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Abstract

One can adopt two-step G-matrix approximations for the Brueckner-Hartree-Fock (BHF) calcu-

lations. The firstG-matrix is to soften the bare force, and the second one is to include the high-order

correlations of the interaction in medium. The first G-matrix calculation for two-nucleon inter-

action should be done in the center-of-mass coordinate. As another alternative BHF approach,

we have adopted the Vlow-k technique to soften the interaction and used the G-matrix to include

high-order correlations. The Vlow-k renormalization leads to high-momentum and low-momentum

components of the interaction decoupled. With the Vlow-k potential, we have performed the BHF

calculations for finite nuclei. The G-matrix elements with exact Pauli exclusions are calculated in

the self-consistent BHF basis. To see effects from further possible correlations beyond BHF, we

have simultaneously performed renormalized BHF (RBHF) calculations with the same potential.

In RBHF, the mean field derived from realistic forces is modified by introducing the particle-

occupation depletion resulting from many-body correlations. The ground-state energies and radii

of the closed-shell nuclei, 4He, 16O and 40Ca, have been investigated. The convergences of the BHF

and RBHF calculations have been discussed, and compared with other ab-initio calculations with

the same potential.
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I. INTRODUCTION

One of current fundamental goals in nuclear theory is to use realistic nuclear forces for

nuclear structure calculations. Realistic nucleon-nucleon (NN) interaction provides the high-

quality descriptions of the NN scattering phase shifts and deuteron properties. The Hartree-

Fock (HF) method is one of widely used approaches for solving many-body quantum systems,

with approximating the wavefunction by a single Slater determinant based on single-particle

states. The single-particle states are the eigenstates of the one-body HF potential U which

can be derived from the two-body NN interaction V by U = Tr(V ρ) with ρ being density

[1]. The conventional HF method describes the motions of nucleons in the average field of

other nucleons and neglects higher-order correlations, while the higher-order correlations are

important for calculations starting from realistic nuclear forces [2–4].

The Brueckner-Hartree-Fock (BHF) theory gives an improved definition of one-body po-

tential U by replacing the two-body interaction V with the so-called reaction G-matrix

which sums up ladder diagrams to infinite orders and gives an effective two-body interaction

allowing for many-body correlations [5]. In the BHF theory, the important diagrams in per-

turbation expansion are summed by introducing the G-matrix operator. The Renormalized

Brueckner-Hartree-Fock (RBHF) approach [6–9] makes further modification to the BHF av-

erage field U , which takes into account the depletions of occupied single-particle states due

to many-body correlations. The depletion mechanism cancels a large class of additional di-

agrams (called saturation-potential diagrams or rearrangement diagrams) in calculating the

ground-state energy and single-particle energies, e.g., the typical diagram shown in Fig. 1.

Realistic interactions, such as CD-Bonn [10], Nijmegen [11], Argonne υ18 [12], INOY

[13], and chiral potential [14, 15], exhibit strong short-range correlations or high-momentum

components which cause nonconvergence problem in nuclear structure calculations. The

problem is more serious for these potentials that have a so-called hard core [5]. The matrix

elements of a hard core potential, 〈φ(r)|VNN |φ(r)〉, in uncorrelated two-body wave function

φ(r) can become extremely large or even divergent since the uncorrelated wave function can

be non-zero at the distance smaller than the hard-core radius.

A traditional approach to deal with the strong short-range correlations is the G-matrix

renormalization in the Brueckner-Bethe-Goldstone theory [16–18]. By allowing nucleons to

be scattered to intermediate states above the HF Fermi surface, the G-matrix potential
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FIG. 1. The typical diagram cancelled in the RBHF method by including occupation probabilities

in the definition of the single-particle potential U .

includes high-order correlations which are missing in the HF approximation. On the other

hand, the G-matrix operator contains a denominator with the energy difference between

scattered and initial states, which leads to a weakening effect on the coupling between

the low-momentum and high-momentum components of the force, and thus softens the

interaction. In practical calculations, usually two steps of the G-matrix approximation

are performed [5, 18–21]. First, in the center-of-mass coordinate, a reference G-matrix is

calculated with the approximate Pauli exclusion. This step is mainly to soften the force.

With the softened reference G-matrix potential, the second step of the G-matrix calculations

is performed in the laboratory coordinate. This step is mainly to include the high-order

correlations. Such two-step G-matrix approximation can expedite the convergence of many-

body calculations [5].

In the present work, we use the Vlow-k technique to soften the bare force. The Vlow-k

renormalization integrates out high-momentum components of the force [22, 23]. The effec-

tive interaction Vlow-k preserves the low-energy physics of the realistic force (e.g., low-energy

phase shifts) and is both energy and mass independent [22, 23]. With the Vlow-k renormal-

ized interaction, we perform the BHF and RBHF calculations for finite nuclei with one-step

G-matrix approximation which is to include the high-order correlations (or called in-medium

effects). The BHF calculation based on the Vlow-k potential has been suggested by Kuckei

et al. in Ref. [24], where the long-range correlations from configurations inside their model

space are treated within the framework of the Green’s function approach.
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II. THEORETICAL FRAMEWORK

A. The effective Hamiltonian

The intrinsic Hamiltonian of the A-nucleon system used in this paper reads

Ĥ=
A
∑

i=1

(

1−
1

A

)

~p2i
2m

+
A
∑

i<j=1

(

V̂
(2)
ij −

~pi · ~pj
mA

)

=
A
∑

i=1

T̂i +
A
∑

i<j=1

V̂ij , (1)

where V̂ (2) = V̂NN + V̂Coul with V̂NN being the NN interaction and V̂Coul being the coulomb

interaction. We do not include three-body interaction. In the present work, the V̂NN is

derived from Argonne υ18 potential [12] by using the Vlow-k technique. The Vlow-k method is

a renormalization group approach and is used to soften the short-range repulsion and short-

range tensor components of the initial interaction. It integrates out the high-momentum

components of the nuclear force in the momentum space while preserves accurately the

low-momentum physics of the force. This process leads to the decoupling between low-

momentum and high-momentum parts of the Hamiltonian. The renormalized potential be-

comes softer and more perturbative than the initial force. We used the Vlow-k renormalization

with the Lee-Suzuki projection [23, 25].

B. Brueckner-Hartree-Fock Theory

The BHF approach has almost the same formalism as the HF approximation except the

mean field U which is produced by using the G-matrix in BHF. The G-matrix potential is

obtained by the Bethe-Goldstone equation,

G(ω) = V + V
Q

e
G(ω), (2)

with the energy denominator e = ω − h0(1) − h0(2) + iη. ω is the starting energy, and

h0(i) (i = 1, 2 for particle 1 and 2, respectively) is the single-particle Hamiltonian with the

one-body mean field U . The Pauli exclusion operator Q forbids the two interacting nucleons

scattered into the states occupied already by other nucleons. The Pauli exclusion operator

Q should be defined in the self-consistent BHF basis. Practical calculations usually take
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two-step G-matrix approximations. First, a reference G-matrix is calculated by [5]

G0 = VNN + VNN
Q0

e0
G0, (3)

using the approximate Pauli operator Q0 and energy denominator e0 relative to the “true”

reaction matrix G [5]. G0 is calculated in the center-of-mass coordinate, which is to deal

with short-range correlations. There are different methods to approximate the reference

G0 in the history of the BHF development. A typical G0 calculation is called the angle-

averaged Pauli operator approximation [5, 20]. The second typical method is Eden and

Emery approximation [21] in which the Pauli operator is diagonalized in the center-of-mass

representation. There is another G0 approximation called the reference-spectrum method

[19] in which one simply sets Q0 = 1 for the reference G0 calculation. After getting G0, the

“true” G is calculated by using the Bethe-Brandow-Petschek (BBP) identity [18]

G = G0 +G0

(

Q

e
−

Q0

e0

)

G. (4)

In most cases, people do not use a self-consistent Pauli exclusion operator in G-matrix cal-

culations, while they correct G0 in a harmonic oscillator (HO) representation. This means

that the occupation or unoccupation of the orbit is determined in the HO basis rather than

in the BHF basis. In the present work, we define the Pauli exclusion operator in the BHF

basis. Due to the inclusion of high-order perturbation terms (high-order correlations), the

G-matrix potential is beyond the conventional HF mean field. The important diagrams

include not only the ladder diagrams to infinite orders, but also some diagrams that are in-

cluded in hole-hole and particle-hole G-matrix bubble insertions by putting G-matrix on the

energy shell (see Fig. 2 as an example) or in particle-particle bubble insertions by the off-shell

prescription. Here “on-energy-shell” means that ω in Eq. (2) is equal either to the energy of

the initial two-particle state or to the energy of the final two-particle state. Off-energy-shell

(or simply called off-shell) G-matrix elements are calculated without the equal energies of

initial and final states. The hole-hole and particle-hole bubble insertions can be cancelled

by constructing an appropriate mean field U [26]. For example, in Fig. 3 the diagrams in

the lower panel cancel those in the upper panel. Figure 4 gives the Brueckner-Goldstone

expansion for the ground-state energy, where V is replaced by G in the perturbation expan-

sion [27] and ladder diagrams are omitted. We can see that the bubble insertions can be

cancelled by choosing U [26].
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FIG. 2. An example of the diagrams which can be included in hole-hole G-matrix bubble insertions

by putting G-matrix on the energy shell.

(a) (b) (c)

FIG. 3. Examples of diagrams included in the BHF calculation. The wavy line signifies the G-

matrix interaction, while the dashed line terminated by a cross signifies the single-particle potential

U .
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FIG. 4. The first-, second-, and some third-order anti-symmetrized Goldstone diagrams of energy

corrections in the Brueckner-Goldstone expansion [26]. The wavy line signifies G-matrix interac-

tion, while dashed line terminated by a cross signifies the single-particle potential U .

A conventional choice for the matrix elements of the BHF potential U [26, 28] is

〈a|U |b〉 =























































1

2

∑

h≤εF

〈ah|G(εa + εh) +G(εb + εh)|bh〉 for a, b ≤ εF

∑

h≤εF

〈ah|G(εa + εh))|bh〉 for a ≤ εF, b > εF

∑

h≤εF

〈ah|G(εb + εh))|bh〉 for a > εF, b ≤ εF

1

2

∑

h≤εF

〈ah|G(ε̄a + εh) +G(ε̄b + εh)|bh〉 for a, b > εF

, (5)

where the letter h indicates an occupied single-particle orbit (i.e., a hole state) in the BHF

basis, p stands for an empty level (i.e., a particle state) and a, b, ... label any states (either

hole or particle). εF is the Fermi energy, and ε̄a = 2ε0−εa with ε0 being the average energy of

the occupied single-particle states. For the U elements involving hole states, i.e., 〈h|U |a〉, the

on-energy-shell definition of the G(ω)-matrix guarantees the exact cancellations of hole-hole

and particle-hole diagrams with bubble insertions, according to the BBP theorem [18]. The

ω definition for a particle-particle element 〈p1|U |p2〉 is a somewhat controversial matter. The
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particle-particle elements are intended to cancel the corresponding off-shell particle-bubble

diagrams. Since 〈p1|U |p2〉 depends on the excitation energy of remainder diagrams, a self-

consistent treatment of particle-bubble diagrams is complicated. It has been found that the

total contribution from all three-body cluster diagrams to the energy of nuclear matter is

much smaller than the contribution from single-particle bubble diagrams [29]. Therefore, if

one wants particle-particle elements to cancel the three-body cluster diagrams, the particle-

particle elements should not be very large. In the previous works [1, 5, 26], the 〈p1|U |p2〉

elements are set to be zero. We have tested both calculations with the prescription given

by Eq. (5) or setting 〈p1|U |p2〉 = 0.

In the present work, we limit the BHF calculations to closed-shell spherical nuclei. The

spherical symmetry preserves the quantum numbers of the orbital angular momentum (l),

the total angular momentum (j) and its projection (mj). In the spherical closed shell, the

BHF single-particle eigenvalues are independent of the magnetic quantum number mj , which

leads to a 2j + 1 degeneracy. We calculate the G(ω) elements in the angular momentum

coupled scheme. The BHF single-particle states are denoted by |a〉 = |νljmt〉 with mt for

the isospin projection and ν for other quantum numbers. We define an anti-symmetrized

two-particle state with good angular momentum J and projection M ,

|(ab)JM〉 =
1

√

(1 + δab)

∑

ma,mb

〈jamajbmb|JM〉|(ama)(bmb)〉. (6)

The G-matrix elements which are needed for the calculation of the BHF potential can be

written as

〈(ab)JM |G(ε
′

a + ε
′

b)|(cd)JM〉 =〈(ab)JM |V̂ |(cd)JM〉

+
1

2

∑

r,s>εF

〈(ab)JM |V̂ |(rs)JM〉

×
1 + δrs

ε
′

a + ε
′

b − εr − εs
〈(rs)JM |G(ε

′

a + ε
′

b)|(cd)JM〉, (7)

with

ε
′

a =







εa for a ≤ εF

2ε0 − εa for a > εF
. (8)

We solve Eq. (7) by using matrix inversion method [26].

With the G-matrix elements obtained thus, the potential U can be calculated by Eq. (5).

Then we can obtain single-particle energies εa and wavefunctions |a〉 by iterating the BHF
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equation [1],

〈a|Ĥ0|b〉 = 〈a|(T̂ + U)|b〉 = εaδab. (9)

The practical BHF calculation is complicated. In the present work, we first use the Woods-

Saxon (WS) basis to obtain initial G-matrix elements by solving Eq. (7), and then calculate

initial U -potential elements by using Eq. (5) in the WS basis. With the initial potential,

we diagonalize the BHF equation (i.e., Eq. (9)) which gives the initial BHF basis. In the

BHF basis, we recalculate the G-matrix and U -potential elements, and diagonalize the BHF

equation again. Such iteration is repeated in the BHF basis until the convergence is achieved.

This process is similar to the solution of spherical HF as shown in Ref. [30]. The bulk

properties of finite nuclei can be calculated within the HF framework. For example, the

ground-state energy is given by

EBHF =
A
∑

h1=1

〈h1|T̂ |h1〉+
1

2

A
∑

h1,h2=1

〈h1h2|G(εh1
+ εh2

)|h1h2〉

=
A
∑

h1=1

εh1
−

1

2

A
∑

h1,h2=1

〈h1h2|G(εh1
+ εh2

)|h1h2〉.

(10)

C. Renormalized Brueckner-Hartree-Fock Theory

For comparison, we have also performed the RBHF calculations for finite nuclei. The

RBHF approach modifies the BHF potential by taking into account the single-particle occu-

pation depletion resulting from two-body correlations. In detail, it introduces an occupation

probability which is less than 1 for a occupied single-particle orbit bellow the HF Fermi

surface, correspondingly introduces occupation-probability diagrams (or called saturation-

potential diagrams or rearrangement diagrams). The occupation probability is defined by

Ph1
=

[

1−
∑

h2

〈h1h2|
∂G(ω)

∂ω
|h1h2〉Ph2

]−1

ω=ǫh1+ǫh2

, (11)

where the renormalized single-particle energy is

ǫh1
= 〈h1|T |h1〉+

∑

h2

〈h1h2|G(ω = ǫh1
+ ǫh2

)|h1h2〉Ph2
. (12)

With Eqs. (2) and (11), we have [31],

∂G(ω)

∂ω
= −G(ω)

(

Q

ω −H0(1)−H0(2)

)2

G(ω), (13)
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and

Ph1
=

[

1 +
∑

h2p1p2

1

2

(

〈h1h2|G(ω = ǫh1
+ ǫh2

)|p1p2〉

ǫh1
+ ǫh2

− ǫp1 − ǫp2

)2

Ph2

]−1

. (14)

We use the self-consistent iteration procedure to solve the above occupation probability.

The ground-state energy in the RBHF theory is

ERBHF =
∑

h1

〈h1|T |h1〉+
1

2

∑

h1,h2

〈h1h2|G(ǫh1
+ ǫh2

)|h1h2〉Ph1
Ph2

+
∑

h1,h2

(1− Ph1
)〈h1h2|G(ǫh1

+ ǫh2
)|h1h2〉Ph2

. (15)

The last term is the “over-counting correction” which should be included in the total energy,

since single-particle energies are renormalized with occupation probabilities [31–33].

III. CALCULATIONS AND DISCUSSIONS

We have performed the BHF and RBHF calculations for closed-shell nuclei, 4He, 16O and

40Ca, and benchmarked with other ab-initio calculations. The Vlow-k effective interaction

derived from Argonne υ18 potential [12] is adopted. A Vlow-k cutoff Λ = 1.9 fm−1 is taken

for the 4He calculation to compare with the existing Faddeev-Yakubovsky (FY) [34, 35] and

coupled-cluster (CC) results. For 16O and 40Ca, we take Λ = 2.1 fm−1 to compare with the

existing calculations of the CC [35] and importance-truncated NCSM (IT-NCSM) [36]. In

our calculations, the self-consistent BHF (or RBHF) basis is expanded in the HO basis. The

HO basis is truncated by a cutoff according to the shell number Nshell = Max(2n + l + 1)

where the labels are standard with n and l for the radial and orbital angular momentum

quantum numbers of the HO basis, respectively. Nshell indicates how many major HO shells

are included in the truncation.

Figure 5 shows the 4He, 16O and 40Ca ground-state energies calculated by BHF and RBHF

as a function of the oscillator parameter ~Ω with different Nshell. The BHF single-particle

potential U is calculated by Eq. (5). The G-matrix elements given by Eq. (7) are obtained

by the matrix inversion method. We see that both BHF and RBHF give calculations almost

independent on the oscillator parameter ~Ω at ~Ω ≥18 MeV. For example, in the BHF

calculations at ~Ω=22 MeV, the 40Ca ground-state energy with Nshell=11 is −551.5 MeV,

while it is −552.1 MeV with Nshell=12, showing the convergence of the present calculations
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FIG. 5. The BHF and RBHF calculations for 4He, 16O and 40Ca as a function of the oscillator

parameter ~Ω with the Vlow-k effective interaction derived from the Argonne υ18 potential [12] at

cutoff momenta Λ=1.9 fm−1 for 4He and Λ=2.1 fm−1 for 16O and 40Ca, respectively. Such cutoffs

were suggested in the previous works [35, 36]. Note that the scales of vertical axes are different for

the three nuclei.
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TABLE I. Binding energies (in MeV) for 4He, 16O and 40Ca, calculated by BHF and RBHF with

the Vlow-k Argonne υ18 potential [12], compared with other ab-initio calculations with the same

effective potential. We take Λ=1.9 fm−1 for 4He, and Λ = 2.1 fm−1 for 16O and 40Ca as in

Refs. [35, 36]. Nshell=12, ~Ω = 14 MeV are taken for 4He, and Nshell=12, ~Ω = 22 MeV for 16O

and 40Ca.

4He 16O 40Ca

BHF −25.90 −134.16 −552.14

RBHF −25.90 −134.15 −549.79

Exact (FY [34, 35]) −29.19(5) − −

IT-NCSM [36] − −138.0 −462.7

CCSD [35] −28.9 −142.8 −491.2

CCSD(T) [35] −29.2 −148.2 −502.9

HF-MBPT(3) [30] −29.33 −159.34 −600.08

Experiment [37] −28.30 −127.62 −342.05

with Nshell=12. The RBHF gives similar binding energies to the BHF calculations for 4He

and 16O, and less energy (by about 2 MeV) for 40Ca.

Table I shows quantitative comparisons with the benchmarks given by other ab initio

calculations. Nogga et al, [34] first calculated the 4He ground-state energy by solving the

FY equations with the two-body Vlow-k. They estimated an accuracy of 50 keV for the

calculations of the 4He binding energy. The FY results can be considered as the exact solu-

tion for benchmarking other calculations. Roth and Navrátil did the IT-NCSM calculations

for 16O and 40Ca [36]. They obtained a ground-state energy of −137.7 MeV and a point-

nucleon root-mean-square (rms) radius of 2.03 fm for 16O with Nmax=14 and ~Ω=22 MeV.

Nmax indicates the maximum shell excitation number in model configurations, which defines

the truncation of the model space [36]. An exponential extrapolation of the energy gave

ENmax→∞ = −138.0 MeV for 16O. For 40Ca with Nmax=16 and ~Ω=24 MeV, a ground-state

energy of −461.8 MeV and a point-nucleon rms radius of 2.27 fm were obtained [36]. An ex-

ponential extrapolation yielded E∞ = −462.7 MeV. The CCSD and CCSD(T) ground-state

energies given in Table I are the results with the extrapolation to infinite model space [35].

Figure 6 shows the 4He, 16O and 40Ca point-nucleon rms radii calculated by BHF and
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FIG. 6. Similar to Figure 5, but for point-nucleon rms radii.

RBHF as a function of the oscillator parameter ~Ω with different Nshell. The convergences

are similar to the energy calculations. Table II lists the converged results of the point-

nucleon rms radii, compared with the IT-NCSM. We see that the RBHF radii are slightly
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TABLE II. Calculated point-nucleon rms radii (in fm). The IT-NCSM results are taken from Ref.

[36]. The effective interaction, oscillator parameter and Nshell (or Nmax) are same as in Table I.

Nuclei BHF RBHF IT-NCSM

4He 1.50 1.51 −

16O 1.95 1.98 2.03

40Ca 2.20 2.22 2.27

larger than the BHF results. The RBHF approach takes into account the depletions of the

HF occupied single-particle states due to many-body correlations. When the occupation

probability Ph in Eq. (11) gets into the BHF potential U , the single-particle potential is

less attractive, and the occupied single-particle levels move up. The interaction of Eq. (9)

shows that the RBHF gives smaller kinetic energy and smaller Fermi gap than the BHF

calculations. The radius of the nucleus becomes larger when the kinetic energy is reduced

[38].

It has been demonstrated [41, 42] that in RBHF the single-particle energies are approxi-

mately equal to separation energies, but it does not hold really in BHF. Therefore, in RBHF

the single-particle energies can be directly related to experimental removal energies [43, 44].

Experimental single-particle energies are obtained in knockout, stripping and pickup reac-

tions, primarily for the single-particle states close to the Fermi level. Tables III and IV

give calculated single-particle energies. We see that RBHF improves slightly the single-

particle energies, compared to data. The present calculations do not include three-body and

higher-order forces which might have effects on single-particle energies.

The calculated energy differences between the proton and neutron levels are rather small

using the Argonne v18 potential. For an understanding, we have performed similar BHF and

RBHF calculations for 16O using the CD-Bonn potential [10] with the same parameters of

Λ = 2.1 fm−1, Nshell = 12 and ~Ω = 22 MeV. We see that, given in Table V, the CD-Bonn

potential with the proton-proton Coulomb interaction leads to clear differences between

single-proton and single-neutron energies. However, the 16O binding energy calculated with

the CD-Bonn potential is very close to that by the Argonne v18 potential. The CD-Bonn

potential gives the 16O binding energy of −134.07 MeV in BHF and −133.97 MeV in RBHF,

while it is −134.16 MeV and −134.15 MeV in the Argonne v18 BHF and RBHF calcula-
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TABLE III. Calculated single-particle energies ε (in MeV) for 16O. For orbits below the Fermi

surface, occupation probabilities P are modified in the RBHF calculation. Λ=2.1 fm−1, Nshell = 12

and ~Ω = 22 MeV are taken, same as in Table I. The experimental data are taken from Refs.

[39, 40].

16O

Neutron Proton

Orbits BHF RBHF Expt. BHF RBHF Expt.

0s1/2 ε −73.02 −69.61 −47 −72.75 −69.36 −44± 7

P 1.00 0.98 1.00 0.98

0p3/2 ε −37.38 −34.87 −21.839 −37.15 −34.65 −18.451

P 1.00 0.97 1.00 0.97

0p1/2 ε −24.35 −22.870 −15.663 −24.16 −22.69 −12.127

P 1.00 0.96 1.00 0.96

0d5/2 ε −4.65 −3.40 −4.144 −4.49 −3.26 −0.601

1s1/2 ε −2.46 −1.91 −3.273 −2.34 −1.81 −0.106

0d3/2 ε 6.84 6.95 0.941 6.90 7.01 4.399

tions, respectively. We note that, in the Argonne v18 potential, besides the proton-proton

Coulomb interaction there are the proton-neutron Coulomb interaction attributable to the

neutron charge distribution, and the proton-neutron and neutron-neutron electro-magnetic

interactions via nucleon magnetic moments [12]. The factors might reduce the difference

between protons and neutrons.

Table VI gives the calculations with the Vlow-k Argonne v18 potential at different cutoffs

for the nucleus 16O. The results are sensitive to the momentum cutoff of the potential.

However, it seems understandable. In a too soft potential with a small cutoff (e.g., Λ = 1.5

fm−1), induced many-body forces (e.g., three-body force) are significant, implying that one

should take into account contributions from the many-body forces. In a hard cutoff (e.g.,

Λ = 3.0 fm−1) , high-order correlations beyond HF may need to be considered [30] and a

larger model space is required. It has been tested that Λ = 2.1 fm−1 is a suitable cutoff for

calculations with the Vlow-k potential, which gives weak induced three-body force and weak

15



TABLE IV. Similar to Table III, but for 40Ca.

40Ca

Neutron Proton

Orbital BHF RBHF Expt. BHF RBHF Expt.

0s1/2 ε −137.71 −133.94 − −137.14 −133.38 −49.1± 12

−77± 14

P 1.00 0.99 1.00 0.99

0p3/2 ε −92.34 −88.94 − −91.84 −88.46 −33.3 ± 6.5

P 1.00 0.99 1.00 0.99

0p1/2 ε −74.62 −72.21 − −74.16 −71.77 −32± 4

P 1.00 0.99 1.00 0.99

0d5/2 ε −53.13 −50.24 −21.30 −52.70 −49.82 −14.9 ± 2.5

−13.8 ± 7.5

P 1.00 0.98 1.00 0.98

1s1/2 ε −43.33 −41.06 −18.104 −42.88 −40.64 −10.850

P 1.00 0.97 1.00 0.97

0d3/2 ε −28.15 −26.38 −15.635 −27.80 −26.04 −8.328

P 1.00 0.95 1.00 0.95

0f7/2 ε −16.21 −14.20 −8.363 −15.88 −13.88 −1.085

1p3/2 ε −10.45 −9.27 −6.420 −10.16 −9.00 0.631

1p1/2 ε −3.06 −2.40 − −2.85 −2.21 −

0f5/2 ε 8.26 8.55 − 8.40 8.69 −

high-order correlations but good convergence [35, 36].

Besides the matrix inversion method, there is another approximating method to solve the

G-matrix elements in Eq. (7), that is iteration [45, 46]. In the iteration approximation, the

G-matrix operator of Eq. (2) is expressed as a sum of terms

G(ω) = V + V
Q

e
V + V

Q

e
V
Q

e
V + . . . . (16)

It has been proved that the convergence of the iteration is rapid [45, 46]. Usually, the

expansion of Eq. (16) up to the third term can give well converged results [45]. In Table VII,
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TABLE V. Similar to Table III, but the Vlow-k effective interaction is derived from the CD-Bonn

potential [10].

16O

Neutron Proton

Orbits BHF RBHF Expt. BHF RBHF Expt.

0s1/2 ε −78.89 −76.14 −47 −73.92 −71.34 −44± 7

P 1.00 0.99 1.00 0.99

0p3/2 ε −40.60 −38.51 −21.839 −35.81 −33.87 −18.451

P 1.00 0.98 1.00 0.98

0p1/2 ε −25.98 −24.72 −15.663 −21.35 −20.25 −12.127

P 1.00 0.96 1.00 0.96

0d5/2 ε −5.97 −4.90 −4.144 −1.37 −0.47 −0.601

1s1/2 ε −3.31 −2.82 −3.273 0.70 1.03 −0.106

0d3/2 ε 6.90 7.00 0.941 10.37 10.38 4.399

TABLE VI. Single-proton energies (εi), occupation probabilities (Pi), binding energies and the

point-nucleon rms radii 〈r〉 in 16O, calculated with different Vlow-k cutoffs. Nshell = 12 and ~Ω = 22

MeV are taken. All energies are given in MeV and radii in fm. Single-neutron states have similar

behaviors to single-proton orbits with increasing Λ value.

Λ=1.5 fm−1 Λ=2.1 fm−1 Λ=3.0 fm−1

BHF RBHF BHF RBHF BHF RBHF

εs1/2 −84.23 −83.27 −72.75 −69.36 −45.84 −41.12

εp3/2 −42.09 −41.40 −37.15 −34.65 −21.89 −18.77

εp1/2 −32.03 −31.49 −24.16 −22.69 −15.92 −13.83

Ps1/2 1.00 0.997 1.00 0.982 1.00 0.949

Pp3/2 1.00 0.991 1.00 0.972 1.00 0.947

Pp1/2 1.00 0.996 1.00 0.957 1.00 0.936

E −194.39 −194.36 −134.16 −134.15 −64.20 −64.38

〈r〉 1.95 1.96 1.95 1.98 2.32 2.40
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TABLE VII. The BHF and RBHF calculations of binding energies (in MeV) with different pre-

scriptions, see the corresponding text for the details of the different prescriptions. The effective

interaction, Nshell and ~Ω are same as in Table I.

Nuclei G-inversion G-iteration U -approximation

4He
BHF −25.90 −25.83 −25.06

RBHF −25.90 −25.83 −25.31

16O
BHF −134.16 −134.07 −125.39

RBHF −134.15 −134.07 −128.08

40Ca
BHF −552.14 −552.16 −529.02

RBHF −549.79 −549.85 −535.10

we list the results of the G-iteration method, compared with the G-inversion calculations.

In the G-iteration calculations, we consider only the first three terms of Eq. (16), and

obtain the well converged binding energies for both BHF and RBHF calculations. The

numerical solution of the G-iteration approximation is less complicated, compared with the

G-inversion method. From the calculations, we see indeed that the iterative solution of the

Bethe-Goldstone equation (i.e., Eq. (2)) converges rapidly, and the matrix inversion method

gives the stable solutions of the equation.

As another approximation for the BHF potential U in Eq. (5), Refs. [1, 5, 26] assumed the

particle-particle elements 〈a|U |b〉 = 0 for a, b > εF, which we call U -approximation in this

paper. With the U -approximation, we have performed the BHF and RBHF calculations

with the G-matrix elements solved by the inversion method. In Table VII, we see that

the U -approximation brings some changes in the calculated binding energies. However, the

changes in the RBHF calculations are less than in the BHF calculations. This implies the

self-consistent occupation probabilities can suppress the effect from the different choices

of the potential U . In RBHF, the influence from the uncertainty of the particle-particle

elements 〈p1|U |p2〉 can be partially compensated by occupation probabilities.
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IV. SUMMARY

We have performed the BHF and RBHF calculations for finite nuclei with the Vlow-k

renormalized NN interaction. The G-matrix and associated Pauli exclusion operator are

treated in the BHF or RBHF basis, giving self-consistent descriptions. The RBHF which

is renormalized with single-particle occupation probabilities resulting from many-body cor-

relations gives improved single-particle energies and nuclear radii. Different techniques are

taken to solve the Bethe-Goldstone equation. The iteration of the Bethe-Goldstone equa-

tion converges rapidly, while the inversion method gives stable solution. The evaluations of

particle-particle matrix elements of the BHF potential are somewhat controversial because

their diagrams require off-shell definitions regarding the starting energy. Different prescrip-

tions for the particle-particle matrix elements have been tested in the present calculations.

We find that even if the particle-particle matrix elements are set to be zero, the final results

of the BHF and RBHF calculations do not change significantly.

The calculations are limited to closed-shell spherical nuclei, and the angular momentum

coupling scheme has been employed. The doubly magic nuclei, 4He, 16O and 40Ca, were

well calculated. The convergences with respect to the HO frequency and model truncation

are have been analyzed in detail. The general results are consistent with other ab initio

methods (Faddeev-Yakubovsky solution, no-core shell model, coupled cluster and many-

body perturbation theory). Three-body forces which are not included should improve the

calculations.
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