that
obtained by analyzing nucleon-nucleus scattering data
within an isospin-dependent optical model [70].
Next, we choose the isoscalar nucleon effective mass to

bem∗

s = 0.84m while keeping other physics quantities the
same in the ImMDI parameterization, and the resulting
parameter sets are listed as Set II(a), Set II(b), and Set
II(c) in Table I with different combinations of the slope
parameter L of the symmetry energy and the isovector
nucleon effective mass m∗

v. With the same calculation
method, the time evolution of the isovector dipole mo-
ment in 208Pb and the corresponding strength function
are displayed respectively in the left and right panel of
Fig. 5. With a, b, and c fitted by Eq. (11), and the ana-
lytical results of the centroid energy E−1 and the electric
dipole polarizability αD obtained according to Eq. (12),
we can get the similar linear relation from transport cal-
culations as

{

−0.032L− 7.346m∗

v + 20.651 = E−1,

0.065L− 6.368m∗

v + 20.845 = αD.
(19)

With the available experimental data of E−1 and αD,
the slope parameter L of the symmetry energy and the
isovector nucleon effective mass from the constraint of
the ISQGR and the IVGDR in 208Pb are

L = 53.85± 10.29 (MeV), (20)

m∗

v/m = 0.744± 0.045. (21)

Again, we found that the mean values of L and m∗

v repro-
duce very well the experimental results of E−1 and αD

within the statistical error based on our transport model
calculations, justifying the linear relation of Eq. (19).
The corresponding neutron-proton effective mass split-
ting deduced from Eq. (A.35) is thus

(m∗

n −m∗

p)/m = (0.216± 0.114)δ. (22)

The constraint from both ISGQR and IVGDR on the
neutron-proton effective mass splitting is consistent with
that obtained in Ref. [70].

IV. CONCLUSIONS

Based on an improved isospin- and momentum-
dependent interaction (ImMDI) and an isospin-
dependent Boltzmann-Uehling-Uhlenbeck (IBUU)
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FIG. 5: (Color online) Same as Fig. 3 but with the isoscalar
nucleon effective mass m∗

s = 0.84m.
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FIG. 6: (Color online) Same as Fig. 4 but with the isoscalar
nucleon effective mass m∗

s = 0.84m.

transport model, we have studied the effect of the
slope parameter L of the nuclear symmetry energy
and the isovector nucleon effective mass m∗

v on the
centroid energy E−1 of the isovector giant dipole res-
onance (IVGDR) and the electric dipole polarizability
αD in 208Pb. We found that both E−1 and αD are
almost linearly correlated with L and m∗

v. With a
given isoscalar nucleon effective mass, we are able to
constrain the values of L and m∗

v with the available
experimental data of E−1 and αD. From the isoscalar
nucleon effective mass m∗

s = 0.7m constrained by the
empirical optical potential, we obtain a constraint of
L = 64.29 ± 11.84(MeV) and m∗

v/m = 0.710 ± 0.046,
resulting in the isospin splitting of the nucleon effective

mass within (m∗

n−m∗

p)/m = (−0.019±0.090)δ, with δ be-
ing the isospin asymmetry of nuclear medium. From the
isoscalar nucleon effective mass m∗

s = 0.84m extracted
from the excitation energy of the isoscalar giant quadru-
ple resonance (ISGQR) in 208Pb, we obtain a constraint
of L = 53.85± 10.29(MeV) and m∗

v/m = 0.744± 0.045,
resulting in the isospin splitting of nucleon effective mass
within (m∗

n −m∗

p)/m = (0.216± 0.114)δ. The constraint
on the neutron-proton effective mass splitting from both
ISGQR and IVGDR in 208Pb is consistent with that
from optical model analyses of nucleon-nucleus elastic
scatterings. The uncertainty of the isoscalar nucleon
effective mass has hampered our accurate constraint on
the neutron-proton effective mass splitting.
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APPENDIX A. EXPRESSIONS FOR PHYSICS

QUANTITIES FROM THE IMMDI

INTERACTION

At zero temperature, the phase-space distribution
function can be written as fτ (~r, ~p) = 2

h3Θ(pfτ − p),

with pfτ = ~(3π2ρτ )
1/3 being the Fermi momentum of

nucleons with the isospin label τ , and the momentum-
dependent part of the single-particle potential as well as
that in the potential energy density can be integrated
analytically as [71]

∫

d3p′
fτ (~r, ~p

′)

1 + (~p− ~p′)2/Λ2

=
2

h3
πΛ3

{

p2fτ + Λ2 − p2

2pΛ
ln

[

(p+ pfτ )
2 + Λ2

(p− pfτ )2 + Λ2

]

+
2pfτ
Λ

− 2

(

arctan
p+ pfτ

Λ
− arctan

p− pfτ
Λ

)}

(A.23)

and

∫ ∫

d3pd3p′
fτ (~r, ~p)fτ ′(~r, ~p′)

1 + (~p− ~p′)2/Λ2

=
1

6

(

4π

h3

)2

Λ2{pf(τ)pf (τ
′)[3(p2fτ + p2fτ ′)− Λ2]

+ 4Λ

[

(p3fτ − p3fτ ′) arctan

(

pfτ − pfτ ′

Λ

)

− (p3fτ + p3fτ ′) arctan

(

pfτ + pfτ ′

Λ

)]

+
1

4
[Λ4 + 6Λ2(p2fτ + p2fτ ′)− 3(p2fτ − p2fτ ′)2]

× ln

[

(pfτ + pfτ ′)2 + Λ2

(pfτ − pfτ ′)2 + Λ2

]

}. (A.24)

The binding energy per nucleon for asymmetric nuclear
matter can be expressed as

E (ρ, δ) =
V (ρ, T = 0, δ)

ρ
+ Ek (ρ, δ) (A.25)

with the kinetic energy per nucleon calculated from

Ek (ρ, δ) =
1

ρ

∫

d3p

[

p2

2m
fn (~r, ~p) +

p2

2m
fp (~r, ~p)

]

=
4π

5mh3ρ

(

p5fn + p5fp
)

, (A.26)

where pfn(p) = ~
(

3π2ρn(p)
)

1

3 is the Fermi momentum of
neutrons (protons), and m is the nucleon mass.

By setting ρn = ρp = ρ
2 and pfn = pfp = pf , we can

express the binding energy per nucleon for symmetric

nuclear matter as [71]

E0(ρ)

=
8π

5mh3ρ
p5f +

ρ

4ρ0
(Al +Au) +

B

σ + 1

(

ρ

ρ0

)σ

+
1

3ρ0ρ
(Cl + Cu)

(

4π

h3

)2

Λ2

×

[

p2f (6p
2
f − Λ2)− 8Λp3f arctan

(

2pf
Λ

)

+
1

4
(Λ4 + 12Λ2p2f ) ln

(

4p2f + Λ2

Λ2

)]

. (A.27)

The saturation density is determined by the zero point
of the first-order derivative of the binding energy per nu-
cleon, with the latter expressed as [71]

dE0(ρ)

dρ

=
16π

15mh3ρ2
p5f +

1

4ρ0
(Al +Au) +

Bσ

σ + 1

ρσ−1

ρσ0

+
1

3ρ0ρ2
(Cl + Cu)

(

4π

h3

)2

Λ2 (A.28)

×

[

2p4f + Λ2p2f −
1

4
(Λ4 + 4Λ2p2f ) ln

(

4p2f + Λ2

Λ2

)]

.

The incompressibility of symmetric nuclear matter is de-
fined as K0 = 9ρ20(d

2E0/dρ
2)ρ=ρ0

, with the second-order
derivative of the binding energy per nucleon expressed
as [71]

d2E0(ρ)

dρ2

= −
16π

45mh3ρ3
p5f +

Bσ(σ − 1)

σ + 1

ρσ−2

ρσ0

+
2

3ρ0ρ3
(Cl + Cu)

(

4π

h3

)2

Λ2 (A.29)

×

[

−
2

3
p4f − Λ2p2f + Λ2

(

Λ2

4
+

2

3
p2f

)

ln

(

4p2f + Λ2

Λ2

)]

.

The symmetry energy by definition can be written as [71]

Esym(ρ)

=
1

2

(

∂2E

∂δ2

)

δ=0

=
8π

9mh3ρ
p5f +

ρ

4ρ0
(Al −Au)−

Bx

σ + 1

(

ρ

ρ0

)σ

+
Cl

9ρ0ρ

(

4π

h3

)2

Λ2

[

4p4f − Λ2p2f ln

(

4p2f + Λ2

Λ2

)]

(A.30)

+
Cu

9ρ0ρ

(

4π

h3

)2

Λ2

[

4p4f − p2f
(

4p2f + Λ2
)

ln

(

4p2f + Λ2

Λ2

)]

.
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The slope parameter of the symmetry energy at the sat-
uration density is defined as L = 3ρ0[dEsym(ρ)/dρ]ρ=ρ0

,
with the first-order derivative of the symmetry energy
expressed as [71]

dEsym(ρ)

dρ

=
16π

27mh3ρ2
p5f +

1

4ρ0
(Al −Au)

−
Bxσ

σ + 1

ρσ−1

ρσ0
+

Cl + Cu

27ρ0ρ2

(

4π

h3

)2

Λ2 (A.31)

×

[

4p4f + Λ2p2f ln

(

4p2f + Λ2

Λ2

)

−
8Λ2p4f

4p2f + Λ2

]

−
4Cu

27ρ0ρ2

(

4π

h3

)2

Λ2p4f

[

ln

(

4p2f + Λ2

Λ2

)

+
8p2f

4p2f + Λ2

]

.

The isoscalar nucleon effective mass m∗

s is defined as
the nucleon effective mass in symmetric nuclear matter
at the saturation density, and it can be calculated from
the mean-field potential U0 in symmetric nuclear matter
via

m∗

s = m

(

1 +
m

p

dU0

dp

)

−1

p=pf

. (A.32)

In asymmetric nuclear matter, the isovector nucleon ef-

fective mass can be calculated through the following re-
lation

~
2

2m∗

n(p)

=
2ρn(p)

ρ0

~
2

2m∗

s
2 +

(

1−
2ρn(p)

ρ0

)

~
2

2m∗

v

, (A.33)

with the neutron (proton) effective mass defined as

m∗

n(p) = m

(

1 +
m

p

dUn(p)

dp

)

−1

p=pf

. (A.34)

Keeping the first-order term of the isospin asymmetry
δ, the neutron-proton effective mass splitting is related
to the isoscalar and isovector effective mass through the
following relation

m∗

n −m∗

p ≈
2m∗

s

m∗

v

(m∗

s −m∗

v)δ. (A.35)

Finally, the mean-field potential of a nucleon with in-
finitely large momentum in symmetric nuclear matter at
the saturation density can be expressed as

U∞

0 =
Al +Au

2
+B. (A.36)

The values of the parameters A0, B, Cu0, Cl0, σ, Λ, x,
and y can be obtained from Eqs. (A.27-A.36), with given
ρ0, E0(ρ0), K0, U

∞

0 , m∗

s, Esym(ρ0), L, and m∗

v.
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[27] G. Colò et al., Phys. Rev. C 70, 024307 (2004).
[28] B.G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett.

95, 122501 (2005).
[29] A. Bohr and B.R. Mottelson, Nuclear Stucture, Vols. I

and II (W. A. Benjamin Inc., Reading, MA, 1975).
[30] O. Bohigas, A.M. Lane, and J. Martorell, Phys. Rep. 51,

267 (1979).
[31] J.-P. Blaizot, Phys. Rep. 64, 171 (1980).
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G. Colò, Phys. Rev. C 85, 024601 (2012).

[42] D. Vretenar, Y.F. Niu, N. Paar, and J. Meng, Phys. Rev.
C 85, 044317 (2012).

[43] V. Baran, B. Frecus, M. Colonna, and M. Di Toro, Phys.
Rev. C 85, 051601(R) (2012).

[44] X. Roca-Maza, M. Brenna, G. Colò, M. Centelles, X.
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