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Background Recent years have seen considerable effort in associating the shell evolution (SE) for a chain of isotones or isotopes
with the underlying nuclear interactions. In particular, it has been fairly well established that the tensor part of the
Skyrme interaction is indispensable for understanding certain SE above Z,N=50 shell closures, as a function of nucleon
numbers.

Purpose The purpose of the present work is twofold: (1) to study the effect of deformation due to blocking, on the SE above
Z,N = 50 shell closures; (2) to examine the optimal parameterizations in the tensor part which gives a proper description
of the SE above Z,N=50 shell closures.

Methods I use Skyrme-Hartree-Fock-Bogoliubov (SHFB) method to compute the even-even vacua of the Z = 50 isotopes and
N = 50 isotones. For Sb and odd-A Sn isotopes, I perform calculations with a blocking procedure which accounts for the
polarization effects, including deformations.

Results The blocking SHFB calculations show that the light odd-A Sb isotopes, with only one valence proton occupying
down-sloping Ω = 11/2− and Ω = 7/2+ Nilsson orbits, assume finite oblate deformations. This reduces the energy
differences between 11/2− and 7/2+ states by about 500 keV for 51Sb56−66, bringing the energy-difference curve closer
to the experimental one. With UNE2T1 energy density functional (EDF), which differs from unedf2 parameterization
by tensor terms, a better description of the slope of ∆e(π1h11/2 − π1g7/2) as a function of neutron number has been
obtained. However, the trend of ∆e(π1g7/2 − π2d5/2) curve is worse using UNE2T1 EDF. ∆e(ν3s1/2 − ν2d5/2), and
∆e(ν1g7/2 − ν2d5/2) curve for N=50 isotones using UNE2T1 seems to be consistent with experimental data. The
neutron SE of ∆e(ν1h11/2 − ν1g7/2), and ∆e(ν1g7/2 − ν2d5/2) for Sn isotopes are shown to be sensive to αT tensor
parameter.

Conclusions Within the Skyrme self-consistent mean-field model, the deformation degree of freedom has to be taken into
account for Sb isotopes, N=51 isotones, and odd-A Sn isotopes when discussing variation of quantities like shell gap etc.
The tensor terms are important for describing the strong variation of ∆E(Ωπ = 11/2−

− 7/2+) in Sb isotopes. The SE
of 1/2+, and 7/2+ states in N=51 isotones may show signature for the existence of tensor interaction. The experimental
excitation energies of 11/2−, and 7/2+ states in odd-A Sn isotopes close to 132Sn give prospects for constraining the αT

parameter.

PACS numbers: 21.60.Jz, 21.10.Hw, 21.10.Ky, 21.10.Pc

I. INTRODUCTION

The underlying single-particle (s.p.) shell structure is
of vital importance for understanding a variety of phe-
nomena related to low-energy nuclear structure physics.
For example, the discontinuity of two nucleon separation
energy and the sudden rise in energy of the 2+ state at
certain nucleon number can be associated with the occur-
rence of magic numbers. After incorporating a large spin-
orbit (SO) term in the Hamiltonian, the nuclear indepen-
dent mean-field model was found to be able to reproduce
the magic numbers seen experimentally along the valley
of β stability [1, 2]. Since then, various mean-field mod-
els have achieved great success in describing properties of
the ground states (g.s.) and the near-yrast excited states
for nuclei across the nuclear chart.

With recent advances in the experimental tech-
niques [3, 4], it has been seen that neutron-rich nuclei
with extremely large N/Z ratios can have shell structures
which are considerably different from their respective sta-
ble isotopes or isotones. The shell variation (evolution)
with nucleon number can be so drastic that one sees

the disappearance of the conventional shell gaps (magic
number) or the appearance of new ones in those exotic
systems. This challenges the current mean-field models,
which predict rather smooth shell variations when chang-
ing the nucleon number, indicating defects in parameter-
izations, or even missing terms that have not been care-
fully examined before in the mean-field models.
In particular, the observed trend of the shell evolution

(SE) for states above Z,N=50 [3, 5] can be consistently
explained by including, in the effective shell model [6],
a specific tensor contribution. This triggered a number
of theoretical mean-field [7–16] and beyond mean-field
studies [17–20]. The conclusion is that the tensor part of
the interaction is essential for understanding SE [21].
However, although the interplay between deformation

and tensor terms has been studied in Ref. [12], a realistic
analysis has never been done with deformation effects in-
cluded. Indeed, experimental observables are extracted
from Z = 51 nuclei while, to my knowledge, most exist-
ing analysis are based on the s.p. states from mean-field
calculations for the even-even cores which are calculated
to be spherical. Experimentally extracted s.p. levels are
mostly model dependent. It has been noted in Ref. [22],
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that even for spherical nuclei, correlations beyond mean-
field have to be taken into account in the correlated sys-
tems. With only one proton outside the Z=50 core, the
system may assume prolate or oblate deformation due
to the occupation of down-sloping orbits above the shell
closure. One needs to recall that occupying s.p. states
having large intrinsic quadrupole moments can polarize
the system toward static deformed shapes in odd-mass
nuclei [23–25].

In this work, I examine the energy differences for Z=51
isotopes taking into account the effect of deformation.
Further, I look into the effect of the tensor part of the
unedf2 parameterization in the description of the SE
along Z=50 and N=50 isotopic and isotonic chains. In
Sec. II I describe theoretical model used in this work.
Sec. III discusses results obtained from the present cal-
culations, and Sec. IV gives the conclusion.

II. THE MODEL

The self-consistent Skyrme-Hartree-Fock-Bogoliubov
(SHFB) calculations are performed using the density
functional theory solver hfbtho [27]. The HFB equa-
tions are solved by expanding the s.p. wave func-
tions in the spherical harmonic-oscillator (HO) basis
up to Nmax=18. The frequency of the HO basis is
~ω=10.3959MeV.

In the blocking calculations, the time-odd parts of the
mean-field [28] appear. It has been shown [29, 30] that
ignoring time-odd parts of the Skyrme energy density
functionals (EDFs) invites energy differences of the or-
der of 100-200 keV compared to the energies obtained
with time-odd coupling constants determined by Landau
parameters or local-gauge invariance [31]. Therefore, in
the blocking calculations, I ignore the time-odd mean-
fields by adopting the equal-filling approximation of the
hfbtho code [27]. The influence of the time-odd part
of the tensor term on the moments of inertia of collec-
tive rotational bands in superdeformed nuclei has been
studied extensively [13].

I use unedf1 [32], unedf2 [33], and unedf1
SO [30]

EDFs with the pairing properties (cutoff energies and
pairing strengths) provided in their respective original
papers.

In this work I intend to probe the tensor part of the
Skyrme EDF by comparing the results with the data. In
the following I remind briefly the form of tensor terms
appearing in the functional and in the mean-field. For
details, I refer the readers to Ref. [14, 34]. The EDF
reads

E =

∫

d3rH(r), (1)

where the local energy density H(r) is a sum of kinetic
energy and the potential energy isoscalar (t = 0) and
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FIG. 1: Mean-field single-proton levels for 112Sn (a) and
single-neutron levels for 90Zr (b) as a function of β2 defor-
mation, calculated with unedf2 parameterization. For the
definition of β2, cf. Ref [26].

isovector (t = 1) terms,

H(r) =
~2

2m
τ0 +H0(r) +H1(r), (2)

with

Ht(r) = Heven
t +Hodd

t , (3)

and

Heven
t = Cρ

t ρ
2
t + C∆ρ

t ρt∆ρt + Cτ
t ρtτt

+CJ
t J

2
t + C∇J

t ρt∇ · Jt, (4)

Hodd
t = Cs

t s
2
t + C∆s

t st ·∆st + CT
t st · Tt

+Cj
t j

2
t + C∇J

t st · (∇× jt). (5)
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FIG. 2: (Color online) Energy differences between spherical (a) π1h11/2 and π1g9/2 shells, and between (b) π1g9/2 and π2d5/2
shells calculated with unedf1, unedf2, and unedf1

SO EDFs. Experimental data are taken from Ref. [5].

The time-even, ρt, τt, and Jt, and time-odd, st, Tt, and
jt, local densities are introduced in Ref. [35].
The SO density J is the vector part of the spin-current

tensor density J, that is,

Jt,µν =
1

3
J
(0)
t δµν +

1

2
εµνηJt,η + J

(2)
t,µν , (6)

with

J
2
t ≡

∑

µν

J
2
t,µν =

1

3

(

J
(0)
t

)2

+
1

2
J2
t +

∑

µν

(

J
(2)
t,µν

)2

. (7)

In this work, I pay special attention to the tensor terms
appearing in the EDF,

HT = CJ
0 J

2
0 + CJ

1 J
2
1. (8)

It is to be noted that tensor terms in the form of Eq. (8)
is not necessarily related to a tensor force proposed by
Skyrme [36, 37]. However, in the present case, where
parity symmetry is conserved, only the term containing
vector part (J) of J2 in Eq. (7) survives [11, 12]. This
allows for a correspondence between the energy densities
generated by the tensor terms (Eq. (22) of Ref. [11]), and
the usual tensor force characterized by te and to (Eq. (20)
of Ref. [11]).
Although the calculations in the current work are per-

formed without enforcing spherical symmetry, I show ten-
sor terms in the spherical case to see the feature more

clearly. A comprehensive discussion of the tensor terms
in spherical symmetry can be found in Ref. [11]. In
the spherical case, the pseudoscalar J (0) and symmetric-

tensor J
(2)
µν parts of the tensor terms vanish, with

HT =
1

2
CJ

0 J
2
0 +

1

2
CJ

1 J
2
1 . (9)

Variation of the tensor parts of the EDF over the radial
SO densities J(r) gives the tensor contribution to the
spherical isoscalar (t = 0) and isovector (t = 1) SO mean-
fields [14],

∆W SO =
1

2r

[

CJ
0 J0(r) + CJ

1 J1(r)
]

L · S, (10)

which can be separated into the neutron, and proton con-
tributions to the SO mean-fields,

∆W SO
n =

1

2r
[αT Jn(r) + βTJp(r)]L · S, (11)

∆W SO
p =

1

2r
[αT Jp(r) + βTJn(r)]L · S, (12)

with

αT = CJ
0 + CJ

1 , (13)

βT = CJ
0 − CJ

1 , (14)
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and

Jq(r) =
1

4πr3

∑

n,j,l

(2j + 1)v2njl

×

[

j(j + 1)− l(l + 1)−
3

4

]

ψ2
njl(r). (15)

I summarize briefly about the most important feature
of tensor parts. From Eq. (15), it is seen [9] that as the
lower branch (which has j> = l + 1

2 ) of the two SO
partners starts to be filled, the Jq density increases as
[j(j +1)− l(l+1)− 3

4 ] ≥ 0 for l ≥ 0. Jq decreases as the
energetically higher branch of the SO partner starts to be
filled since now j< = l− 1

2 . Numerically, it turns out [11]
that the tensor terms contribute to the SO splitting evo-
lution much more strongly than the effect of the increase
of the diffuseness of the density distribution [38, 39].
Only in the spherical limit, it becomes clear, from

Eqs. (11) and (12), that αT , and βT control how much the
tensor terms contribute to the change of SO mean-fields,
with changing density (or particle number) of the same,
and different nucleonic types, respectively. Indeed, pre-
vious studies mainly focused on the SE of one nucleonic
type with the other nucleonic type variation. This has
resulted in the fairly well constrained βT value, leaving,
however, αT less clear [21]. In Sec. III B 5, I will show
that the neutron SE above N = 50 shell closure, along
the odd-A Sn isotopes is sensitive to αT values. This is
the first attempt to constrain αT parameter.

III. RESULTS AND DISCUSSIONS

A. Influence of deformation effect

In this section, I examine the polarization effects from
the valence proton for the 51Sb isotopes. When a pro-
ton is added to the Z=50 core, the system may favor
deformation for a lower total energy. Further, with an
unpaired proton, the Hamiltonian of the nucleus is no
longer time invariant. The time-odd parts in the mean-
field appear. Polarizations of these types are properly
taken into account in the blocking calculations [29]. The
removal of a level near Fermi surface results in the shrink
of pairing gap of the system, which in turn impacts the
relative energies among different configurations.
Fig. 1 shows Nilsson diagrams with Z,N≈50 for 112Sn,

and 90Zr, calculated with unedf2 [33] EDF. At each β2
value, the s.p. levels are obtained by diagonalizing the
mean-field Hamiltonian. The orbits at spherical shape
are π1h11/2, π1g7/2, and π2d5/2 above the Z=50 shell
gap.
Fig. 2(a) displays the energy differences between mean-

field orbits π1h11/2 and π1g7/2 for Sn isotopes. The ex-
perimental data are taken from Ref. [5]. Note that the
energy differences along the Sb isotopes were obtained
by measuring the Triton energies from Sn(α,t)Sb reac-
tions. The respective π1h11/2, and π1g7/2 origins of the

Iπ = 11/2−, and 7/2+ states, are determined from the
cross sections calculated with distorted-wave Born ap-
proximation (DWBA) [5]. The main uncertainty asso-
ciated with this procedure is the s.p. (quasi-particle)
characterizations of 11/2− and 7/2+ states, which are
concluded from the near-constant (with relative devia-
tion of about %15) spectroscopic factors from DWBA
calculations [5]. From Ref. [22], it is known that these
energy differences correspond to the mean-field energy
differences only if one assumes that the states are not
correlated systems.

It can be seen that, for all the three EDFs, with in-
creasing neutron number the energy differences increase
linearly with similar slopes. unedf1

SO results give ab-
solute energy differences systematically ≈1.5MeV lower
than those of the original unedf1 EDF. This is due to a
larger isoscalar SO parameter (C∇J

0 ) of unedf1SO [30],
which raises π1g7/2 and lowers π1h11/2, resulting in a
much smaller difference between them.

Fig. 3(a) shows the differences of the total energies
between π11/2−[505] and π7/2+[404] states for Sb iso-
topes. The total energies for different configurations are
obtained by blocking the relevant quasi-particle orbits
when solving the HFB equations. It can be seen that
the addition of a proton induces sizable oblate defor-
mation (|β2| ≈ 0.1 − 0.2) for N = 56 − 74. To illus-
trate the effect of deformation, it is observed that the
equilibrium deformations for 11/2− and 7/2+ states in
117Sb66 is at β2 ≈ −0.17 [Fig. 3(b)]. From Fig. 1, it can
be seen that the energy difference between π11/2−[505]
and π7/2+[413] is about 1.5MeV at β2 ≈ −1.7, which
is ≈ 0.5MeV lower than the gap between π1h11/2 and
π1g7/2 levels at spherical shape. As a result of this polar-
ization effect, in Sn56−74 the calculated energy-difference
curves in Fig. 3 exhibit dips, which is qualitatively in
better agreement with data compared to the mean-field
results.

Fig. 2(b) shows the energy differences between π1g7/2
and π2d5/2 for Sn isotopes. The calculations well repro-
duce the trend and the slope of the experimental data.
But the absolute values are overpredicted by 500-600keV
for unedf1, and unedf2 EDFs. Calculations with un-

edf1
SO EDF predict even larger energy differences than

the experimental data, due to a higher π1g7/2 level re-
sulting from a larger isoscalar SO coupling constant than
that of unedf1 parameterization.

The total energy differences between π7/2+[404], and
π5/2+[402] states with blocked calculations in Sb iso-
topes are compared with data in Fig. 3(c). For the three
EDFs, the energy differences are systematically lower
than that of the mean-field values by about 0.5MeV,
bringing unedf1, and unedf2 values rather close to the
data. The effect of deformation is to generate a kink
at N ≈ 66, as shown in Fig. 3(c). It is interesting to
note that the experimental data show a change in slope
around N ≈ 70 (see Fig. 1 of Ref. [40]). For heavier
isotopes with unedf1 and unedf1

SO, I could not dis-
tinguish the two π5/2+ states originating from π1g7/2
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(a)

(b)

(c)

(d)

FIG. 3: (Color online) Total energy differences between (a) π11/2−[505] and π7/2+[404] states; and between (c) π7/2+[404] and
π5/2+[402] states for 51Sb isotopes. Lower panels show (b) β2 deformations for π11/2−[505], π7/2+[404], and (d) π5/2+[402]
states with unedf2 for 51Sb isotopes.

and π2d5/2 orbits from each other. But it can be ex-
pected that for those near-spherical systems, the slopes
of energy-difference curves should follow those from the
mean-field values in Sn isotopes, shown in Fig. 2.

One needs to note that, for 53I and 51Sb isotopes, ex-
citation energies of 9/2+ states were observed to exhibit
a parabolic-like dependence on neutron number. This is
similar to the case of 11/2− states [42], where the ex-
perimental data were well explained in the context of
shape-coexistence/shape-evolution employing a Woods-
Saxon mean-field with the odd valence proton diabati-
cally blocked when changing the β2 deformation param-
eter. In addition, similarities of excitation energy curves
between 11/2− states in Sb isotopes and that of 3− oc-
tupole collective states in neighboring Sn isotopes indi-
cate considerable mixing, in Sb isotopes, between quasi-
particle 11/2− states and 3− ⊗ 2d5/2 particle-couple-
vibrational states [3].

B. Influence of the tensor part of the Skyrme

interaction

In the previous analysis, it is seen that the inclusion
of the tensor interaction in the unedf2 parameterization
does not provide an improved description for the evolu-
tion of the s.p. energy difference above the Z = 50 shell
gap, compared to unedf1 and unedf1

SO, where tensor
parts are ignored. In this section, I examine in detail the
tensor parameters αT and βT (or CJ

0,1) by varying them
around the original unedf2 parameterization, with the
hope of gaining some insights about how to better con-
strain the tensor part in future parameterizations.

1. Existing parameterizations in the tensor part

Fig. 4 shows a few existing parameterizations in terms
of the position of their tensor parameters, CJ

0 and CJ
1 .

For parameter labeled with “Skxtb” [8], the param-
eters of tensor part are obtained by analyzing the en-
ergy differences between π1h11/2 and π1g9/2 spherical
shells across the Sn isotopes. For “Colo” [9], the param-
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FIG. 4: (Color online) CJ
0 and CJ

1 values for selected Skyrme
parameterizations [8, 9, 11, 14, 41].

eters are obtained by studying the gap between π1h11/2
and π1g9/2 in Sn isotopes; and between ν1i13/2 and
ν1h9/2 in N=82 isotones. The parameter set labeled
with “Brink” [41] is obtained by studying the energy gaps
between π1h11/2 and π1g9/2 in Sn isotopes; the gaps be-
tween ν1i13/2 and ν1h9/2 in N=82 isotones; and energies
of π2s1/2 and π1d5/2 relative to π1d3/2 states in Ca iso-
topes. Set “T44” [11] is chosen here by noticing its over-
all better reproduction of the energy differences between
π1h11/2, and π1g9/2 shells in Sn isotopes [11]. It has to
be noted that all previous studies are based on spherical
mean-field calculations without deformation taken into
account. The parameters labeled with “SkOT” [14] are
obtained by analyzing the SO splitting data extensively
throughout the nuclear chart. The polarization effect is
taken into account in this study.

2. UNE2T1 and UNE2T2 parameterizations

For unedf2, the βT value (CJ
0 −C

J
1 =−11.47MeV fm5)

is rather close to zero in the scale of Fig. 4. This explains
the similarity in the predictions of the energy difference
between unedf2 and other EDFs with no tensor inter-
action included (unedf1 and unedf1

SO) as shown in
Figs. 2, 3.

From Eqs. (11) and (12) I have indicated that, in
the tensor sector, βT parameter governs the strength of
the neutron-proton interaction. Indeed, βT controls how
much the SO potential varies for one nucleonic type when
the density of the other nucleonic type is changing. In
Fig. 4, I show a line with the same αT value as the original
unedf2 one, but with different βT values. Interestingly,
one sees that the lower part of the line crosses a region
where a few recent new parameterizations [8, 9, 11] pro-

posed that the optimal tensor parameters, αT and βT
values, should be located.
I use two pairs of parameters that differ from the

unedf2 in the tensor part by (∆CJ
0 , ∆CJ

1 )=(+30,
−30)MeV fm5 (denoted with UNE2T1) and (∆CJ

0 ,
∆CJ

1 ) = (+60, −60)MeV fm5 (UNE2T2). The position
of these two EDFs is shown in Fig. 4. The current choice
of the CJ

0,1 values is motivated by the following consider-
ations: (1) to minimize the difference from the unedf2

parameterization by keeping αT unchanged; (2) to im-
prove the description of experimental SE in Sn isotopes
by varying βT value toward those existing parameters in
the tensor part.
It is known that the size of pairing gaps plays im-

portant role in determining the relative excitation en-
ergies among configurations near Fermi level. Hence, the
pairing strengths of these two parameterizations are re-
adjusted by matching the (∆+λ2)n,p values in

120Sn with
unedf2 parameterization. The resulted parameters that
differ from original unedf2 EDFs are compared with
those of unedf2 in table I. The pairing strengths differ
from the respective original values by less than 5%. The
difference of excitation energies generated from changed
pairing strengths is rather small.

TABLE I: UNE2T1, and UNE2T2 parameters that differ from
unedf2 parameters.

unedf2 UNE2T1 UNE2T2

CJ
0 −54.433 −24.433 5.567

CJ
1 −65.903 −95.903 −125.903

Vn
0 −208.889 −216.75 −223.50

Vp
0 −230.330 −236.95 −239.20

Before presenting the results with UNE2T1 and
UNE2T2 EDFs, it is important to examine their predic-
tions for observables such as binding energies, two parti-
cle separation energies, and shape-coexistence properties
for selected nuclei.
Tables II, and III list the differences between the calcu-

lation and experimental data for the total energies, and
the two particle separation energies, respectively, for se-
lected nuclei around 132Sn, 208Pb, and 254No. The dif-
ferences are obtained with

∆Etot = E
(cal)
tot − E

(exp)
tot , (16)

∆S2q = S
(cal)
2q − S

(exp)
2q , q = n, p. (17)

The calculated and experimental two particle separation
energies are obtained from total energies [45], through

S2n = Etot(Z,N)− Etot(Z,N − 2), (18)

S2p = Etot(Z,N)− Etot(Z − 2, N). (19)

Note that the Etot’s in Eqs. (16) and (18) are abso-
lute/positive values.
In table II, it can be seen that the good agreement be-

tween experimental data and calculations with unedf2
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TABLE II: Total energy differences (in MeV) between cal-
culation and experimental data. Calculations are performed
with unedf2, UNE2T1, and UNE2T2 EDFs for selected nu-
clei near 132Sn, 208Pb, and 254No. Experimental data are
taken from Ref. [43–45].

Nuclei unedf2 UNE2T1 UNE2T2
132Sn +0.271 −5.001 −9.801
130Sn +0.611 −3.853 −7.831
128Sn −0.232 −3.877 −7.040
130Cd +0.263 −3.922 −7.845
128Cd −0.052 −3.502 −6.719
126Cd −1.175 −4.000 −6.536
208Pb +2.239 −3.578 −8.959
206Pb +2.305 −3.324 −8.463
204Pb +1.516 −4.056 −8.955
206Hg +1.503 −3.894 −8.813
204Hg +0.693 −4.525 −9.208
202Hg −0.573 −5.757 −10.248
254No −1.530 −6.375 −10.290
252No −0.929 −5.834 −9.690
250No −0.688 −5.540 −9.257
252Fm −2.416 −7.222 −10.740
250Fm −1.661 −6.611 −10.191
248Fm −1.221 −6.140 −9.734

(∆Etot ≈ 1.5MeV), degrades rapidly from UNE2T1
(∆Etot ≈ 6MeV), to UNE2T2 (∆Etot ≈ 10MeV) EDFs.
In table III, the calculated two-neutron and -proton sepa-
ration energies with UNE2T1, and UNE2T2 EDFs differ
from the data by ≤ 1MeV. The deviations is compara-
ble to that of the unedf2 parameterizations. For axially
deformed No and Fm nuclei near 254No, UNE2T1 and
UNE2T2 EDFs predict deformations that are similar to
that of unedf2 results.
Given the predicted binding energies, UNE2T1, and

UNE2T2 EDFs are not suitable for practical predic-
tions. Nevertheless, since the relevant properties of nuclei
around double magic nuclei 132Sn and 208Pb were used to
determine unedf2 parameters [33], 132Sn and 208Pb may
be regarded as “anchor” nuclei. The fact that UNE2T1,
and UNE2T2 systematically underestimate their binding
energies with respect to the unedf2 results might indi-
cate prospects for general improvements, were the rest
of the parameters of UNE2T1 and UNE2T2 re-adjusted.
This is a strategy that has been taken in Ref. [11].
Shape-coexistence is another aspect that may be af-

fected by the variation of tensor parameters [12, 46, 47].
Fig. 5 shows the energy curves of 100Zr calculated with
unedf2, UNE2T1, and UNE2T2. It can be seen that
unedf2 parameter predicts two minima at prolate and
oblate deformations. The minimum at prolate shape
becomes a shoulder for UNE2T1 and disappears for
UNE2T2. The oblate minimum of unedf2 does not show
in UNE2T1, and UNE2T2 results.
Charge radii measurements of Zr isotopes [48] have

shown that 100Zr is well deformed in g.s., with β2 ≈ 0.4.
This is rather close to the calculation with unedf2

(a)

(b)

FIG. 5: (Color online) Energy contribution due to J
2 term (a)

and the total energy as a function of Q20, for 100Zr calculated
with unedf2, UNE2T1, and UNE2T2 EDFs.

parameterization (In Fig. 5, the prolate minimum at
Q20 = 9b for unedf2 corresponds to β2 ≈ 0.35.), es-
pecially after including beyond-mean-field correlations
which, supposedly favor deformed minimum over the
spherical one [49–51].

The energy contribution from the J2 terms [Eq. (8)]
is plotted against Q20 in Fig. 5(a). It can be seen that
with unedf2 the EJ2 curve show minima in the spher-
ical and prolate deformation. Whereas with UNE2T1
and UNE2T2 EDFs, one obtains deeper spherical min-
ima, and the prolate minimum is missing in both param-
eterizations.

It is useful to compare Fig. 5 with Fig. 27 of Ref. [12],
paying attention to the Etot and ∆EJ2 curves with pa-
rameter pairs: (unedf2, UNE2T1), (SLy5, SLy5+T),
and (T22/SLy4, T62). These are grouped into pairs since
the former parameters in the parentheses are from global
fits without paying special attention to tensor parame-
ters, although unedf2 and SLy5 contain non-zero tensor
terms. The latter parameters are obtained by fixing αT

and βT values with the remaining parameters re-adjusted
(T62) or unchanged (UNE2T1 and SLy5+T), with re-
spect to the respective former parameters in the paren-
theses.

The above parameter pairs are giving similar curves
in the sense that: (1) the former parameter sets in
the parentheses predict soft Etot and ∆EJ2 curves (for
T22/SLy4, ∆EJ2 vanishes), whereas the latter parame-
terizations enhance the spherical one; (2) the latter pa-
rameter sets in the parentheses moves tensor parameters
(CJ

0 , C
J
1 ) to the “south-east” corner of Fig. 4, with re-

spect to the former parameters in the parentheses (see
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TABLE III: The differences of two-neutron (∆S2n) and -proton (∆S2p) separation energies (in MeV) between the calculations
and experimetal data. Calculations are performed with unedf2, UNE2T1, and UNE2T2 EDFs for selected nuclei near 132Sn,
208Pb, and 254No. Experimental data are taken from Ref. [43–45].

Nuclei
∆S2n ∆S2p

unedf2 UNE2T1 UNE2T2 unedf2 UNE2T1 UNE2T2
132Sn −0.341 −1.149 −1.971 +0.004 −1.083 −1.590
130Sn −0.843 +0.024 −0.791 +0.663 −0.351 −1.112
208Pb −0.066 −0.257 −0.496 +0.736 +0.316 −0.146
206Pb +0.789 +0.735 +0.492 +1.612 +1.204 +0.745
254No −0.604 −0.544 −0.603 +0.884 +0.845 +0.448
252No −0.269 −0.322 −0.461 +0.732 +0.777 +0.501

also Fig. 1 of Ref. [12]). However, T62 differs from
UNE2T1 and SLy5+T in that the rest of the parame-
ter except for CJ

0,1 have been re-adjusted. This indicates
that a re-adjustment may not be able to result in prolate
minimum for UNE2T1, or UNE2T2 either.

The landscape of total nuclear energy versus vari-
ous deformation parameters is closely related to the un-
derlying s.p. structure. From a perspective of the
macroscopic-microscopic methods [2, 52], the effect of
non-uniformities of s.p. levels can be evaluated by ex-
tracting the oscillating part (Eosc) [2] of the total energy,
through a Strutinsky procedure [52–55]. Although in the
present calculated spectra (see Fig. 6 in the spherical
case), the effect of changing s.p. level densities on Eosc

is not obvious, a realistic calculation of Eosc as a func-
tion of tensor parameters may provide key informations
about the formation of local minima, and thus about how
to further constrain the tensor parameters. These studies
are outside the scope of the present work.

3. Results for SE above Z = 50 gap

Fig. 6 compares the s.p. spectra calculated by
UNE2T1, and UNE2T2 with those calculated by un-

edf1, unedf1SO, and unedf2 for 100Sn and 132Sn. In-
terestingly, similarities between the spectra with unedf2

and unedf1
SO can be seen, except for proton levels

of 132Sn. Comparing s.p. levels from UNE2T1, and
UNE2T2 with those of unedf2, smooth variations of
levels around N = 82 and Z = 50 shell gaps can be
seen.

It is observed from Fig. 7(a) that the trend of
the energy-difference curve is very well reproduced by
UNE2T1. Similar results were obtained in Refs. [9, 11,
56]. However, in Fig. 7(b) one sees that UNE2T1 and
UNE2T2 both fail to reproduce the general trend and
the slope of the curve of the experimental energy differ-
ence between π1g7/2 and π2d5/2. Taking into account
deformation, in Fig. 8, it is shown that the π1h11/2 and
π1g9/2 are better reproduced, but the energy-difference
curve between π1g7/2 and π2d5/2 is qualitatively at vari-
ance with experimental data.

4. Results for SE above N = 50 gap

To see the performance of the new tensor parameters,
Fig. 9 shows the energy differences between ν1g7/2 and
ν2d5/2 states, and between ν3s1/2 and ν2d5/2 states for
N = 50 isotones, calculated with unedf1, unedf2, un-
edf1

SO, UNE2T1, and UNE2T2 EDFs. The blocking
calculations predict near-spherical shape for 1/2+, and
5/2+ states. This makes it rather difficult to distinguish
1/2+ and 5/2+ states from other states with the same
Ω values. Hence, in the present calculation, only mean-
field results are shown. It should be noted that ν7/2[404],
and ν11/2[505] states are calculated to be well deformed
(β2 ≈ −0.2).

Available experimental data are displayed in Fig. 9(c).
Experimentally, the determination of s.p. character for
each state is by no means trivial. Here I adopt the as-
signment of Ref. [3] (see discussions of Fig. 30 in Ref. [3]).
Specifically, the 7/2+1 states for heavier isotones (Z > 44)
and 1/2+1 states for lighter isotones (Z < 38) are consid-
ered to be mostly of s.p. character. It is seen in Fig. 9(c)
that the 1/2+1 states (for Z < 38) increase and the 7/2+1
states (for Z > 44) decrease in energy with proton num-
ber. This is qualitatively in agreement with the calcula-
tions [see Figs. 9(a),(b)] which overestimates the proton
number where the 1/2+ and 7/2+ states cross each other.
It has to be noted that, after incorporating pairing cor-
relation, the excitation of both states will decrease, as
shown in Figs. 2, and 3.

In Fig. 9(b), with UNE2T1 and UNE2T2, the energy
differences between ν3s1/2, and ν2d5/2 states increase
with proton number and saturate at Z=42. The energies
of ν1g7/2 states increase with decreasing proton number
and saturate at Z = 40. These plateaus are absent using
EDFs without tensor terms, as shown in Fig. 9(a). In-
terestingly, the experimental excitation energies of 1/2+1
states for Z > 44 seem to show a plateau [see Fig. 9(c)].
The situation of 7/2+1 states in lighter N = 50 isotones
(Z < 38) is difficult to summarize as they are possibly
mixed with 7/2+2 states. Future experimental findings
about the excitation energies of the 1/2+ and 7/2+ states
in these N = 50 isotones may reveal more details about
the tensor interactions.
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FIG. 6: (Color online) S.p. spectra for 100Sn and 132Sn, calculated with unedf1 (1), unedf1SO (2), unedf2 (3), UNE2T1 (4),
and UNE2T2 (5) EDFs.

5. Results for Neutron SE as a function of neutron number
in Sn isotopes

To my knowledge, the existing studies focus on the SE
above certain shell gap of given nucleonic type, as varying
the other nucleonic type. This is probably due to (1) the
difficulties of systematic experimental characterization of
s.p. (quasi-particle) states; and (2) the difficulties in sin-
gling out tensor contribution theoretically. However, this
results in the αT tensor parameter underdetermined [21].
To learn more about αT , I study the neutron SE as a
function of neutron number in Sn isotopes.

Fig. 10 shows the s.p. energy differences for Sn iso-
topes between ν1h11/2 and ν1g7/2, and between ν1g7/2
and ν2d5/2 calculated with various EDFs. Compared to
Fig. 2, where curves with unedf2 show monotonic be-
haviour which is similar to those curves calculated with
EDFs with no tensor parts, it can be seen that energy
difference curves with unedf2 now exhibit bumps/dips
around N = 68. This is due to the non-zero αT of un-

edf2, although its βT is close to zero.

Experimentally, low-energy spectra of odd-A Sn nuclei
are known to be complicated, where configuration as-
signments of bandheads are exceptionally difficult. For-
tunately, from Ref. [57], isomeric states with finite half-
lives (≥ 1 ns) are systematically observed. For instance,
Iπ = 11/2−, and 7/2+ states states are yrast, and hence
are less mixed with other low-spin states. Consequently,
in the present blocking calculations, they correspond to
states with ν11/2−[505], and ν7/2+[404] originating from
ν1h11/2, and ν1g9/2 spherical states, respectively.

Fig. 11 compares the experimental data with the
blocked calculations with various EDFs. Table IV lists
the energies plotted in Fig. 11. The missing results in
131,133Sn which are not shown in the table and figure
are due to the difficulties of obtaining convergent solu-
tions. However, it can be seen that 127,129Sn are close
to spherical shape. Special attention should be paid to
the deformation of 11/2− (∼ −0.15) states for lighter iso-
topes. For 7/2+ states, the weak deformation varies from
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(a) (b)

FIG. 7: (Color online) Same as Fig. 2, except for UNE2T1 and UNE2T2 parameters described in the text.

a negative value to a positive one, as the character of s.p.
level 7/2+[404] changes from particle to hole state with
increasing neutron number.

Experimentally, the energies of 11/2− states decrease
with neutron number and become g.s in 121Sn; the ener-
gies of 7/2+ increase from close to g.s. to about 1MeV
at N ≈ 75. These two curves cross each other at N ≈
65. The calculations with unedf1, unedf1SO, and un-

edf2 well reproduce the data. Results of UNE2T1, and
UNE2T2 overpredict the energies of 11/2− for N ≥ 70.
This is due to the overall larger value of ∆e(ν1h11/2 −
ν1g7/2) UNE2T1 and UNE2T2 give, which is shown in
Fig. 10(a). It can be expected that a re-adjustment of
the rest of the parameter, especially the spin-orbit terms
would bring the curves of UNE2T1 and UNE2T2 close
to that of unedf2.

It is interesting to compare the results of unedf2, and
UNE2T1 with those without tensor terms, namely, un-
edf1, and unedf1

SO. For EDFs without tensor terms,
the energies of 7/2+ increase monotonically with neutron
number for N ≥ 69. While unedf2 and UNE2T1 predict
sudden rise of 7/2+ energies around N = 65 and then the
energies saturate as approaching N = 82. The data seem
to flatten at higher neutron numbers. Experimental exci-
tation energies of 11/2− and 7/2+ states close to N = 82
are highly desired to determine αT tensor parameter.

IV. CONCLUSIONS

In summary, I applied Skyrme density-functional the-
ory to the description of shell evolution above the
Z,N=50 magic numbers along isotopic and isotonic
chains, using unedf1, unedf2, unedf1SO EDFs.

For Sn isotopes, the predicted energy differences be-
tween π1h11/2 and π1g7/2 orbits, and between π1g7/2 and
π2d5/2 orbits show general qualitative agreement with
experimental data.

For Z=51 isotopes, I performed detailed blocked calcu-
lations. Comparing the blocked results with the simple
mean-field estimates, it was found that blocking those
high-Ω oblate-deformation-driving orbits resulted in fi-
nite oblate deformation for mid-shell nuclei. This gave
improved agreement with data both qualitatively and
quantitatively.

I examined the tensor part of unedf2 parameteriza-
tion. By keeping αT constant and increasing tensor pa-
rameter, βT , by 60MeV fm5 (UNE2T1), both mean-field
and blocked results reproduced well the observed trend
of energy differences between π1h11/2 and π1g7/2 orbits
in Sb isotopes. However, with UNE2T1, the predicted
SE between π1g7/2 and π2d5/2 states was qualitatively
at variance with experimental data.

For N=50 isotones, the variation of experimental exci-
tation energies between ν3s1/2 and ν1g7/2 was consistent
with the mean-field energy differences calculated with
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(a)

(b)

(c)

(d)

FIG. 8: (Color online) Same as Fig. 3, except for UNE2T1 and UNE2T2 parameters described in the text.

FIG. 9: (Color online) (a) Mean-field energy differences between ν1g7/2 and ν2d5/2 levels, and between ν3s1/2 and ν2d5/2
levels. (b) Same as (a), but with UNE2T1 and UNE2T2 parameterizations; (c) Experimental data are taken from Ref. [57].
The g.s. are 5/2+ states.
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(a) (b)

FIG. 10: (Color online) Mean-field energy differences (a) between ν1h11/2 and ν1g7/2 levels, and (b) between ν1h11/2 and
ν2d5/2 levels calculated with various EDFs.
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TABLE IV: Calculated excitation energies (in MeV) of 11/2− and 7/2+ in 107−129Sn with unedf1, unedf2, unedf1
SO,

UNE2T1, and UNE2T2. The experimental values are taken from Ref. [57].

Nucleus Config.
unedf1 unedf1

SO
unedf2 UNE2T1 UNE2T2 Expt.

Ex β2 Ex β2 Ex β2 Ex β2 Ex β2 (MeV)
107Sn ν 11

2

−

[505] 1.464 −0.125 0.778 −0.084 0.674 −0.058 1.533 −0.146 1.982 −0.172

ν 7

2

+
[404] 0.171 −0.058 0.134 −0.054 0.0 −0.046 0.156 −0.053 1.067 −0.091

109Sn ν 11

2

−

[505] 0.686 −0.141 0.382 −0.102 0.640 −0.086 0.923 −0.173 1.279 −0.189 1.2698

ν 7

2

+
[404] 0.004 −0.042 0.007 −0.052 0.0 −0.034 0.269 −0.021 1.803 −0.031

111Sn ν 11

2

−

[505] 0.391 −0.141 0.148 −0.113 0.493 −0.122 0.990 −0.163 1.308 −0.174 0.9786

ν 7

2

+
[404] 0.071 +0.025 0.0 −0.042 0.074 +0.005 0.0 +0.077 0.371 +0.091 0.0

113Sn ν 11

2

−

[505] 0.128 −0.134 0.179 −0.114 0.474 −0.127 1.056 −0.143 1.417 −0.151 0.7384

ν 7

2

+
[404] 0.0 +0.056 0.155 −0.002 0.0 +0.058 0.278 +0.060 0.0774

115Sn ν 11

2

−

[505] 0.176 −0.118 0.181 −0.105 0.633 −0.112 0.202 −0.114 1.304 −0.116 0.7136

ν 7

2

+
[404] 0.174 +0.063 0.205 +0.052 0.017 +0.054 1.127 +0.054 0.6128

117Sn ν 11

2

−

[505] 0.161 −0.093 0.161 −0.086 0.279 −0.085 0.735 −0.076 1.093 −0.075 0.03146

ν 7

2

+
[404] 0.407 +0.070 0.209 +0.070 1.875 +0.054 2.616 +0.046

119Sn ν 11

2

−

[505] 0.182 −0.065 0.088 −0.059 0.354 −0.050 0.625 −0.048 0.0895

ν 7

2

+
[404] 0.707 +0.074 0.214 +0.076 2.248 +0.056 3.145 +0.035 0.787

121Sn ν 11

2

−

[505] 0.130 −0.036 0.155 −0.027 0.121 −0.039 0.0 −0.031 0.0 −0.029 0.0063

ν 7

2

+
[404] 0.917 +0.074 0.410 +0.071 2.270 +0.087 3.273 +0.034 0.9256

123Sn ν 11

2

−

[505] 0.0 −0.016 0.124 −0.006 0.178 −0.017 0.0 −0.018 0.0 −0.018 0.0

ν 7

2

+
[404] 1.032 +0.068 0.570 +0.060 2.165 +0.099 3.044 −0.026 1.044

125Sn ν 11

2

−

[505] 0.0 −0.002 0.005 +0.005 0.049 0.0 0.0 −0.004 0.0 −0.007 0.0

ν 7

2

+
[404] 1.253 +0.058 0.702 +0.047 0.991 +0.080 1.998 +0.083 2.775 −0.024

127Sn ν 11

2

−

[505] 0.0 +0.013 0.0 +0.013 0.0 +0.013 0.0 +0.010 0.0 +0.012 0.0

ν 7

2

+
[404] 1.305 +0.038 0.921 +0.037 1.035 +0.038 2.082 +0.051 2.900 −0.011

129Sn ν 11

2

−

[505] 0.0 +0.018 0.0 +0.018 0.0 +0.019 0.0 +0.020 0.0 +0.024 0.0352

ν 7

2

+
[404] 1.775 +0.035 1.164 +0.029 1.049 +0.026 2.104 +0.028 3.174 +0.014

UNE2T1 EDF. The SE in N=50 isotones may represent
another interesting testing ground for the study of tensor
interaction.
To study the influence of αT parameter, I calculated

the neutron s.p. SE along odd-A Sn isotopes. Due to
non-zero αT , SE with unedf2 show behaviour that was
different from those using EDFs without tensor terms.
I compared the calculated excitation energies of 11/2−,

and 7/2+ states with experimental data. Close to the
heaviest isotopes, unedf2, and UNE2T1 EDFs predicted
energy curves of 7/2+ states that were flattened as a func-
tion of neutron number. Whereas those energy curves
resulted from EDFs without tensor terms showed mono-
tonic increase with neutron number. Experimental ener-
gies of 7/2+ close to 132Sn would reveal detailed infor-
mation of αT parameter.
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