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The spin-orbit splitting is an essential ingredient for our understanding of the shell structure in
nuclei. One of the most important advantages of relativistic mean-field (RMF) models in nuclear
physics is the fact that the large spin-orbit (SO) potential emerges automatically from the inclusion
of Lorentz-scalar and -vector potentials in the Dirac equation. It is therefore of great importance to
compare the results of such models with experimental data. We investigate the size of 2p- and 1f -
splittings for the isotone chain 40Ca, 38Ar, 36S, and 34Si in the framework of various relativistic and
non-relativistic density functionals. They are compared with the results of non-relativistic models
and with recent experimental data.

I. INTRODUCTION

Self-consistent mean field models in the framework of
nuclear density functional theory provide a very success-
ful way to study nuclear structure phenomena through-
out the entire nuclear chart. The nucleons are treated
as independent particles moving inside the nucleus un-
der the influence of various potentials, derived from such
functionals [1]. These methods are similar to those used
in electronic systems where the form of the density func-
tionals can be deduced ab-initio from the well known
Coulomb force between the electrons [2, 3]. Contrary
to that, at present, the nuclear density functionals are
constructed phenomenologically. The form of those func-
tionals is motivated by the symmetries of the underlying
basic theories. The parameters of the model, however,
are adjusted to experimental data in finite nuclei.
Within the concept of density functional theory, the

full quantum mechanical nuclear many-body problem is
mapped onto a single-particle problem, assuming that
the exact ground state of the A-body system is deter-
mined by a Slater determinant and the corresponding
single-particle density matrix generated from the prod-
ucts of A single-particle states. By imposing a variation
principle on the energy functional with respect to this
density one derives the equations of motion of the in-
dependently moving nucleons. The specific form of the
phenomenological density functional leads to a certain
form of the mean-field.
There are two general versions of this theory. The

standard since almost fifty years ago, are non-relativistic
functionals. The most widely known forms are the
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Skyrme type functionals, based on zero range interac-
tions [4] and the Gogny type functionals of finite range
interactions [5]. Later on covariant density functionals
have been introduced. Their relativistic form is based on
the simple model of Walecka [6, 7] and its density depen-
dence has been introduced by non-linear meson couplings
by Boguta and Bodmer [8].
Both relativistic and non-relativistic models have been

very successful in describing bulk and structure proper-
ties of nuclei all along the beta stability line giving very
similar results. However, going to nuclei close to the
drip line with high isospin values there were significant
differences in measuring special quantities. A character-
istic case has been the failure of the standard Skyrme
functionals used at the time, to reproduce the observed
kink in the radii difference of the chain of Pb isotopes,
whereas relativistic functionals were very successful at
reproducing it [9]. It was afterwards recognised that this
qualitatively distinct result was due to the different way
the two methods treat the spin-orbit interaction. In the
Skyrme Hartree Fock (SHF) models the large spin-orbit
in nuclei, which is known since the early days of the
shell model [10, 11], is included phenomenologically in
the form of the functional with an additional parameter
that has to be adjusted to the experimental data. In
contrast the covariant treatment gives rise to the very
large spin-orbit coupling in a natural way. It has its ori-
gin in the fact, that the nuclear Dirac equation contains
a very large attractive scalar field and a very large re-
pulsive vector field. For the normal potential these two
fields compensate to a large extent, but their effects add
up in the spin-orbit term [12, 13].
In all the conventional non-relativistic models the spin-

orbit term is derived from a two-body spin-orbit interac-
tion of zero range [4, 5, 14]. The corresponding Fock term
leads to a strong isospin dependence of the spin-orbit
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splitting. This is the origin of the failure to reproduce the
kink in the isotopic shifts mentioned above. In covariant
models the spin-orbit splitting is a single-particle effect,
derived directly from the Dirac equation. Its isospin de-
pendence is given by the ρ-meson. Its strength is de-
termined by the symmetry energy and it leads usually
only to a weak isospin dependence [6, 12]. The use of
an additional scalar isovector δ-meson does not change
very much this situation, because the contributions of the
isovector mesons to the spin-orbit term are small as com-
pared to the contributions of the isoscalar mesons [15].

Of course the strong isospin dependence of the spin-
orbit term in conventional non-relativistic density func-
tionals introduced by the Fock term can be avoided, if the
assumption is given up that the density functional is de-
rived as the expectation value of an effective Hamiltonian
which leads inevitably to exchange terms. Therefore sub-
sequent efforts to correct for this result have led to modi-
fied Skyrme schemes where the strength of the Fock-term
in the functional is used as a fit-parameter [16, 17]. In
this way an extension of the Skyrme functional was pro-
posed [17] reproducing also the evolution of the nuclear
radius with neutron number N for the isotope series of
Pb and Ca. The resulting functionals were able to correct
for the initial failure by changing the density dependence
of the neutron spin-orbit potential.

Another example for the differences of the models in
the spin-orbit part has been observed in Ref. [18]. It was
found out that in the framework of relativistic mean field
theory there was a significant reduction in the spin-orbit
potential in light drip line nuclei that have a large isospin
value. This had an effect on the energy splittings of the
same spin-orbit partners which were reduced for isotopes
of Ne andMg with the increase of neutron number. Again
it was shown that a modification of the spin-orbit term
in Skyrme has similar results with the relativistic mean-
field.

There has been lately a renewed interest in experimen-
tal studies concerning the spin orbit part of the nuclear
force. In particular two specific experiments [19, 20] were
recently published, where the structure of the N = 20 nu-
cleus 34Si nucleus is investigated. The reason why this
particular nucleus was chosen is its unique bubble struc-
ture, unveiled in earlier theoretical calculations [21] using
both relativistic and non-relativistic models. This bubble
structure implies there is a large central depletion in the
proton density, which is due to the fact that the 2s1/2
proton state is essentially empty. This is exactly what
it was shown this time experimentally in the very re-
cent study by Mutschler et.al. [20], where they used the
one proton removal (−1p) method, to probe the interior
of the 34Si nucleus and to show that the 2s1/2 is indeed
empty.

Following, therefore, the identification of 34Si as a bub-
ble nucleus [21] a very specific experiment by Burgunder
et.al. [19] was conducted attempting to set an additional
constraint on the strength of the spin-orbit force. Com-
paring these results with earlier experiments of nuclei

within the N = 20 isotone chain such as in [22, 23], one
was able to evaluate a reduction in the 2p3/2−2p1/2 split-
ting. This effect has been attributed to the occurrence
of a bubble in the central proton density as one advances
from 36S to 34Si. This is analogous to the case discussed
in Ref. [18] where the addition of neutrons in Ni and
Sn isotopes, leads to the weakening of the spin-orbit po-
tential and to a subsequent reduction of the size of the
spin-orbit splitting of the neutron subsystem. Therefore,
it has been suggested, that this kind of specific measure-
ment could work complementary to the aforementioned
theoretical studies, in order to investigate further the
spin-orbit force in various mean field models.
There has already been a study within the non-

relativistic mean field approach [24], where the 2p and
1f neutron spin-orbit splittings in the N = 20 isotones
40Ca, 36S and 34Si have been analyzed for various Skyrme
and Gogny functionals. Inspired by this work, we carried
out an investigation within self-consistent covariant den-
sity functional theory describing the same nuclei as well
as 38Ar. Concentrating on the first 1f7/2, 2p3/2, 2p1/2
and 1f5/2 neutron states, we calculated the SO splittings
of the 2p and 1f orbitals and compared them with the
corresponding non-relativistic and experimental results.
Our goal is to examine whether the different treatments
of the spin-orbit force in relativistic and non-relativistic
mean field models gives rise to significantly different re-
sults, as it has been the case for the investigations men-
tioned above [9, 17, 18]
We first neglect pairing correlations, as it has been

done in the earlier non-relativistic work of Ref. [24] and
calculate the single-particle energies in the relativistic
Hartree model (RH) based on several modern nonlin-
ear and density dependent covariant density functionals.
Afterwards we go beyond these investigations in vari-
ous aspects: we study the influence of pairing correla-
tions within the relativistic Hartree-Bogoliubov (RHB)
scheme, we include tensor forces in relativistic Hartree-
Fock (RHF) theory, and finally we go beyond mean field
and include particle-vibration coupling (PVC).
Our article is organized in the following way: In Sect. II

we present the theoretical methods and in Sect. III we
introduce specific extensions. Sect. IV is devoted to nu-
merical details of the calculations and in Sect. V we dis-
cuss the results of our investigations. Sect. VI contains
conclusions and an outlook for future work.

II. THEORY

As described in Ref. [25] in the relativistic case nucle-
ons are treated as 4-component Dirac spinors and the in-
teraction is mediated by the exchange of virtual mesons.
The minimal set of meson fields required to describe bulk
and single-particle nuclear properties have the following
quantum numbers and properties:

• σ meson: Jπ, T = 0+, 0, medium range attraction
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• ω meson: Jπ, T = 1−, 0, short range repulsion

• ρ meson: Jπ, T = 1−, 1, isospin channel.

Inspired by ab-initio calculations [26] one has introduced
in some models in addition an isovector scalar meson, the
δ-meson [15]:

• δ meson: Jπ, T = 0+, 1, isospin channel.

The model is defined by the Lagrangian density

L = LN + Lm + Lint. (1)

LN denotes the Lagrangian of the free nucleon

LN = ψ̄ (iγµ∂µ −M)ψ, (2)

where M is the bare nucleon mass and ψ denotes the
Dirac spinor. Lm is the Lagrangian of the free meson
fields and the electromagnetic field

Lm =
1

2
∂µσ∂

µσ − 1

2
m2

σσ
2 +

1

2
∂µ~δ∂

µ~δ − 1

2
m2

δ
~δ2

−1

4
ΩµνΩ

µν +
1

2
m2

ωωµω
µ − 1

4
~Rµν

~Rµν +
1

2
m2

ρ~ρµ~ρ
µ

−1

4
FµνF

µν , (3)

with the corresponding masses mσ, mω, mρ, and Ωµν ,
~Rµν , Fµν are the field tensors

Ωµν = ∂µων − ∂νωµ

~Rµν = ∂µ~ρν − ∂ν~ρµ
Fµν = ∂µAν − ∂νAµ.

(4)

The minimal set of interaction terms is contained in Lint

Lint = −gσψ̄ψσ − gδψ̄~τψ~δ (5)

−gωψ̄γµψωµ − gρψ̄~τγ
µψ · ~ρµ − eψ̄γµψAµ.

where e vanishes for neutrons. It was recognised that
this linear model was not very successful for a quanti-
tative description of nuclei. Therefore Boguta and Bod-
mer [8] introduced a density dependence by non-linear
meson couplings replacing the quadratic term 1

2m
2
σσ

2 by

a renormalizable φ4-theory

U(σ) =
1

2
m2

σσ
2 +

1

3
g2σ

3 +
1

4
g3σ

4 (6)

Later on one has also introduced non-linear couplings in
the ω- and ρ-sector. As examples for such functionals
we use in this investigation the parameter set NL3 [27],
NL3* [28], and FSUGold [29].
Through the classical variation of the Lagrangian with

respect to the different fields we find the equations of
motion, the Dirac equation for the spinors and Klein-
Gordon equations for the mesons. In the static case with
time-reversal invariance have

(α · p+ β(M + S) + V )ψi = εiψi, (7)

where the relativistic scalar and vector fields S and V are
given by

S = gσσ+gδδ and V = gωω
0+gρτ3ρ

0
3+eA

0. (8)

Varying the Lagrangian with respect to the meson
fields we get the Klein-Gordon type equations. Using
also the Lorentz gauge for the vector mesons they have
the following form

(−∆+m2
σ)σ = −gσ

A
∑

i=1

ψ̄iψi − g2σ
2 − g3σ

3 (9)

(−∆+m2
δ)δ = −gδ

A
∑

i=1

ψ̄iτ3ψi (10)

(−∆+m2
ω)ω

0 = gω

A
∑

i=1

ψ†
iψi (11)

(−∆+m2
ρ)ρ

0
3 = gρ

A
∑

i=1

ψ†
i τ3ψi (12)

−∆A0 =
e

2

A
∑

i=1

ψ†
i (1 − τ3)ψi (13)

The sources of the fields are the various densities as for
instance the scalar density ρs and the baryon density ρ:

ρs =

A
∑

i=1

ψ̄iψi, and ρ =

A
∑

i=1

ψ†
iψi, (14)

and in a similar way we have the density for protons and
neutrons ρn and ρp. The summation runs always over the
occupied states in the Fermi sea (no-sea approximation).
More modern functionals describe the density depen-

dence not by non-linear meson couplings, but rather by
density dependent coupling constants: gi(ρ) (for i =
σ, δ, ω, ρ). Instead of following the approach with non-
linear terms, an idea to use density dependent couplings
was first proposed by Brockman and Toki [30], who de-
rived the density dependence from relativistic Brueckner-
Hartree-Fock calculations in nuclear matter at various
densities. Modern high precision functionals use various
phenomenological forms for the density dependence as
for instance the so-called Typel-Wolter ansatz [31]:

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω (15)

gi(ρ) = gi(ρsat) exp[−ai(x− 1)] for i = δ, ρ (16)

with

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(17)

being a function of x = ρ/ρsat, where ρsat is the density
at saturation of symmetric nuclear matter. The Typel-
Wolter ansatz is used for the density functionals DD-
ME2 [32] and DD-MEδ [15].
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Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
Therefore, in analogy to the non-relativistic Skyrme func-
tional, one has introduced forces with zero range, so-
called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
derivative terms and density dependent coupling con-
stants. In this investigation we use the point coupling
functionals PC-F1 [35] with a polynomial density depen-
dence and the point coupling functional DD-PC1 [36, 37]
with an exponential ansatz for the density dependence.

A. Isospin dependence of the spin-orbit force

As it is noted in [12, 13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addi-
tion of the two large fields, the vector field V produced
mainly by the short range repulsion of the ω meson, and
the scalar field S produced mainly by the attractive σ-
mesons. The isovector mesons δ and ρ contribute to the
iso-vector dependence of the spin-orbit splitting [15].
In the non-relativistic expansion of the Dirac equa-

tion [38] the spin-orbit term obtains the form

VS.O. = W · (p× σ) (18)

with

W =
1

2M̃2
∇(V − S) (19)

and the effective mass

M̃ =M − 1

2
(V − S) (20)

In the spherical case we have

VS.O. =
1

4M̃2

1

r

d(V − S)

dr
ℓ · s (21)

In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
difference between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.
We thus obtain for the meson-coupling models with

Ci = g2i /m
2
i

V −S = (Cω+Cσ)(ρp+ρn)+τ3(Cρ+Cδ)(ρp−ρn) (22)

where for the meson-coupling models Ci = g2i /m
2
i

(i = σ, ω, δ, ρ) and for the point coupling models Ci =
αS , αV , αTS , αTV . This leads to

Wτ =W1∇ρτ +W2∇ρτ ′ 6=τ (23)

with W1 very close to W2:

W1

W2
≈ 1 + 2

Cρ + Cδ

Cω + Cσ
(24)

Of course, there is also a small isospin-dependence in
the effective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants Cρ + Cδ reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine Cρ−Cδ and not Cρ and Cδ

independently [15]. Therefore the δ-meson is neglected
in most of the successful parameter sets (Cδ = 0). In
principle Cρ +Cδ could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-MEδ [15] the coupling gδ(ρ) was adjusted
to the splitting of the effective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(σ1 + σ2) · (k̂† × δ(r12)k̂) (25)

with r12 = r1 − r2, and k̂ = −(i/2)(∇1 − ∇2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

Wτ (r) =W1∇ρτ +W2∇ρτ ′ 6=τ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ τ = 1

2 (1 + τ̂1 · τ̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also
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use general density functionals, where the exchange con-
tribution contains a free parameter xW. In this case
the density functional, i.e. the expectation value of the
energy, is determined in Hartree-approximation from a
slightly modified spin-orbit term [17, 39]

VSO = iW0
1

2
(1 + xwP̂

τ )(σ1 + σ2)k̂
† × δ(r12)k̂. (28)

When the single-particle field is derived from this func-
tional we end up with a spin-orbit potential of the form
(26) with W1 = W0(1 + xw)/2, W2 = W0/2. Using
the modified Skyrme ansatz there is the ability to allow
for change in the isospin-dependence of Skyrme forces
through the parameter xw [17, 39]. With this kind of
modification one was able to reproduce the kink isotopic
shifts of Pb nuclei.

B. Pairing correlations

The theory we have presented above remains in the
Relativistic Mean-Field level and since we neglect any
exchange terms we have a Relativistic Hartree approxi-
mation to describe the long-range particle-hole correla-
tions in a nucleus. However, in open-shell nuclei we know
that particle-particle correlations are important and one
should have to take them into account explicitly. In the
non-relativistic functionals this is done in the Hartree-
Fock-Bogoliubov (HFB) theory [40, 41] that provides a
unified picture for the mean field and pairing correla-
tions. The relativistic version of the transformation is a
hybrid where the long-range interaction is given by the
Lorenz-covariant Langrangians, we have given above, and
the short-range interaction is produced by effective non-
relativistic forces. Pairing correlations can be easily in-
cluded in the framework of density functional theory, by
using a generalized Slater determinant |Φ〉 of the Hartree-
Bogoliubov type. The ground state of a nucleus |Φ〉 is
represented as the vacuum with respect to independent
quasi-particle operators

α+
k =

∑

l

Ulkc
+
l + Vlkcl, (29)

where Ulk, Vlk are the Hartree-Bogoliubov coefficients.
They determine the hermitian single-particle density ma-
trix

ρ̂ = V ∗V T , (30)

and the antisymmetric pairing tensor

κ̂ = V ∗UT . (31)

The energy functional depends not only on the density
matrix ρ̂ and the meson fields φm, but also on the pairing
tensor.

E[ρ̂, κ̂, φm] = ERMF [ρ̂, φm] + Epair [κ̂], (32)

where ERMF [ρ̂, φ] is the RMF -functional. The pairing
energy Epair [κ̂] is given by

Epair [κ̂] =
1

4
Tr [κ̂∗V ppκ̂] . (33)

V pp is a general two-body pairing interaction.
To get a static solution for ground states of open-shell

nuclei in this framework, we have to solve the Hartree-
Bogoliubov equations

(

ĥ−m− λ ∆̂

−∆̂∗ −ĥ+m+ λ

)(

Uk(r)
Vk(r)

)

= Ek

(

Uk(r)
Vk(r)

)

.

(34)
This system of equations contains two average poten-

tials: the self-consistent mean field ĥ, which encloses all
the long range particle-hole (ph) correlations, and the

pairing field ∆̂, which includes the particle-particle (pp)

correlations. The single-particle potential ĥ results from
the variation of the energy functional with respect to the
hermitian density matrix ρ̂

ĥ =
δE

δρ̂
, (35)

and the pairing field is obtained from the variation of the
energy functional with respect to the pairing tensor

∆̂ =
δE

δκ̂
. (36)

The chemical potential λ is determined by the particle
number subsidiary condition in order that the expecta-
tion value of the particle number operator in the ground
state equals the number of nucleons. The column vec-
tors denote the quasi-particle wave functions, and Ek are
the quasi-particle energies. The dimension of the RHB
matrix equation is two times the dimension of the corre-
sponding Dirac equation. For each eigenvector (Uk, Vk)
with positive quasi-particle energy Ek > 0, there exists
an eigenvector (V ∗

k , U
∗
k ) with quasi-particle energy −Ek.

Since the baryon quasi-particle operators satisfy fermion
commutation relations, the levels Ek and −Ek cannot
be occupied simultaneously. For the solution that corre-
sponds to a ground state of a nucleus with even particle
number, one usually chooses the eigenvectors with posi-
tive eigenvalues Ek.
The eigen-solutions of Eq. (34) form a set of orthog-

onal (normalized) single quasi-particle states. The cor-
responding eigenvalues are the single quasi-particle ener-
gies. The self-consistent iteration procedure is performed
in the basis of quasi-particle states. The resulting RHB-
function is analyzed in the canonical basis [42], where it
has the form of a BCS-function. In this basis the density
matrix Rkk′ =

〈

Vk(r)
∣

∣Vk′ (r)
〉

is diagonal and its eigen-
values are the BCS-occupation probabilities

v2µ =
1

2



1− εµ − λ
√

(εµ − λ)2 +∆2
µ



 . (37)



6

Here the εµ = 〈µ|ĥ|µ〉 are the single-particle energies

in the canonical basis and ∆µ = 〈µ|∆̂|µ̄〉 are the corre-
sponding gap-parameters.
If the pairing field ∆̂ is diagonal and constant, HFB

reduces to the BCS-approximation. The lower and up-
per components Uk(r) and Vk(r) are equivalent, with the
BCS-occupation amplitudes uk and vk as proportionality
constants. In that case we use the odd-even mass differ-
ence to obtain the value of experimental gap parameter

∆ =
(−1)N+1

2
[E(N + 2)− 2E(N + 1) + E(N))] (38)

and the occupation probabilities are given by the BCS
formula (37).
The problem with this simplified method is the ultra-

violet divergence of the pairing field for high momenta.
This means that it is necessary to have a fixed pairing
window or an energy cut-off, which adds an extra param-
eter in the model that cannot be fixed experimentally.
This can be avoided for finite range effective pair-

ing forces. One way suggested in [43] is using a non-
relativistic pairing interaction based on the pairing part
of the well known and very successful Gogny force [44],

V pp(1, 2) =
∑

i=1,2

e−((r1−r2)/µi
2

×(Wi +BiP
σ −HiP

τ −MiP
σP τ ), (39)

with the set D1S [44] for the parameters µi, Wi, Bi, Hi,
and Mi (i = 1, 2). This force has been very carefully
adjusted to the pairing properties of finite nuclei all over
the periodic table. In particular, the basic advantage of
the Gogny force is the finite range, which automatically
guarantees a proper cut-off in momentum space.
This method has been very successful but it requires

great computational effort. So an alternative was devel-
oped in [45] by Tian et al. (TMR), that has been formu-
lated as a separable force in momentum space. Therefore
it can be determined by two parameters adjusted to re-
produce the pairing gap of the Gogny force in symmetric
nuclear matter. In the 1S0 channel the gap equation
reads

∆(k) = −
∫ ∞

0

k′2dk′

2π2
〈k|V 1S0 |k′〉 ∆(k′)

2E(k′)
, (40)

and the pairing force separable in momentum space is

〈k|V 1S0 |k′〉 = −Gp(k)p(k′). (41)

The two parameters determining the force are, the pair-
ing strength G and α that goes in the Gaussian ansatz

p(k) = e−α2k2

. Their value has been adjusted to G = 728
MeV fm3 and α = 0.644 fm in order to reproduce the
density dependence of the gap at the Fermi surface,
calculated with the D1S parametrization of the Gogny
force [46].

III. SPECIFIC EXTENSIONS

A. Tensor forces

It is generally acknowledged that the tensor part of the
nuclear force plays an essential role in the description of
the several nuclear properties. The standard formulation
of covariant density functionals is based on the Relativis-
tic Hartree approximation, i.e. exchange terms are not
taken into account explicitly. This is in most cases a
good approximation, because the coupling constants in
the various spin-isospin channels are adjusted to exper-
imental data. For zero-range forces the Fierz theorem
shows, that exchange terms can be expanded over direct
terms with new effective coupling constants being linear
combinations of the old coupling constants in the dif-
ferent spin-isospin channels. For meson-exchange forces
with heavy meson masses, such as the σ-, the ω-, the δ-
and the ρ-meson, the corresponding ranges are short and
therefore this is still a reasonable approximation.
Following this arguments, in conventional covariant

density functional theory the contributions of the ex-
change terms are taken into account effectively through
the adjustment of the parameters to experimental data.
As we already mentioned, this model has been extremely
successful in describing a vast range of nuclear bulk prop-
erties, such as binding energies, radii, deformation pa-
rameters, giant resonances etc. [47].
Of course, the pion mass is small and, therefore, its

exchange term should be taken into account explicitly.
There have been also recent studies, which found that
the inclusion of a tensor force has an effect on very spe-
cific single-particle observables. It has been shown, for
instance, in Ref. [48], that tensor forces are responsi-
ble for the shift of effective single-particle levels in shell
model calculations for exotic nuclei. Furthermore, the
spin-orbit alignment is crucial to the strongly repulsive
or attractive character of the tensor force between proton
or neutrons. So, in our case, where we want to study the
spin-orbit coupling, the effect of tensor forces may prove
to have some quantitative importance, as this has also
been investigated in the non-relativistic study in [24].
In the relativistic scheme tensor terms usually show

up, if one takes into account exchange terms. Relativis-
tic Hartree-Fock (RHF) theory including tensor terms
has a long history [50–52], but such calculations require
a considerable computational effort. Therefore, for a long
time the computer power was too limited to determine
in a consistent and successful way the parameters of a
relativistic density functional containing tensor terms. In
the mean time two groups have overcome these problems.
Long et al. developed a spherical RHF-code [53–55] in
r-space containing all the exchange terms for the σ-, ω-,
and ρ-mesons and for the π-meson with density depen-
dent coupling constants. By adjusting the corresponding
parameters to the usual data of binding energies and radii
in finite nuclei they determined several successful param-
eter sets for the RHF description of nuclei all over the
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periodic table. Serra et al. [56, 57] developed an RHF-
code in oscillator space taking into account only the ex-
change term of the π-meson because the other mesons σ,
ω, and ρ are relatively heavy and the corresponding force
is of short range. Therefore, as discussed before, the ex-
change terms of these mesons can be represented in the
static case to a good approximation by direct terms with
effective coupling constants.
In this work we follow this method to take into account

tensor terms in the relativistic scheme. Basically two
terms are added in the Lagrangian of the system, the
first is the term of the free pion field included in Lm as
given in (3),

Lπ =
1

2

(

∂µ~π∂
µ~π −m2

π

)

~π2, (42)

where the mass of the pion is set to its experimental
value mπ = 138 MeV. The second term is the pseudo-
vector Yukawa type of force included in Lint as given in
(5)

Lpv = − fπ
mπ

ψ̄γ5γµ∂
µ~π~τψ (43)

f2
π = λf2free

π is the strength of the one-pion-exchange
interaction in this model and ffree

π is the experimental

value of pion-nucleon coupling in free space. A factor
√
λ

is used as a multiplier to vary the coupling constant of the
pion from zero (λ=0) to its free value ffree

π (λ=1). This
comprises now a Relativistic Hartree-Fock model and its
parameters have been readjusted for different values of
λ. This has been done following the same procedure that
was used to adjust the parameters of NL3 [27].
Concentrating in this fit only to binding energies and

radii of finite nuclei, it was shown that the optimal fit
was achieved for λ = 0. i.e. for vanishing pion-nucleon
interaction. However, a parameter set NL3RHF0.5 with
half the strength of the free pion (λ=0.5) describes in
addition to the other data the evolution of single-particle
structure in the tin isotopes measured by the Argonne
group [58] in (α,t) transfer reactions .

B. Particle-Vibrational Coupling

So far we discussed only mean field methods to de-
scribe single-particle energies. In this description of the
nuclear many-body system the nucleons move indepen-
dently. In the next step we go beyond the mean field
description and include correlations by the method of
particle-vibration coupling (PVC). This is important for
our investigation of single-particle excitations, since the
coupling of the single-particle motion to the low-lying
phonons leads to a fragmentation of the single-particle
spectrum, a feature most prominent in spherical nu-
clei [59]. Even though conventional DFT reproduce fairly
well the gross structure of the SO splitting, the inclusion
of particle-vibration coupling produces a denser spectrum

near the Fermi surface which is in better agreement with
experimental observations.
In fact, it is well known from Landau-Migdal the-

ory [60, 61] that particles in the many-body system can
interact with low-lying surface phonons and form Landau
quasi-particles surrounded by a cloud of excitons. Such
phenomena lead to a fragmentation of the single-particle
energies. In DFT such effects can be taken into account
in the framework of time-dependent density functional
theory (TDDFT) [62]. In contrast to static DFT, which
depends only on the exact static density ρ0(r), its ba-
sis is the exact time-dependent density ρ(r,t), which de-
pends on four variables. In static Kohn-Sham theory
the static density ρ0(r) is mapped onto a static single-
particle potential, the Kohn Sham potential or the static
self-energy ΣKS, which is easy to diagonalize and whose
local single-particle density is identical to the exact lo-
cal ground state density ρ0(r). In full analogy to the
static DFT, in the time-dependent case there exists a
time-dependent single-particle field, the time-dependent
self-energy Σ(r, t) with a time-dependent density identi-
cal to the exact local single-particle density ρ(r,t) of the
time-dependent many-body problem. This is the Runge-
Gross theorem [63]. The problem is, that we know very
little about this time-dependent self-energy. It is very
complicated because it contains all the memory effects of
the system.
In the case, where the time-dependent motion is of a

small-amplitude character, one can apply linear response
theory and determine the time-dependent self-energy in
a perturbative approach. In Fourier space one ends up
with a self-energy depending on the energy ω. Greens-
function techniques and diagrammatic expansions are
used to provide a model for the energy dependent self-
energy Σ(r, ω).
In a first step one starts with the ground state of the

even system determined by static DFT and allows for
small amplitude vibrations around this static solution.
In the adiabatic approximation one assumes that at each
time the self-energy is identical to the static self-energy
calculated with the density ρ(r,t). This leads to time-
dependent mean field theory and in the limit of small
amplitudes to the well known random phase approxima-
tion (RPA), in the relativistic case to relativistic RPA
(RRPA) and in the case of pairing to quasi-particle RPA
(QRPA). In this way one calculates collective excitations
as, for instance, the surface phonons, which are linear su-
perpositions of ph-excitations, by the diagonalization of
the RPA-matrix. The interaction between these ph-pairs
is given as the second derivative of the energy density
functional with respect to the density

V (r1, r2) =
δ2E[ρ]

δρ(r1)δρ(r2)
. (44)

One obtains harmonic vibrations |µ〉 with the eigen-
frequencies Ωµ and the transition densities δρµ12 =

〈µ|a†2a1|0〉.
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In the next step one goes back to the description of
single-particle motion in the presence of the collective
vibrations. Starting from the static mean field in the
self-energy, one adds terms which describe the coupling
of single-particle motion to the vibrations. These terms
are energy dependent. The coupling is provided by the
vertices of the form

γµ12 =
∑

34

〈14|V |23〉δρµ34, (45)

where 〈14|V |23〉 are the matrix elements of the inter-
action (44) and δρµ34 are the transition densities of the
corresponding phonons.
Finally, the energy-dependent part of the self-energy

Σ(ω) is found in second order of the particle-vibration
coupling:

Σ
(e)
12 (ω) =

∑

kµ

(

γµ1kγ
µ∗
2k

ω − ε3 − Ωµ + iη
+

γµk1γ
µ∗
k2

ω − ε3 +Ωµ − iη

)

,

(46)
where a virtual phonon with the frequency Ωµ is emitted
moving the particle from level 1 to level k. More details
can be found in Refs. [64, 65] as well as an extension of
the approach to superfluid systems in Refs. [66, 67].
Combining this energy dependent part of the self-

energy with the static part we obtain the full self-energy
Σ. It contains all the forces that act on a single nucleon.
It is non-local in space and time coordinates which gives
rise to an energy dependence of its Fourier transform:

Σ(r, r′;ω) = Σ̃(r)δ(r − r′) + Σ(e)(r, r′;ω) (47)

with the static part Σ̃ of the self-energy, i.e. the Dirac
hamiltonian of the ground state reads:

ĥ = αp+ β(m+ S) + V = αp+ βm+ Σ̃. (48)

This leads to the Dyson equation describing the motion of
the quasi-particles in the presence of the vibrating mean
field. It can be written in terms of Green’s function as

(ε− ĥ− Σe(ε))G(ε) = β, (49)

and in the Dirac basis, which diagonalizes the energy-
independent part of the Dirac equation, it is rewritten as
follows:

∑

l

{(ε− εk)δkl − Σe
kl(ε)}Glk′ (ε) = δkk′ . (50)

In the diagonal approximation it has the form

(ε− εk − Σe
k(ε))Gk(ε) = 1. (51)

For each quantum number k, there exist several solu-

tions ε
(λ)
k , characterized by the index λ. So, the inclu-

sion of a coupling between the single-particle states and
the vibrations leads to the fragmentation of each single-
particle state k. Taking into account the pole structure
of the self-energy (46), we get as an outcome an effective

spectroscopic factor S
(λ)
k which determines the occupa-

tion probability for each fragment λ of the state k.

IV. NUMERICAL DETAILS

Throughout this work, the Dirac equation (7) and the
Klein-Gordon equations (9)-(13) are solved by an ex-
pansion of the large and small components of the Dirac
spinors and of the meson fields in a spherical oscillator
basis (see Ref. [68]) with the frequency ℏω = 41A−1/3.
Since these eigenfunctions form an infinite set it is nec-
essary to truncate this basis to NF = NB = 20 major
oscillator shells for the fermion and the meson fields re-
spectively. As explained in the following, in order to
study states that belong to the continuum, we have been
changing the number NF to vary from NF = 14 − 20
shells.
In the case of tensor forces (see Sect. III A) the Dirac-

Hartree-Fock equations are solved in the same spherical
oscillator basis with NF = 20 major oscillator shells and,
as discussed in Refs. [56, 57], the matrix elements of the
exchange term are evaluated in this basis.
For the calculations with particle-vibration coupling a

seniority zero pairing force was used. In this case the
pairing potential is a multiple of the unity matrix and
the RHB-equations are identical to the RMF+BCS equa-
tions. The strength of the coupling constant of the pair-
ing force is adjusted in such a way, that the resulting gap
parameter is ∆ = 2 MeV which is close to its empirical
value. Further details of the particle-vibration coupling
are given in Refs. [64, 66, 67]. Non-spin-flip phonons
µ with natural parities, angular momenta Lµ ≤ 6, and
frequencies Ωµ ≤ 20 MeV have been included into the
self-energy (46) if their reduced transition probabilities
exceed 5% of the maximal ones for each Lµ. This has
been established as a standard truncation scheme for the
relativistic PVC calculations.

V. RESULTS

As mentioned in the introduction we concentrate our
study to the series of N = 20 isotones. We start with the
nucleus 40Ca with Z = 20 protons, where the last four
protons fill the 1d3/2 orbit. By removing two protons

we go to 38Ar and by removing two more we reach 36S
which has its last two protons in the 2s1/2 orbit. The
density distribution of this state is peaked in the center
of the nucleus. and the removal of the two protons, as
we go to 34Si, leads to an occupation probability close
to zero. Therefore we have a central depletion in the
proton density and the formation of a dimple around the
centre of the nuclear charge density. This is shown in
Fig.1, where we have plotted the proton densities with
respect to the nuclear radius. For the first three nuclei in
this chain we can see clearly a peak of the proton density
at the center of the nucleus whereas for 34Si there is a
dimple, (see also Ref. [21]).
Experimental evidence of the existence of this bubble

structure has been given very recently by Mutschler et.
al. in Ref. [20], where the one-proton removal reaction
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FIG. 1. (color online) Proton densities of the nuclei 40Ca,
38Ar, 36S and 34Si for the functional DD-ME2.

34Si(−1p) 33Al has been studied. Even though the occu-
pancy of a single-particle orbit is not a direct observable,
its value can be calculated using experimental data, as
it is explained in the Methods section of that reference.
Therefore an occupancy of 0.17(3) has been deduced for
the 2s1/2 proton state in 34Si, which is only 10% of the

1.7(4) occupancy of the same state in 36S, resulting in an
occupancy change of ∆(2s1/2) = 1.53.

This result came in addition to the findings of the ear-
lier experiment by Burgunder et. al. [19], where the en-
ergies and spectroscopic factors of the first 1f7/2, 2p3/2,

2p1/2 and 1f5/2 neutron states in the nucleus 35Si were
measured through a (d, p) transfer reaction. Together
with the results of Refs. [22, 23], it was discovered that
the 2p = 2p1/2 − 2p3/2 spin-orbit splitting was consider-

ably reduced as one goes from 36S to 34Si.

An important aspect of the spin-orbit force is its den-
sity and isospin dependence. It is clearly stated in
Refs. [19, 20] that the results of these two experiments
are ideal for a further theoretical investigation of the SO
force deduced from the various nuclear density function-
als. In particular, the extreme neutron-to-proton density
asymmetry in the case of 34Si and the subsequent large
and abrupt reduction in the size of the p-spitting, can
provide a better constraint of the SO force, since these
results isolate the contributions coming mostly from its
density and its isospin dependence.

As it is discussed in the section IIA, the way the spin-
orbit force is included in relativistic density functional
theory is substantially different from the non-relativistic
case. The ratio W1/W2 plays an important role. In the
first case this ratio is density dependent and has a value
close to 1, whereas for the latter case it has a fixed value
equal to 2. As we have already noted, this is the main
reason why we get so different results in the calculations
of the spin-orbit splitting.

Non-relativistic investigations have been carried out in
Ref. [24] for the Skyrme SLy5 [69] and Gogny D1S [46]

40Ca 36S 34Si

Splitting f p f p f p

SLy5 8.39 2.19 7.88 2.01 5.86 1.21

D1S 8.66 2.16 7.98 1.88 6.37 1.07

40Ca →
36S 36S →

34Si

Splitting f p f p

SLy5 6% 8% 26% 40%

D1S 8% 13% 20% 43%

TABLE I. Sizes and relative reductions of neutron p and f
splittings for the non-relativistic case as, given in Ref. [24].

functionals and certain tensor extensions of those func-
tionals. The neutron f and p splittings for the nuclei
40Ca, 36S, and 34Si, were studied for the pure mean field
Hartree-Fock level. The corresponding results are shown
in Table I.
Following the above experimental and theoretical stud-

ies we calculate the energies of the same neutron states
and also the occupation probabilities of the 2s1/2 pro-

ton state in 36S and in 34Si for several covariant density
functionals.
As in the non-relativistic case [24] the state 1f 5/2 in

the nuclei 40Ca, 38Ar, and 36S and the states 1f5/2 and

2p1/2 in 34Si are unbound for all forces we have used. In
contrast to Ref. [24] where the Schroedinger equation was
diagonalized in a box with finite radius, we expand the
single-particle solutions in an oscillator basis. So instead
of increasing the box radius, we change the number of os-
cillator shells. To determine the energies of the unbound
states we follow the same criteria mentioned in Ref. [24].
More specifically the energies of the single-particle res-
onant states should not change within their width by
changing the number of oscillator shells. Also the radial
profile of those states is similar to that of bound states.
As an example we shown in Fig. 2 the radial profiles of
the wave-functions of the states 1f5/2 and 2p1/2 calcu-

lated with DD-ME2. For 40Ca they are bound and for
34Si they are unbound.

A. Pure mean-field effects

We begin our investigations with simple mean field
calculations without pairing: we solve the Relativistic
Hartree equations and investigate the behaviour of the
single-neutron energies in the N = 20 isotone chain. In
this case the single-particle orbits are either fully occu-
pied or completely empty. Thus the occupancy of the
2s1/2 proton state is 2 for the nuclei 40Ca, 38Ar, and 36S

and 0 for 34Si. This will give us the pure relativistic mean
field effect on the spin-orbit splittings.
The results for this case are given in Table II. In the
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FIG. 2. Radial profiles of the 2p1/2 (full) and the 1f5/2
(dashed) neutron state for 40Ca and 34Si.

40Ca 38Ar 36S 34Si

W1

W2
f p f p f p f p

NL3 1.11 7.21 1.69 6.90 1.77 6.43 1.80 6.08 0.71

NL3* 1.11 7.07 1.76 6.77 1.85 6.30 1.90 5.92 0.75

FSUGold 1.03 7.14 1.38 6.75 1.37 6.18 1.31 5.80 0.60

DD-ME2 1.07 7.40 1.71 7.04 1.72 6.52 1.65 6.12 0.87

DD-MEδ 1.32 6.97 1.51 6.97 0.93 6.36 1.32 5.96 0.80

DD-PC1 1.07 7.83 1.77 7.57 1.74 7.12 1.64 6.61 0.88

PC-PF1 1.11 6.88 1.76 6.64 1.87 6.25 1.93 5.87 0.84

Exp. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca →
36S 36S →

34Si

f p f p

NL3 11% -6% 5% 61%

NL3* 11% -8% 6% 60%

FSUGold 13% 5% 6% 54%

DD-ME2 12% 3% 6% 47%

DD-MEδ 9% 13% 6% 40%

DD-PC1 9% 8% 7% 46%

PC-PF1 9% -10% 6% 57%

Exp. 20% -20% 2% 43%

TABLE II. Spin-orbit splittings in MeV (Upper part) and
their relative reductions (Lower part) for f and p neutron
states in the case of no pairing.

upper part we show the f = 1f7/2−1f5/2 and p = 2p3/2−
2p1/2 energy splittings for each specific functional and

for each of the nuclei 40Ca, 38Ar, 36S, and 34Si. In the
lower part we present the relative reduction of the f and
p splittings again for every functional, first as we move
from 40Ca to 36S and then as we go from 36S to 34Si. We
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FIG. 3. (Color online) Evolution of spin-orbit splittings for
the neutron levels p (left panel) and f (right panel) with re-
spect to the mass number A, without pairing.

also show in the last row the experimental values of the
splittings and the reductions for 40Ca [22], 36S [23], and
34Si [19].
For 40Ca we use the values of the centroids for the dis-

tribution of the respective fragments. These data can
be compared directly with our theoretical results. In
the other two cases this is not possible, because the ex-
perimental centroids are not known. Therefore for the
2p3/2−2p1/2 in both 36S and 34Si we use the major frag-

ment of each state. For the 1f5/2 state in 36S we use the
major contribution that comes from three states centered
at 5.61 MeV with a total spectroscopic factor SF = 0.36,
and in 34Si the broad structure around 5.5 MeV with a
calculated SF = 0.32. Even though this is not directly
comparable with our results, we use it as an indication
of the size of the reduction we should expect.
A schematic representation of our results together with

the results for the non-relativistic SLy5 and D1S models,
is given in Fig. 3. For all the models we plot the evolution
of the p and the f spin-orbit splittings as a function of
the mass number A.
In this first approach we observe a gradual reduction

in the f splittings of about 0.3-0.4 MeV at each step as we
move down the chain of isotones. This is also apparent
from the fact that the curves that show the evolution of
the f -splitting in Fig. 3 have a similar slope for the differ-
ent functionals. The total relative reduction is between
15-19% and around 5-7% at each step.
In contrast to the f -splittings, the p splittings change

only slightly for the three first nuclei, the only exception
being the functional DD-MEδ. Only when we move from
36S to 34Si we find a large reduction for the p splittings of
the order of 40% to 60%. Qualitatively this picture is in
line with the experiment. However, the absolute size of
the p-splitting in 34Si for most of our models is smaller
than the respective experimental value. This leads in
certain cases to an even larger relative reduction than
what we should expect.
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The results of the non-relativistic pure mean-field cal-
culations shown in Table I provide a similar qualitative
picture. From 40Ca to 36S the f - and p- splittings are
only slightly decreasing with relative reductions 6% and
8% to 8% and 13%. In the transition from 36S to 34Si
there is also the sudden and relatively large reduction in
the size of the p-splitting of about 43%, but also a bigger
reduction of the size of the f -splittings.
When we compare relativistic and non-relativistic re-

sults, we observe the following differences. In general,
the sizes of the splittings in all the relativistic models are
smaller than the respective splittings in non-relativistic
SLy5 and D1S models. More specifically in the nuclei
40Ca and 36S, where the proton density has the normal
profile, i.e. no central depletion, the difference in the size
of f -splittings is in the order of 1-2 MeV and the size of
the p-splittings is around 0.5 MeV
In the interesting case of the bubble nucleus 34Si, the

f -splittings are of the same size because of the bigger rel-
ative reduction that appears in the non-relativistic case.
This is not present in the relativistic models. However
there is a difference in the p-splittings which are rela-
tively small in size for all the relativistic functionals. This
is translated into a relative reduction of the p-splitting
when we go from 36S to 34Si, which is larger for most of
the relativistic models as compared to the relative reduc-
tion for non-relativistic models (see tables I and II).
In order to understand all these results we have to

investigate explicitly the spin-orbit force and especially
its isospin dependence which is very important in the case
of 34Si with a large neutron-to-proton asymmetry. As we
discussed in IIA, in both relativistic and non-relativistic
models this force can be approximately written as in Eq.
(18)

VS.O. = W · (p× σ) . (52)

Here W is given by the expression

Wτ =W1∇ρτ +W2∇ρτ ′ 6=τ . (53)

In most of the nuclei the properties of the nuclear force
lead to an almost constant density in the interior of the
nucleus. The spin-orbit force is mostly determined by the
gradient of the densities and, therefore, by the surface
diffuseness. This creates an attractive potential peaked
at the surface. States with large ℓ-values have larger ℓs
values. In addition, they are peaked near the surface and,
therefore, they are influenced more by this force. This
produces the large f -splittings and the much smaller p-
splittings in 40Ca, 38Ar, and 36S.
On the other hand, bubble nuclei like 34Si have a cen-

tral density depletion, which provides an additional com-
ponent to the spin-orbit force in the interior of the nu-
cleus with the opposite sign, since the derivative of the
density is positive at the origin. So, together with the at-
tractive well around the surface we also have a repulsive
peak close to the center of the nucleus, see also [70, 71].
Neutron states with low angular momentum have larger

amplitudes near the center, as one can see in Fig. 4. This
implies that they feel a much weaker spin-orbit force and
it explains the sudden reduction of the p-splittings when
we go from 36S to 34Si as it is shown in the left panel of
Fig. 3. This effect is not seen for the f -splittings in the
relativistic models (right panel of Fig. 3).
To understand the aforementioned differences between

relativistic and non-relativistic models, we concentrate
on the isospin dependence of the SO term W , which is
determined by the ratio between the two parameters W1

and W2. In the relativistic models the value of this ratio
depends on the density and can take different values for
various nuclei, especially for functionals where the cou-
pling constants are also density dependent, as explained
in Ref. [72]. In that reference there is a calculation of
this ratio for several nuclei, including 34Si, as a function
of the nuclear radius. For the functionals DD-ME2 and
DD-PC1 at the nuclear center one has W1/W2 ≈ 1.07.
We also give in Table II a rough estimate of this ratio for
the non- linear models, using equation (24) and neglect-
ing its density dependence. In general, for the relativistic
density functionals, the value of this ratio is close to unity
and the isospin dependence is very weak. On the other
hand for the standard Skyrme and Gogny models one has
W1/W2 = 2 and a stronger isospin dependence. As it
was concluded in Ref. [17], the additional isospin depen-
dence in the non-relativistic models creates a stronger
spin-orbit force around the surface and produces larger
splittings for states with large angular momentum.
This picture is reversed in the case of a bubble nucleus,

where the size of the repulsive peak is bigger for the rela-
tivistic models, as it is very clearly shown in Ref. [71]. As
a result the SO force will be even weaker and the size of
the splitting of the p-states is more dramatically reduced
than in the standard non-relativistic forces. Our results
lead to the same conclusion.

B. The effect of pairing correlations

Pairing correlations and the related pairing gap can af-
fect the size of the SO splittings. Already in Ref. [21] it
was shown within the framework of Relativistic Hartree
Bogoliubov calculations that pairing correlations reduce
the size of the bubble in 34Si. According to this result
and based on the previous discussion we expect to see a
weakening of the bubble effect therefore larger absolute
sizes and smaller relative reductions of the p-splitting, as
compared to the pure Hartree-calculations without pair-
ing.
As discussed in section II B, in superfluid nuclei we deal

with quasi-particles. The occupancy of each state is cal-
culated self-consistently. It is determined by the strength
of the pairing force. Obviously, for cases with zero pair-
ing the occupation probability is one for occupied states
below the Fermi surface and zero for unoccupied states
above the Fermi surface. Subsequently, in the present
work, we introduce pairing correlations in the proton sub-
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38Ar 36S 34Si

∆
(3)
C (MeV) 0.93 0.45 1.95

TABLE III. Gap values calculated with the odd-even mass
formula in Eq. (54).

system and evaluate again the single-particle energies of
the same neutron states as before. This is done for each
nucleus, except from the case of 40Ca which is a doubly
magic nucleus. We also calculate the occupation proba-
bilities of the proton 2s1/2 state for 36S and 34Si, since

the bubble structure in 34Si is created because of this
state being almost empty.
In this context we use the TMR separable pairing force

of Ref. [45] for the short range correlations. As we men-
tioned in Sect. II B, this kind of separable pairing force
has been adjusted to reproduce the pairing gap of the
Gogny force D1S in symmetric nuclear matter [45]. Both
forces are of finite range and therefore they show no ul-
traviolet divergence and do not depend on a pairing cut-
off. They provide a very reasonable description of pair-
ing correlations all over the periodic table with a fixed
set of parameters. However, careful investigations of the
size of these pairing correlations by comparing theoreti-
cal results with experimental odd-even mass differences
and experimental rotational moments of inertia [73] have
shown that the pairing correlations produced by these
forces are slightly too strong for heavy nuclei and slightly
too week for light nuclei. In order to avoid such problems
in details of the description of pairing correlations in our
relatively light isotonic chain and following the prescrip-
tion of Ref. [73] we have introduced a scaling factor for
the strength of the TMR-force. In order to adjust this
factor in the proton channel we have used the version of
the 3-point odd-even staggering (OES) formula proposed
in Ref. [74]

∆
(3)
C (N) =

1

2
[B(N,Z) +B(N − 2, Z)− 2B(N − 1, Z)]

(54)
This is actually equivalent to the original 3-pt gap for-
mula Eq. (38) but given for odd nuclei ∆3(N − 1) (see
Ref. [75]). The binding energies were taken from the
atomic mass evaluation in Ref. [76] and the resulting gaps
are shown in table III.
The SO splittings and the respective reductions found

in these calculations are shown in Table IV. In Fig. 4 we
present again a schematic representation of the evolution
of SO splittings for all the forces with respect to the mass
number.
Comparing the results of the calculations including

pairing with the previous pure mean-field results we get
the same qualitative picture. The f -splittings show again
a gradual reduction as we go down the chain of isotones.
The p-splittings stay roughly in the same size between
the first three nuclei and are reduced dramatically for
the last nucleus where there is the bubble structure. The

40Ca 38Ar 36S 34Si

f p f p f p f p

NL3 7.21 1.69 6.92 1.64 6.46 1.68 5.94 0.80

NL3* 7.07 1.76 6.78 1.76 6.32 1.80 5.77 0.85

FSUGold 7.14 1.38 6.89 1.12 6.35 1.04 5.72 0.65

DD-ME2 7.40 1.71 7.08 1.64 6.55 1.57 6.00 0.94

DD-MEδ 6.97 1.51 6.82 1.30 6.46 1.16 5.90 0.83

DD-PC1 7.83 1.77 7.58 1.67 7.14 1.56 6.52 0.96

PC-PF1 6.88 1.76 6.65 1.78 6.27 1.83 5.71 0.98

Exp. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca →
36S 36S →

34Si

f p f p

NL3 10% 1% 8% 53%

NL3* 11% -3% 9% 53%

FSUGold 11% 24% 10% 38%

DD-ME2 11% 8% 8% 40%

DD-MEδ 7% 23% 9% 28%

DD-PC1 9% 12% 9% 39%

PC-PF1 9% -4% 9% 46%

Exp. 20% -20% 2% 43%

TABLE IV. Same as Table II but for the case of TMR pairing.
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FIG. 4. Same as FIG. 3 but with TMR pairing.

inclusion of pairing correlation increases the f - splittings
and reduces the p-splittings in 38Ar and 36S from the
respective splittings in the pure mean field calculations.
This change is very small for 38Ar and slightly bigger for
36S for the p-states and the other way around for the f -
splittings, where in the case of 36S they are practically un-
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36S 34Si ∆(2S1/2)

NL3 1.83 0.20 1.62

NL3* 1.87 0.23 1.64

FSUGold 1.25 0.16 1.09

DD-ME2 1.79 0.23 1.57

DD-MEδ 1.22 0.60 1.02

DD-PC1 1.77 0.30 1.47

PC-PF1 1.86 0.36 1.49

Exp.[20] 1.64 0.17 1.56

TABLE V. Occupation probabilities of the 2s1/2 proton state

in 36S and 34Si for the TMR pairing force.

changed. For the last nucleus 34Si this picture is reversed
and one gets smaller f -splittings and larger p-splittings
again in the same order of magnitude of 0.1MeV. This
last effect corrects for the enhanced effect of the bubble
structure and the sudden reduction of the p-splitting as
one goes from 36S to 34Si.
For a better understanding how pairing correlations

lead to this differences we present in Table V the occu-
pation factors of the 2s1/2 proton state in 36S and 34Si.
In addition we compare in Fig. 5 the radial profiles of the
total and proton densities of 38Ar, 36S, and 34Si with and
without pairing for the parameter set NL3.
For 38Ar, pairing affects mostly the 1d proton orbit

with its two last 2 protons in the 1d3/2 state. Here the
surface density becomes more diffused and the spin-orbit
force has a greater overlap with the f neutron states
making the corresponding splittings slightly bigger. In
the 36S pairing influences the central densities reducing
the size of the peak with a tendency to flatten it out.
This can also be seen by the reduced occupancy of the
2s1/2 proton state which is now smaller than 2. This cre-
ates a less attractive SO force around the center and so
the splittings of the neutron p states appear somewhat
smaller.
For the case of 34Si pairing reduces the dip at the cen-

ter of the bubble as it has been noted already in Ref. [21].
This is caused by the increasing occupancy of the previ-
ously empty 2s1/2 proton state, as shown in Table V. As
we have seen, this reduction of the bubble leads to an
increase of the p-splittings by almost 0.1 MeV. Together
with the previous discussion about 36S the relative re-
duction of this splitting comes closer to the experimental
value deduced from the major fragments.
The above analysis shows that there is a direct relation

between the size of p-splittings and the occupancy of the
2s1/2 proton state. In order to elaborate this effect in
more detail we carry out RHB-calculations with varying
pairing strength by gradually increasing the scaling factor
in the TMR-force. As discussed this leads on one side
to a reduction of the corresponding occupancy change
∆(2s1/2) between 36S and 34Si and on the other side to
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a reduction of the relative change in the SO-splitting for
the p-levels.

As the pairing force increases the bubble structure
becomes less dramatic. Therefore, by studying the
corresponding change in the relative reduction of the
2p3/2 − 2p1/2 neutron spin-orbit splitting we get an ad-
ditional method to further investigate the isospin depen-
dence of the effective spin-orbit interaction for the dif-
ferent covariant density functionals. This has been done
in the case of the TMR paring force and for all the rela-
tivistic models we have used in our previous calculations
and the results are shown in Fig. 6. The empty symbols
depict the results we got using the 3-pt gap formula to
adjust the pairing force. For comparison we show the
combined results from the experiments in Refs. [19, 20].
This helps to distinguish amongst the various models.
We find that DD-ME2, DD-PC1 and PC-PF1 are the
most successful in reproducing the experimental results.

C. Extensions: Tensor Forces and

Particle-Vibration Coupling

In this last part we extend the standard formulation
of the covariant density functional models in two ways.
First we include explicitly a tensor term as it is discussed
in section IIIA. This extension remains on the mean-field
level. In the second case we go beyond mean-field by tak-
ing into consideration the coupling of the single-particle
states to the low-lying surface modes, as discussed in sec-
tion III B.

1. The effect of the tensor force

As we have already stated the tensor part of the nu-
clear force plays an essential role in the description of
the several nuclear properties. In our case it affects the
single-particle structure [48, 49, 57]. As discussed in sec-
tion III A in covariant density functional theory exchange
terms are usually not taken into account, because the
Fierz theorem shows that, for zero range forces, they
can be expanded over the direct terms by reshuffling the
coupling constants of the various spin-isospin channels.
Since the coupling constants are adjusted to experimen-
tal data anyhow, this seems to be a reasonable approx-
imation for the heavy mesons σ, ω, and ρ, which lead
to forces of relatively short range. The direct term of
the pion does not contribute because of parity conserva-
tion, but its mass is small and, therefore, its exchange
term should be taken into account explicitly. It leads
to a tensor term in the functional. In the following we
show results of relativistic Hartree-Fock calculations as
discussed in section III A and in Ref. [57].

In particular, we investigate in the specific case of the
bubble nucleus 34Si and the corresponding dramatic re-
duction in the p-splitting as compared with 36S, whether

the explicit inclusion of the tensor force changes the size
of the splitting and the amount of the reduction.
The effect of the tensor force between neutrons and

protons has been investigated in great detail in the con-
figuration interaction (CI) calculations [48] and in the
mean field calculations [49]. The spin-orbit alignment
is very crucial for the attractive or repulsive character
of this interaction. Nucleons occupying, for instance, a
proton orbit j> (where j>;< = ℓ±1/2) can change the ef-
fective single-particle energies of neutrons occupying the
orbit j′> or the orbit j′< through the monopole effect of
the tensor force. If the spins of the two states are an-
tiparallel, the force is attractive and, if they are parallel,
the force is repulsive. In the particular case of the one-
pion-exchange this specific effect has been also identified
in the RHF calculations of Ref [57]. The effect of the
tensor force is mostly important between neutrons and
protons, it increases with the orbital angular momentum
ℓ and also with the radial overlap between the orbits.
In Fig. 7 we show in a schematic way the positions of

the neutron states 2p1/2, 2p3/2 and 1f5/2 using the 1f7/2
as reference state, calculated with the relativistic inter-
action NL3RHF0.5 which includes the one-pion-exchange
tensor force with half the strength of the free one-pion-
exchange force, as discussed in Sect. III A. These calcula-
tions have been carried out within the frozen gap approx-
imation for the pairing channel and with the values of the
proton gap parameters given in Table III. In Table VI we
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FIG. 7. The evolution of the energy splittings for the
NL3RHF0.5 functional, where boxes (a), (b), (c) and (d) cor-
respond to 40Ca, 38Ar, 36S and 34Si, respectively. The red
dashed lines represent the experimental values of the centroids
for 40Ca [22]

compare these results with calculation done with NL3 on
the Hartree level with the same pairing scheme of frozen
gap and to those of non-relativistic Skyrme and Gogny in-
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40Ca 38Ar 36S 34Si

f p f p f p f p

NL3 7.21 1.69 6.87 1.64 6.44 1.68 5.56 0.74

NL3RHF0.5 7.87 1.92 6.82 1.74 5.80 1.64 5.12 0.66

SLy5T−2013 6.77 1.76 5.53 1.07 4.41 0.61

D1ST2c−2013 6.90 1.73 5.65 1.26 4.75 0.73

Exp. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca →
36S 36S →

34Si

Splitting f p f p

NL3 10% 1% 14% 56%

NL3RHF0.5 26% 14% 12% 60%

SLy5T−2013 18% 39% 20% 43%

D1ST2c−2013 18% 27% 16% 42%

Exp. 20% -20% 2% 43%

TABLE VI. Spin-orbit splittings of f and p neutron states
(upper part) and relative reductions (bottom part), for the
case of tensor forces. For comparison we also show the results
from Ref. [24].

teractions SLy5T−2013 and D1ST2c−2013. These are mod-
ified versions of the functionals SLy5 and D1S, where
tensor terms have been included and were adjusted to-
gether with the spin-orbit parameters. Details are given
in Ref. [24]. We have to emphasize, however, that the
tensor force used in the non-relativistic calculations in
Ref. [24] is of zero range, whereas the tensor force in these
relativistic calculations is of finite range because of the
low mass of the pion. We show in Fig. 8 the correspond-
ing single-particle energies as a function of A. Finally,
in Fig. 9 we have plotted the evolution of the spin-orbit
splittings as it is done in Fig. 3 and Fig. 4, but now just
for the NL3 force in order to compare between the pure
mean-field, pairing, and the tensor effects.
We observe that the inclusion of the tensor force has

a more pronounced effect in the transition from 40Ca to
36S than in the transition from 36S to 34Si. Following the
rule that we described in the beginning of the current
section, we recognize that as we move from 40Ca to 36S
and remove the four protons from the j< proton state
π1d3/2, the attractive effect of the tensor interaction on
the j′> neutron state ν1f7/2 is reduced and, thus, this

state is shifted upwards, from its starting point in 40Ca.
On the other side the j′<; ν1f5/2 state, which in 40Ca
is repelled by the protons of the π1d3/2 state, is shifted

downwards as we go to 36S. The combination of all these
effects leads to an enhanced quenching of the f -splitting
as we go from 40Ca to 36S. This is also seen by the much
steeper blue line that corresponds to NL3RHF0.5 case
in the right panel in Fig. 9. The same behaviour can
be observed also for the j′>; ν2p3/2 and the j′<; ν2p1/2
neutron states, although the effect on the absolute size
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of the splitting is smaller in those cases.

In the case of the transition from 36S to the bubble
nucleus 34Si we see in Fig. 8 that both the f and p states
stay at the same distance relative to the NL3 calculations.
This shows that the large reduction of the p-splitting is
a pure spin-orbit effect, a picture that also agrees with
the non-relativistic results.

Finally, we have measured an occupancy of the 2s1/2
proton state of 0.18 with the NL3RHF0.5, which is larger
than the 0.10 value in the case of NL3 on the RH level
for the same pairing scheme. This indicates that the ten-
sor force counteracts to some extent the effect of pairing
that we described in the previous section, and leads to a
smaller size, from 0.74 MeV to 0.66 MeV and a slightly
larger reduction, from 56% to 60%, for the particular p-
splitting.
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2. The effect of particle-vibration coupling

As we mentioned in section III B, the coupling of the
single-particle states to low-lying phonons leads to a
fragmentation of the single-particle levels and, therefore,
sometimes to considerable shifts of the major compo-
nents, i.e. of the components with the largest spectro-
scopic factor. This is, in particular, important for states
close to the Fermi surface. For our calculations we used
the density functional NL3* [28] and a constant pairing
gap of ∆ = 2 MeV, which is consistent with its empirical
value of 12.0/

√
A for the considered mass region.

36S 34Si

Splitting f p f p

NL3* with PVC 6.30 2.28 5.28 1.40

Exp. 5.61 1.99 5.5 1.13

36S →
34Si

Splitting f p

NL3* with PVC 16% 39%

Exp. 2% 43%

TABLE VII. Comparison for the spin-orbit splittings (Upper
part) and their relative reductions (Lower part) of the major
fragments between the relativistic PVC model and the corre-
sponding experimental results.

After the solution of the Dyson equation (51) we have
the ability to isolate the major contributions to each s.p.
state and compare its energy directly with the experimen-
tal results from Ref. [19], as shown in table VII. This is
also done schematically in Fig. 10 where we compare the
results of the PVC calculations for the nuclei 36S and 34Si
with the experimental values of Ref. [19]. More specifi-
cally, we show the positions of the major fragments and
the splittings between the f and p states as well as their
spectroscopic factors. The experimentally observed re-
duction of the spin-orbit splitting is 43% for the p states.
It is in rather good agreement with the results obtained
from the theoretical PVC calculations, which show a re-
duction of 39%. In both cases these are the splittings for
the major fragments. Notice, that in the PVC calcula-
tions we have not included isospin-flip phonons as it is
done, for instance, in Ref. [77]. It has been observed that
the inclusion of such phonons causes an additional frag-
mentation and shifts of the dominant fragments, bringing
the results to a better agreement with data. However, the
latter approach is, so far, not yet adopted to the case of
open-shell nuclei. It will be considered in the future.
In Fig. 10 we show in analogy to Fig. 7 the positions of

the neutron states 2p1/2, 2p3/2 and 1f5/2 using the 1f7/2
as reference state for the nuclei 37S (panel (a,b,c)) and
35Si (panel (d,e,f)). The experimental data of Ref. [19]
in panels (a) and (d) are compared with results of PVC-
calculations with the density functional NL3* in pan-
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FIG. 10. Distribution of the major fragments of the single-
particle strengths of 37S (panel (a)) and 35Si (panel (d)) as
given in Ref. [19] and the same distribution calculated with
PVC for the force NL3* (panels (b) and (e)). Panels (c) and
(f) show results obtained without particle-vibration coupling
using the same density functional.

els (b) and (e). In this figure the experimental ener-
gies as well as the energies of the PVC-calculations cor-
respond to the major components of the corresponding
fragmented level. Only for the 1f5/2 orbits we show in
panel (a) the experimental fragmentation and in panel
(d) the area of the experimental fragmentation. In order
to study the effect of particle-vibration coupling we show
in panels (c) and (f) calculations with the same density
functional without particle-vibration coupling.

We find that in both nuclei the SO-splitting of the 1f -
orbitals is reproduced relatively well. Particle vibrational
coupling has only a small influence on this splitting. On
the other side, all 2p-orbits are shifted downwards closer
to the 1f7/2-orbit as it is also observed in the experi-
ment. It is well known, that this effect is in particular
large for levels close to the Fermi surface, i.e. larger for
the 2p3/2-orbit than for the 2p1/2-orbit. As a result, the
SO-splitting of the 2p orbits is increased considerably by
particle-vibration coupling. As compared to the much
too small SO-splitting for the 2p orbits without PVC, it
is now much closer to the experimental value.
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VI. CONCLUSIONS

In this study we have calculated the single-particle en-
ergies of the spin-orbit doublets 1f7/2-1f5/2 and 2p3/2-
2p1/2 in order to investigate the spin-orbit splittings and
their evolution as we move along the chain of isotones
with N=20: 40Ca, 38Ar, 36S, and 34Si. We used several
relativistic functionals of three different types: non-linear
meson-coupling, density-dependent meson coupling and
density-dependent point-coupling models. Furthermore,
we used the separable TMR pairing force of finite range,
which is essentially equivalent to the pairing part of the
Gogny force D1S, in order to determine the effect of pair-
ing on the size and on the reduction of the SO split-
tings. Finally, we considered specific extensions that go
beyond the simple Hartree case, namely the inclusion
of one-pion exchange which induces a tensor force and
particle-vibration coupling that takes into account cor-
relations between single-particle states going beyond the
mean field approximation.

In general, we observe a significant reduction of the
2p3/2 − 2p1/2 splitting for neutron states when we go

from 36S to 34Si as it is observed in the experiment. On
the pure mean-field level most of the forces show a rel-
atively large reduction. When we include pairing, this
reduction becomes less and less dramatic with increasing
pairing correlations, because the occupation of the 2s1/2
proton-orbit changes less rapidly between 36S and 34Si.
The isospin dependence of the effective spin-orbit force
is weaker in the relativistic models and, therefore, the
reduction is also less pronounced in these models than in
the non-relativistic ones.

Finally, we went beyond the conventional Hartree level
and included two effects, which have a strong influence
on the single-particle structure, the tensor term and
particle-vibration coupling.

Here we found that the tensor term induced by the
one-pion-exchange force has a relatively small effect. It
acts to some extent in the opposite direction of pairing.
It increases the quenching of the spin-orbit distinctly for

the f and to a smaller extent for the p states when going
from 40Ca to 36S, showing the tensor character of those
reductions. On the other hand, for the transition from
36S to 34Si the sizes of the splittings are only slightly re-
duced for both nuclei and, thus, the relative reductions
remain practically unchanged, indicating that they come
purely from the spin-orbit interaction. Such an effect
is also observed in the non-relativistic case [24] as it is
seen in Tables I and VI. However, particle-vibration cou-
pling acts in the same direction as pairing. We find that
the relative reduction of the splitting between 2p3/2 and
2p1/2 neutron states decreases. This is consistent with
the general effect of PVC to produce a more dense spec-
trum near the Fermi surface. Finally, PVC leads to a
reasonable agreement with the experimental data in the
isotone chain with N = 20.
Of course, there are many open questions: Nearly all

of the functionals used here have been adjusted to ex-
perimental bulk properties, such as binding energies and
radii. Only the strength of the relativistic tensor force
in the functional NL3RHF0.5 has been optimized at the
same time by comparing with the single-particle struc-
ture of tin isotopes. In principle, the parameters of all
these functionals should be adjusted only after including
the additional effects of tensor correlations and particle-
vibration coupling. This is a very ambitious task for
the future, but we have shown in this investigation at
least the influence and the relative importance of several
corrections beyond the conventional Hartree level for a
successful description of the spin-orbit splitting and its
isospin dependence.
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