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A quantal and a semiclassical analysis of two-nucleon transfer intensities is done within the framework of

the interacting boson model. The expected features of these quantities for the quantum phase transition (QPT)

between spherical, U(5), and axially deformed, SU(3), shapes are discussed. Experimental data for (p, t) and (t,

p) transfer reactions clearly show the occurrence of QPTs in Gd, Sm and Nd.
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I. INTRODUCTION

Quantum phase transitions (QPT) in nuclei have been in re-

cent years the subject of many investigations [1–4]. QPTs are

phase transitions that occur as a function of a parameter ap-

pearing in the quantum Hamiltonian describing the system. A

class of QPTs found in nuclei is between two different shapes,

hence the name shape phase transitions given to them. The

two shapes (phases) have different symmetry. QPTs in nu-

clei acquired prominence when it was found that also at the

critical point of the transition, a symmetry occurs, related to

scale invariance of the Hamiltonian [5, 6]. An important ques-

tion is to identify signatures of QPTs that can be tested by

experiments. Several of these signatures have been discussed,

including two-nucleon separation energies, B(EL) values, iso-

mer and isotope shifts, and energy ratios [1–4]. In this article,

we discuss other signatures, related to two-neutron transfer

intensities and show that experimental data in the rare-earth

nuclei (Gd, Sm, Nd) show evidence for a QPT connecting

spherical and axially deformed shapes with symmetry U(5)

and SU(3) respectively, thus confirming previous results ob-

tained using other signatures [1–4, 7]. The evolution of two-

nucleon transfer intensities as a test of shape phase transitions

within the framework of the interacting boson model (IBM)

was previously given in the seminal work of [8], where the

authors focused on discussing monopole two-nucleon transfer

in (t, p) reactions. Here we enlarge the work of [8] by consid-

ering both monopole and quadrupole two-nucleon transfer in

(t, p) and (p, t) processes, and most importantly, we do a wide

and detailed comparison between theory and experiment.

The paper is divided in two parts. In the first part, we

discuss the quantum and classical treatment of two-nucleon

transfer reactions within the framework of the IBM [9]. In the

second part, we perform a detailed analysis of available exper-

imental data and show the evidence for QPT in Gd, Sm and

Nd.

II. TWO-NUCLEON TRANSFER INTENSITIES

In the IBM, two-neutron (ν) transfer operators correspond-

ing to monopole-pair and quadrupole-pair are defined as [9,

10]

P
(0)
+,ν,0 = taν s†A(Ων ,Nν), P

(0)
−,ν,0 = taν A(Ων ,Nν )s, (1)

P
(2)
+,ν,µ = tbν d†

µA(Ων ,Nν ), P
(2)
−,ν,µ = tbν A(Ων ,Nν )d̃µ (2)

with the factor A(Ων ,Nν ) given by

A(Ων ,Nν ) = (Ων −Nν −
Nν

N
n̂d)

1
2 (

Nν + 1

N + 1
)

1
2 . (3)

A similar expression holds for two-proton (π) transfer opera-

tors with the index ν replaced by π . In Eqs. (1-3), Nν and Ων

represent the number of valence neutron (ν) pairs and their

degeneracy, respectively, while taν and tbν denote scale fac-

tors. Accordingly, the (p, t) and (t, p) transfer intensities can

be calculated as [9]

Ia(N + 1,L′ → N,L) =
1

2L′+ 1
|〈N,L ‖ P− ‖ N + 1,L′〉|2 (4)

and

Ib(N,L → N + 1,L′) =
1

2L+ 1
|〈N + 1,L′ ‖ P+ ‖ N,L〉|2 , (5)

respectively. We consider here those related to the lowest

states with L = 0 and L = 2, specifically

Ia
1 = I(N + 1,0+1 → N,0+1 ), (6)

Ia
2 = I(N + 1,0+1 → N,0+2 ), (7)

Ia
3 = I(N + 1,0+1 → N,0+3 ), (8)

Ia
4 = I(N + 1,0+1 → N,2+1 ), (9)

Ia
5 = I(N + 1,0+1 → N,2+2 ), (10)

Ia
6 = I(N + 1,0+1 → N,2+3 ) (11)

for (p, t) reactions and

Ib
1 = I(N,0+1 → N + 1,0+1 ), (12)

Ib
2 = I(N,0+1 → N + 1,0+2 ), (13)

Ib
3 = I(N,0+1 → N + 1,0+3 ), (14)

Ib
4 = I(N,0+1 → N + 1,2+1 ), (15)

Ib
5 = I(N,0+1 → N + 1,2+2 ), (16)

Ib
6 = I(N,0+1 → N + 1,2+3 ) (17)

for (t, p) reactions.
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A. Quantum treatment

We consider the Hamiltonian [11]

Ĥ(η , χ) = ε0

[

(1−η)n̂d −
η

4N
Q̂χ · Q̂χ

]

, (18)

where Q̂χ = (d†s+ s†d̃)(2)+ χ(d†d̃)(2) is the quadrupole op-

erator, η and χ are the control parameters with η ∈ [0,1] and

χ ∈ [−
√

7/2,0], and ε0 is a scale factor. This Hamiltonian

can be used to study QPTs between all three phases of the

IBM, with symmetry U(5) (η = 0), SO(6) (η = 1, χ = 0)

and SU(3) (η = 1, χ =−
√

7/2). Here we study the QPT be-

tween U(5) and SU(3). Also, in nuclei, the control parameter

is the nucleon number (or the boson number N), of which the

value is discrete. To simulate a realistic situation, we use the

parametrization [8]

η = 0.005N2 − 0.125 (19)

with η ranging from 0 to 1 when N creases from 5 to 15. The

resulting difference between the initial and the final state is

∆η ≡ η(N + 1)−η(N)

= 0.01N+ 0.005 . (20)

In order to study the behavior of the intensities and their

classical limit, we consider in this section the matrix elements

of s, dµ (for (p, t) reaction) and s†, d
†
µ (for (t, p) reaction). For

the quantum treatment, we calculate reduced matrix elements

of these operators with wave functions obtained by diagonal-

izing Ĥ of Eq. (18).

B. Classical treatment

We introduce the boson condensates (coherent states) of

IBM defined in [8,12-13] as

|N;g〉= 1√
N!

(B†
g)

N |0〉 (21)

with

B†
g =

1
√

1+β 2
[s†+β cosγd

†
0 +

1√
2

β sinγ(d†
−2+d

†
+2)] (22)

and, similarly

|N + 1;g′〉= 1
√

(N + 1)!
(B†

g′)
N+1|0〉 (23)

with

B
†
g′ =

1
√

1+β ′2
[s† +β ′ cosγ ′d†

0 +
1√
2

β ′ sinγ ′(d†
−2 + d

†
+2)] .

(24)

In addition, we can define the β -vibrational state

|N + 1;β ′
v〉=

1
√

(N + 1)
(B†

β ′
v
)Bg′ |N + 1;g′〉 (25)

with

B
†
β ′

v
=

1
√

1+β ′2
[−β ′s† + cosγ ′d†

0 +
1√
2

sinγ ′(d†
−2 + d

†
+2)] ,

(26)

and the γ-vibrational state

|N + 1;γ ′v〉=
1

√

(N + 1)
(B†

γ ′v
)Bg′ |N + 1;g′〉 (27)

with

B
†
γ ′v
=

1√
2

cosγ ′(d†
+2 + d

†
−2)− sinγ ′d†

0 . (28)

In the case of axial symmetry (γ = 0◦) the operator in (28)

should be replaced with B
†
γ ′v,±2

= d
†
±2 in order to have a

well-defined angular momentum projection on the symme-

try axis[13]. One can also define double beta, 2β ′
v-vibrational

state

|N + 1;2β ′
v〉=

1
√

2(N + 1)N
(B†

β ′
v
)2(Bg′)

2|N + 1;g′〉 . (29)

By making use of [14]

[bi, f (b)] =
∂

∂b
†
i

f (b) (30)

[ f (b), b
†
i ] =

∂

∂bi

f (b) , (31)

where bi (b
†
i ) represents the annihilation (creation) operator

for s or d boson, and f (b) denotes a polynomial of bi and b
†
i ,

one can derive explicit formulas for matrix elements of s† (s)

and d
†
µ (dµ). They can be obtained one from the other using

〈φ ′|b†|φ〉= 〈φ |b|φ ′〉 . (32)

(A) φg(N)↔ φ ′
g(N + 1)

For (t, p) or (p, t) transfer reactions between ground (g)

bands, one can derive

〈N;g|s|N + 1;g′〉 (33)

= 〈N + 1;g′|s†|N;g〉

=

√
N + 1

√

1+β ′2
[

1+β β ′ cos(γ − γ ′)
√

(1+β ′2)(1+β 2)
]N ,

〈N;g|dµ |N + 1;g′〉 (34)

= 〈N + 1;g′|d†
µ |N;g〉

=

√
N + 1

√

1+β ′2
[

1+β β ′ cos(γ − γ ′)
√

(1+β ′2)(1+β 2)
]N

× [β ′ cosγ ′δµ,0 +
1√
2

β ′ sinγ ′(δµ,2 + δµ,−2)] .
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(B) φg(N)→ φ ′
e(N + 1)

For (t, p) transfer reaction between ground bands and ex-

cited (e) bands, one can find

〈N + 1;β ′
v|s†|N;g〉 (35)

= [Nβ cos(γ − γ ′)− (N + 1)β ′−β β ′2 cos(γ − γ ′)]

× [1+β β ′cos(γ − γ ′)]N−1

(
√

1+β 2)N
(

1
√

1+β ′2
)N+1 ,

〈N + 1;β ′
v|d†

µ |N;g〉 (36)

=
[1+β β ′ cos(γ − γ ′)]N−1

(
√

1+β 2)N
(

1
√

1+β ′2
)N+1

× {[Nβ β ′ cosγ cosγ ′−Nβ ′2 + 1+β β ′cos(γ − γ ′)]×

[cosγ ′δµ,0 +
1√
2

sinγ ′(δµ,2 + δµ,−2)]+

Nβ β ′ sinγ sinγ ′ cosγ ′} ,

〈N + 1;γ ′v|s†|N;g〉 (37)

= Nβ sin(γ − γ ′)
[1+β β ′ cos(γ − γ ′)]N−1

[

√

(1+β 2)(1+β ′2)]N
,

〈N + 1;γ ′v|d†
µ |N;g〉 (38)

= [
1+β β ′ cos(γ − γ ′)
√

(1+β 2)(1+β ′2)
]N

× [
cosγ ′√

2
(δµ,2 + δµ,−2)− sinγ ′δµ,0 +Nβ sin(γ − γ ′)×

β ′ cosγ ′δµ,0 +
1√
2
β ′ sinγ ′(δµ,−2 + δµ,2)

1+β β ′ cos(γ − γ ′)
] ,

〈N + 1;2β ′
v|s†|N;g〉 (39)

=

√

N

2
[β cos(γ − γ ′)−β ′]

[1+β β ′ cos(γ − γ ′)]N−2

√

(1+β 2)N(1+β ′2)N+1

× {(N − 1)[β cos(γ − γ ′)−β ′]− 2β ′[1+β β ′cos(γ − γ ′)]} ,

〈N + 1;2β ′
v|d†

µ |N;g〉 (40)

=

√

N

2
[β cos(γ − γ ′)−β ′]

[1+β β ′ cos(γ − γ ′)]N−2

√

(1+β 2)N(1+β ′2)N+1

× [cosγ ′δµ,0 +
1√
2

sinγ ′(δµ,2 + δµ,−2)]

× {2[1+β β ′cos(γ − γ ′)]+ (N− 1)β ′[β cos(γ − γ ′)−β ′]} .

(C) φ ′
g(N + 1)→ φe(N)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

1.2

0.507 0.510

0.0

0.3

 N
 N+1

 

 

e

U(5)-SU(3)

 

 

e

FIG. 1: Evolution of the classical order parameter βe in the U(5)-

SU(3) transition for N = 10 with the inset showing the critical be-

havior of βe.

For (p, t) transfer reaction between ground bands and ex-

cited bands, one can find

〈N;βv|s|N + 1;g′〉 (41)

=
[1+β β ′ cos(γ − γ ′)]N−1

(
√

1+β 2)N
(

1
√

1+β ′2
)N+1

×
√

N(N + 1)[β ′ cos(γ − γ ′)−β ] ,

〈N;βv|dµ |N + 1;g′〉 (42)

=
√

N(N + 1)
(1+β β ′ cos(γ − γ ′))N−1

(
√

1+β 2)N

× (
1

√

1+β ′2
)N+1[β ′ cos(γ − γ ′)−β ]

× [β ′ cosγ ′δµ,0 +
β ′ sinγ ′√

2
(δµ,2 + δµ,−2)] ,

〈N;γv|s|N + 1;g′〉 (43)

=
√

N(N + 1)(β ′+β 2β ′)sin(γ ′− γ)

× [1+β β ′ cos(γ − γ ′)]N−1

[

√

(1+β 2)(1+β ′2)]N+1

,

〈N;γv|dµ |N + 1;g′〉 (44)

=
√

(N + 1)N(1+β 2)β ′ sin(γ ′− γ)

× [β ′ cosγ ′δµ,0 +
1√
2

β ′ sin γ ′(δµ,2 + δµ,−2)]

× [1+β β ′ cos(γ − γ ′)]N−1

(
√

1+β 2)N

1

(

√

1+β ′2)N+1

,
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FIG. 2: (a) Evolution of the classical element F1 in the U(5)-SU(3) transition for N = 10 with the inset showing the behavior in the vicinity of

the critical point. (b) The same as in (a) but for F2. (c) The same as in (a) but for F3. (d) The same as in (a) but for F4.

〈N;2βv|s|N + 1;g′〉 (45)

=

√

(N + 1)N(N − 1)

2
[β ′ cos(γ − γ ′)−β ]2

× [1+β β ′ cos(γ − γ ′)]N−2

√

(1+β 2)N(1+β ′2)N+1

,

〈N;2βv|dµ |N + 1;g′〉 (46)

=

√

(N + 1)N(N − 1)

2
[β ′ cos(γ − γ ′)−β ]2

× [β ′ cosγ ′δµ,0 +
1√
2

β ′ sinγ ′(δµ,2 + δµ,−2)]

× [1+β β ′ cos(γ − γ ′)]N−2

√

(1+β 2)N(1+β ′2)N+1

.

The classical matrix elements of the s-boson operator for (t,

p) reactions shown in (33), (35) and (39) had already been de-

rived in [8]. Here we have given also those of the d-boson and

included the γ-dependence for both (p, t) and (t, p) transfer

reactions. We note that while for ground to ground transitions

(A) there is no difference in the matrix elements for (p, t) and

(t, p) reactions, for transitions between ground and excited

bands there is a difference, already noted in ([9], p. 82), and

for this reason we have given explicitly both in (B) and (C).

In order to connect the intensities of transfer reaction to

QPTs, we return to the quantum Hamiltonian Ĥ of Eq. (18),

and write down the potential energy surface corresponding to

it

V (β ,γ)≡ 〈N;g|Ĥ(η , χ)|N;g〉

=
ε0Nβ 2

1+β 2
[(1−η)− (χ2+ 1)

η

4N
]− 5ε0η

4(1+β 2)

−ε0η(N − 1)

4(1+β 2)2
[4β 2 − 4

√

2

7
χβ 3cos3γ +

2

7
χ2β 4] . (47)

This potential function can be used to study QPTs between

all three phase of the IBM. To this end, one minimizes the

potential function, Eq. (47), with respect to the quadrupole

deformation parameters β and γ , obtaining the equilibrium

classical order parameters, βe and γe. The ground state energy

for a given value of η , χ is Eg ≡ V (η ,χ ,βe,γe). It has been

found that for the potential (47) either γe = 0◦ (χ < 0) or γ
independent (χ = 0). We henceforth set γ = 0◦ and study only

its β -dependence.

In Fig. 1, we show the behavior of the order parameter βe as

a function of η for fixed N (or N+1). This behavior is typical

of a 1st order transition, U(5)−SU(3), with a discontinuity

in βe, at the critical value ηc. The critical value is given by

ηc = 8/17 for N → ∞. Using the formulas (41-46) for γ =
γ ′ = 0◦ we can calculate the evolution of the matrix elements
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FIG. 3: Quantal-classical correspondence for the matrix elements of s, dµ appropriate to (p, t) reaction intensities. The inset in panel (a) shows

the critical behavior of βe.
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of s, d (or s†, d
†
µ ) as a function of η . All of them appear to

have discontinuities at η = ηc. In Fig. 2(a)-(d), we show the

behavior of

F1 ≡ |〈N;g|s|N + 1;g′〉|2 = |〈N + 1;g′|s†|N;g〉|2, (48)

F2 ≡ |〈N;g|d0|N + 1;g′〉|2 = |〈N + 1;g′|d†
0 |N;g〉|2, (49)

F3 ≡ |〈N;βv|s|N + 1;g′〉|2, (50)

F4 ≡ |〈N + 1;β ′
v|s†|N;g〉|2 (51)

as a function of η . These matrix elements are proportional to

intensities of transfer (p, t) and (t, p) reactions 0+1 → 0+1 , 0+1 →
2+1 , and 0+1 → 0+2 . Particularly important is the behavior of F2

which is proportional to the square of the order parameter, β 2
e .

C. Quantal-classical correspondence

Since both the quantal and classical matrix elements can be

calculated, it is of interest to study the quantal-classical corre-

spondence. To this end, the quantal reduced matrix elements

can be calculated as described in Sect. IIA, while the classical

matrix elements as described in Sect. IIB. However, the latter

are calculated in the intrinsic frame and must be converted to

the laboratory frame before making comparison. For a general

tensor operator of rank λ , the conversion is given by

〈I′M′K′|T λ
µ |IMK〉 (52)

=

√

2I+ 1

2I′+ 1

√

1

(1+ δK,0)(1+ δK′,0)
〈IMλ µ |I′M′〉

× ∑
v

[〈IKλ v|I′K′〉〈φK′ |T λ
v |φK〉

+ (−)I+K〈I−Kλ v|I′K′〉〈φK′ |T λ
v |φK〉] ,

which yields, using the Wigner-Eckart theorem,

〈I′K′||T λ ||IK〉

=

√

2I+ 1

(1+ δK,0)(1+ δK′,0)
∑
v

[〈IKλ v|I′K′〉〈φK′ |T λ
v |φK〉

+ (−)I+K〈I −Kλ v|I′K′〉〈φK′ |T λ
v |φK〉] . (53)

The quantal-classical correspondence is shown in Fig. 3 and

4.

From these figures one can see that the quantal and classical

matrix elements of the operators s and s† are in close corre-

spondence to each other. The matrix elements of the operator

d and d† in the ground band are also in close correspondence

to each other, but those in the excited bands are in close corre-

spondence in the deformed phase, N = 11−14, but not in the

spherical phase, N = 5−10 as shown in Fig. 4(e) and Fig. 4(f).

This is due to the fact that the intrinsic states, Eqs. (25) and

(27), describing β and γ vibrations are appropriate only in the

deformed phase. Moreover, in Fig. 4(d), the quantal matrix

elements of the operator d† have, in the spherical phase, a

non-zero but finite value and appear to be of the same order

of magnitude of the classical matrix elements in the deformed

phase. However, this is a finite N effect, since in the figure

only the classical values up to N = 14 are plotted. The squared

classical matrix elements diverge as N for N → ∞, which in-

dicates that the relative discrepancy between the classical and

exact results shown in Fig. 4(d) could be ignored in the large-

N limit. Also it should be noted that the matrix elements of s,

dµ , s†, d
†
µ can be evaluated explicitly in the symmetry limits

U(5) and SU(3) [9]. For example, the matrix elements of s for

ground to ground transition are given by

U(5) : |〈N;g|s|N + 1;g′〉|2 = N + 1 (54)

SU(3) : |〈N;g|s|N + 1;g′〉|2 = (N + 1)
2N + 3

3(2N+ 1)
. (55)

These limiting values are also shown in Figs. 3 and 4.

III. COMPARISON WITH EXPERIMENT

In order to test the features of the phase transitional be-

havior of two-nucleon transfer intensities, we have analyzed

experiments in Gd, Sm and Nd [15–24]. To this end, we have

first diagonalized the Hamiltonian, Eq. (18), using the pro-

gram IBAR [25]. The three parameters ε0, η , χ are obtained

for each nucleus by fitting the low-lying levels. For compari-

son with previous calculations one may also consider the de-

duced parameters in the consistent-Q parametrization [26]

Ĥ = εd n̂d −κQ̂χ · Q̂χ (56)

εd = ε0(1−η), κ = ε0η/4N .

With the wave functions so obtained, we calculate the inten-

sities of two-neutron transfer reactions using the operators of

Sect. II.

The parameters ε0, η , χ are given in Table I for Gd, II for

Sm and III for Nd. In the tables we show also the deduced pa-

rameters εd , κ . Those for Gd were already given in Ref. [11].

A comparison with experiments is given in Fig. 5. One can

see that the Hamiltonian (18) provides an excellent descrip-

tion of the energies except for the state 0+3 . Several sugges-

tions have been made for the nature of this state, including a

mixed symmetry state [27] and an additional degree of free-

dom, s′ boson [28], related to a pair-vibration. In Fig. 5(d)

the calculated values of βe are also shown as a function of

neutron number. These values show clearly a transitional be-

havior. These values must be multiplied by a scale to convert

them to the Bohr definition (see [9], p. 105).

A. Gd nuclei

Experimental data for (p, t) and (t, p) reactions are given in

Tables IV and V. The angle θ ◦
Lab at which the cross section

was measured is also given for clarity. A comparison with

calculations is shown in Figs. 6 and 7. From these figures one

can see that intensities to 0+1 , 2+1 , 0+2 , 2+2 are well described

by the calculations, especially for (p, t) reactions as shown
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FIG. 5: Comparison between the experimental (symbols) energies of the low-lying levels in the Gd, Sm and Nd nuclei [15–24] and the

calculated (lines) energies with the Hamiltonian (18). The calculated βe values as a function of neutron number are given in panel (d).

TABLE I: Parameters adopted in calculations for the Gd isotopes. Deduced parameters are separated by a line.

Neutron number 84 86 88 90 92 94 96 98

(η , χ) (0.27, -1.32) (0.3, -1.32) (0.41, -1.32) (0.59, -1.1) (0.72, -0.86) (0.75, -0.8) (0.84, -0.53) (0.98, -0.3)

ε0 (in Mev) 1.272 1.127 0.92 1.204 1.469 1.499 1.612 1.794

εd (in Mev) 0.928 0.789 0.543 0.494 0.411 0.375 0.258 0.036

κ (in Mev) 0.0107 0.0094 0.0094 0.0161 0.0220 0.0216 0.02418 0.0293

TABLE II: Same as Table I but for the Sm isotopes.

Neutron number 84 86 88 90 92 94 96 98

(η , χ) (0.45, -0.3) (0.48, -1.0) (0.49, -1.2) (0.6, -1.22) (0.69, -1.24) (0.71,-1.32) (0.73,-1.32) (0.75,-1.32)

ε0 (in Mev) 1.736 1.735 1.308 1.284 1.410 1.463 1.559 1.667

εd (in Mev) 0.955 0.902 0.667 0.513 0.437 0.452 0.421 0.416

κ (in Mev) 0.0279 0.026 0.0178 0.0192 0.0221 0.0231 0.0219 0.0223

TABLE III: Same as Table I but for the Nd isotopes.

Neutron number 84 86 88 90 92 94 96

(η , χ) (0.45, -0.3) (0.46, -1.32) (0.568, -1.0) (0.632, -1.0) (0.75, -1.32) (0.77, -1.32) (0.79, -1.32)

ε0 (in Mev) 1.540 1.416 1.570 1.163 1.203 1.319 1.385

εd (in Mev) 0.847 0.765 0.68 0.428 0.301 0.303 0.291

κ (in Mev) 0.029 0.023 0.028 0.020 0.0226 0.0231 0.0228



8

84 88 92 96
0

300

600

900
Ia 1 (a

rb
itr

ar
y 

un
its

)  Gd
 IBM

Neutron Number

(a)
84 88 92 96

0

100

200

300  Gd
 IBM

Neutron Number

Ia 2 (a
rb

itr
ar

y 
un

its
)

(b)

84 88 92 96
0

60

120

180

Neutron Number

Ia 3 (a
rb

itr
ar

y 
un

its
)  Gd

 IBM

 

 

(c)

84 88 92 96

0

200

400

600

Ia 4 (a
rb

itr
ar

y 
un

its
)  Gd

 IBM

Neutron Number

(d)
84 88 92 96

0

30

60

90

Ia 5(a
rb

itr
ar

y 
un

its
)  Gd

 IBM

Neutron Number

(e)
84 88 92 96

0

30

60

90

Neutron Number

Ia 6 (a
rb

itr
ar

y 
un

its
)  Gd

 IBM

 

 

(f)

FIG. 6: Comparison between calculated and experimental (p, t) transfer intensities for Gd. Here the values of the overall scale parameters taν

and tbν
in the transfer operators are obtained by fitting the experimental data and given as taν = tbν

= 3.46 (arbitrary units).
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FIG. 7: Comparison between calculated and experimental (t, p) transfer intensities for Gd. Here the values of the overall scale parameters taν

and tbν
in the transfer operators are obtained by fitting the experimental data and given as taν = 2.24 and tbν

= 0.63 (arbitrary units).
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TABLE IV: Available experimental data for (p, t) cross sections in the

even Gd isotopes (units µb/sr) [29]. As indicated in [29], the relative

errors within each nucleus are about 7% for the strong transitions

(>10 µb/sr) and 25% for the weak transitions (<10 µb/sr).

A+1 → A 152 → 150 154 → 152 156 → 154 158 → 156 160 → 158 θ ◦
Lab

01 → 01 540 308 570 624 586 30

01 → 02 60 274 90 64 ≤ 1 30

01 → 03 8 100 - 12 - 30

01 → 21 26 169 290 295 259 5

01 → 22 <1 64 40 30 - 5

01 → 23 - 67 70 65 - 5

TABLE V: Available experimental data for (t, p) cross sections in the

even Gd isotopes (units µb/sr) [30–32]. Although not explicitly indi-

cated, an uncertainty of 7% have been given to the strong transitions

(>10 µb/sr) and 25% to the weak transitions (<10 µb/sr) as in the (p,

t) reactions shown above.

A → A+1 152 → 154 154 → 156 156 → 158 158 → 160 160 → 162 θ ◦
Lab

01 → 01 267 290 255 233 188 30

01 → 02 162 3 20 - 39 30

01 → 03 138 50 5 22 18 30

01 → 21 17 11 24 21 19 30

01 → 22 9 - - 4 3 30

01 → 23 - 3 - - - 60

in Fig. 6(a, b d, e), where the transitional signatures around

the neutron number Nn = 90 clearly appear in both theory and

experiment. In contrast, those corresponding to 0+3 and 2+3 in

experiments can not be well reproduced by the calculations,

which is actually consistent with the conclusion drawn from

Fig. 5(a).

B. Sm nuclei

The parameters ε0, η , χ in the Hamiltonian for these nuclei

are given in Table II. Experimental data for (p, t) and (t, p) re-

TABLE VI: Available experimental data for (p, t) cross sections

in the even Sm isotopes, σmax(units µb/sr) [33]. * denotes

data measured at θ ◦
Lab = 12 1

2

◦
and † denotes data measured at

θ ◦
Lab = 30◦. The relative errors for the transition A+ 1 → A with

A = 146, 148, 150, 152 are assumed to be 3.0%, 13.0%, 6.9%,

3.9% [33].

A+1 → A 148 → 146 150 → 148 152 → 150 154 → 152 θ ◦
Lab

01 → 01 986 1166 488 739 25

01 → 02 - 217 414 243† 25

01 → 03 - 12 278 - 25

01 → 21 52 82 162 285 10

01 → 22 13 - 68 65 10

01 → 23 23* - 75 54* 10

TABLE VII: Available experimental data for (t, p) cross sections in

the even Sm isotopes (units µb/sr) [34]. An uncertainty of 25% is

given to each transition [34].

A → A+1 148 → 150 150 → 152 152 → 154 154 → 156 θ ◦
c.m.

01 → 01 570 190 300 300 27.8

01 → 02 140 140 30 20 27.8

01 → 03 - 130 100 - 27.8

01 → 21 170 40 140 150 5.1

01 → 22 50 50 - 40 5.1

01 → 23 - - - - 5.1

TABLE VIII: Available experimental data for (p, t) cross sections in

the even Nd isotopes (units µb/sr) [35]. Errors quoted in [35] are

shown in parentheses.

A → A+1 146 → 144 148 → 146 θ ◦
Lab

01 → 01 639(5) 827(12) 10

01 → 02 28(1) - 10

01 → 03 4(0.4) - 10

01 → 21 9.2(0.6) 98(4) 10

01 → 22 37(1) 3.6(0.8) 10

01 → 23 33(1) 10(1) 10

actions are given in Tables VI and VII, and compared with cal-

culation in Figs. 8 and 9. Similarly, it can be found from these

figures that the phase transitional features in the Sm isotopes

for the lowest 0+, 2+ states can be generally well produced by

the theoretical calculations, while for those corresponding to

0+3 , the calculated transitional amplitudes around Nn = 90 are

evidently smaller than those present in experiments as those in

the Gd isotopes, which further suggests that partial 0+3 and 2+3
states in these deformed rare-earth nuclei cannot be accom-

modated by the present model space.

C. Nd nuclei

The parameter ε0, η , χ for Nd are given in Table III. A con-

clusion similar to that in Gd and Sm can be drawn here for the

state 0+3 . Experimental data for (p, t) and (t, p) reactions are

given in Table VIII and IX. A comparison with calculated (p,

t) intensities is shown in Fig. 10, where only several data for

spherical Nd nuclei are available in experiments. In Fig. 11,

we show instead a comparison with calculated (t, p) ratios of

intensities since only intensities relative to the ground state

have been reported in experiments. [36].

IV. SUMMARY AND CONCLUSION

In this work, a systematical analysis of the two-neutron

transfer intensities as a possible signature of the U(5)-SU(3)

shape phase transition has been carried in the IBM in both

classical way and exactly numerical calculation. Specifically,

the classical elements of the two nucleon transfer operator

related to the low-lying 0+ and 2+ states are derived and
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FIG. 8: Comparison between calculated and experimental (p, t) transfer intensities for Sm. Here the values of the overall scale parameters taν

and tbν
in the transfer operators are obtained by fitting the experimental data and given as taν = 4.47 and tbν

= 3.16 (arbitrary units).
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FIG. 9: Comparison between calculated and experimental (t, p) transfer intensities for Sm. Here the values of the overall scale parameters in

the transfer operators are obtained by fitting the experimental data and given as taν = 2.45 and tbν
= 1.73 (arbitrary units).
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FIG. 10: Comparison between calculated and experimental (p, t) transfer intensities for Nd. Here the values of the overall scale parameters in

the transfer operators are obtained by fitting the experimental data and given as taν = tbν
= 5.48 (arbitrary units).
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FIG. 11: Comparison between calculated and experimental (t, p) transfer intensities ratios for Nd. Ratios are independent of scale parameter.
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TABLE IX: Available experimental data for (t, p) cross sections in

the even Nd isotopes [36]. The results have been normalized to that

for 01 → 01 in each case. Although not explicitly indicated, an un-

certainty of 25% is given to each (t, p) transition as in Table VII.

A → A+1 144 → 146 146 → 148 148 → 150 150 → 152 θ ◦
c.m.

01 → 01 100 100 100 100 27.8

01 → 02 - 15 128 72 27.8

01 → 03 - - - - -

01 → 21 45 46 55 40 5.1

01 → 22 - 30 53 58 5.1

01 → 23 - - - - -

the resulting phase transitional characteristics have been re-

vealed through the quantal-classical correspondence. Experi-

mental data of two-neutron transfer intensities in Gd, Sm, Nd

show clear evidence for the occurrence of a quantum phase

transition between spherical (U(5)) and axially deformed

(SU(3)) shape, in agreement with previous studies of two-

neutron separation energies, S2n, electromagnetic transition

rates, B(E2;2+1 → 0+1 ), and energy ratios E(4+1 )/E(2+1 ). The

evidence is particularly clear for the intensity I(N + 1,0+1 →
N,2+1 ) which is proportional to the square of the order param-

eter, β 2
e . Transitions to 0+1 , 2+1 , 0+2 , 2+2 states follow closely

the expected behavior for the phase transition both in (p, t)

and (t, p) reactions. Transitions to 0+3 and 2+3 do not follow

the expected behavior indicating that these states are outside

the model space of IBM-1 used in this article.

Two-nucleon transfer reactions appear to be an excellent

tool to test phase transitional behavior, since they are sen-

sitive to the deformation of the initial and final state and to

their differences. This result was already given in [8] and it is

strengthened by the present calculations. Finally, the study re-

ported here can be extended to two-proton transfer reactions,

and two-proton and two-neutron transfer reactions.

ACKNOWLEDGEMENTS

Acknowledgments

We wish to thank C. Beausang for stimulating this work,

and A. Leviatan for useful conversations on the angular mo-

mentum projection method. This work was supported in part

by US department of Energy Grant No. DE-FG-02-91ER-

40608. One of us (Y.Z.) acknowledges support from the Nat-

ural Science Foundation of China (No. 11375005).



13

[1] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009).

[2] P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155

(2010).

[3] F. Iachello and M. A. Caprio, in "Understanding Quantum

Phase Transitions", L. D. Carr, CRC Press, Boca Raton (2011)

pp. 673-700.

[4] F. Iachello, Rivista del Nuovo Cimento, Vol. 34, N. 10, 617

(2011).

[5] F. Iachello, Phys. Rev. Lett. 85, 3580 (2000).

[6] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

[7] F. Iachello and N. V. Zamfir, Phys. Rev. Lett. 92, 212501

(2004).

[8] R. Fossion, C. E. Alonso, J. M. Arias, L. Fortunato, and A.

Vitturi, Phys. Rev. C 76, 014316 (2007).

[9] F. Iachello, and A. Arima, The Interacting Boson Model (Cam-

bridge University Press, Cambridge, 1987).

[10] A. Arima and F. Iachello, Phys. Rev. C 16, 2085 (1977).

[11] E. A. McCutchan, N. V. Zamfir, and R. F. Casten, Phys. Rev. C

69, 064306 (2004).

[12] R. Bijker and A. E. L. Dieperink, Phys. Rev. C 26, 2688 (1982).

[13] A. Leviatan, Z. Phys. A 321,467 (1985).

[14] P. Van Isacker and J. Q. Chen, Phys. Rev. C 24, 684 (1981).

[15] A. A. Sonzogni, Nucl. Data Sheets 93, 599 (2001).

[16] L. K. Peker and J. K. Tuli, Nucl. Data Sheets 82, 187 (1997).

[17] N. Nica, Nucl. Data Sheets 117, 1 (2014).

[18] S. K. Basu and A. A. Sonzogni, Nucl. Data Sheets 114, 435

(2013).

[19] M. J. Martin, Nucl. Data Sheets 114, 1497 (2013).

[20] C. W. Reich, Nucl. Data Sheets 110, 2257 (2009).

[21] C. W. Reich, Nucl. Data Sheets 113, 2537 (2012).

[22] R. G. Helmer, Nucl. Data Sheets 101, 325 (2004).

[23] C. W. Reich, Nucl. Data Sheets 105, 557 (2005).

[24] C. W. Reich, Nucl. Data Sheets 108, 1807 (2007).

[25] R. J. Casperson, Comput. Phys. Comm. 183, 1029 (2012).

[26] D. D. Warner and R. F. Casten, Phys. Rev. C 28, 1798 (1983).

[27] O. Scholten, K. Heyde, P. Van Isacker, and T. Otsuka, Phys.

Rev. C 32, 1729 (1985).

[28] P. Van Isacker, K. Heyde, M. Waroquier and G. Wenes, Nucl.

Phys. A 380, 383 (1982).

[29] D. G. Fleming, C. Günther, G. Hagemann, B. Herskind, and Per

O. Tojm, Phys. Rev. C 8, 806 (1973).

[30] M. A. M. Shahabuddin, D. G. Burke, I. Nowikow, and J. C.

Waddington, Nucl. Phys. A 340, 109 (1980).

[31] G. Lovhoiden, T. F. Thorsteinsen, E. Andersen, M. F. Kiziltan,

and D. G. Burke, Nucl. Phys. A 494,157 (1989).

[32] G. Lovhoiden, T. F. Thorsteinsen, and D. G. Burke, Phys. Scr.

34, 691 (1986).

[33] P. Debenham and N. M. Hintz, Nucl. Phys. A 195, 385 (1972).

[34] J. H. Bjerregaard, O. Hansen, O. Nathan, and S. Hinds, Nucl.

Phys. 86, 145 (1966).

[35] V. Yu. Ponomarev, M. Pignanelli, N. Blasi, A. Bontempi, J. A.

Bordewijk, R. De Leo, G. Graw, M. N. Harakeh, D. Hofer, M.

A. Hofstee, S. Micheletti, R. Perrino, and S. Y. van der Werf,

Nucl. Phys. A 601, 1 (1996).

[36] R. Chapman, W. McLatchie, and J. E. Kitching, Nucl. Phys. A

186, 603 (1972).


