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The Pauli exclusion principle induces a repulsion between composite systems of identical fermions such as
colliding atomic nuclei. Our goal is to study how heavy-ion fusion is impacted by this “Pauli repulsion”. We
propose a new microscopic approach, the density-constrained frozen Hartree-Fock method, to compute the bare
potential including the Pauli exclusion principle exactly. Pauli repulsion is shown to be important inside the bar-
rier radius and increases with the charge product of the nuclei. Its main effect is to reduce tunnelling probability.
Pauli repulsion is part of the solution to the long-standing deep sub-barrier fusion hindrance problem.

The idea that identical fermions cannot occupy the same
quantum state was proposed by Stoner [1] and generalized by
Pauli [2]. Known as the Pauli exclusion principle, it was at
first empirical, but is now explained by the spin-statistic the-
orem in quantum field theory [3, 4]. The importance of the
“Pauli exclusion principle” cannot be overstated. For instance,
it is largely responsible for the stability of matter against col-
lapse, as demonstrated by the existence of white dwarfs. It
is also expected to play a crucial role in the dynamics of sys-
tems of identical fermions. For instance, it could impact quan-
tum tunnelling of complex systems which remains one of the
greatest challenges of the quantum many-body problem. This
work addresses the question of the effect of the Pauli exclu-
sion principle on tunnelling of complex systems in the specific
framework of nuclear physics which offers an ideal ground to
test concepts of the quantum many-body problem.

The Pauli exclusion principle generates a repulsion between
composite systems of identical fermions at short distance. For
example, it repels atomic electron clouds in ionic molecules
due to the fermionic nature of the electron. Another exam-
ple is the hard-core repulsion between two nucleons induced
by identical quarks of the same color present in both nucle-
ons. Naturally, a similar effect is expected to occur between
atomic nuclei which are composite systems of nucleons. In-
deed, it has been predicted that the Pauli exclusion principle
should induce a repulsion (called “Pauli repulsion” hereafter)
between strongly overlapping nuclei [5].

The Pauli repulsion should then be included in the nucleus-
nucleus potentials used to model reactions such as (in)elastic
scattering, (multi)nucleon transfer, and fusion. However,
Pauli repulsion is usually neglected in these models: it has
been argued that the outcome of a collision between nuclei is
mostly determined at a distance where the nuclei do not over-
lap much and thus the effects of the Pauli exclusion principle
are minimized. This argument is based on the assumption that
nuclei do not necessarily probe the inner part of the fusion bar-
rier. However, at energies well above the barrier, the system
could reach more compact shapes where one cannot neglect
the effect of the Pauli principle anymore, as was shown by
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several authors in the 1970’s [5–9]. Similarly, for deep sub-
barrier energies the inner turning-point of the fusion barrier
entails significant overlap between the two nuclei [10, 11].

Using a realistic microscopic approach to compute nucleus-
nucleus bare potentials, we show that, in fact, the Pauli repul-
sion plays an important role on fusion at deep sub-barrier en-
ergies. In particular, it provides a natural (though only partial)
explanation for the experimentally observed deep sub-barrier
fusion hindrance [12–14] (see Ref. [15] for a review) which
has led to various theoretical interpretations [13, 16–21], al-
though none of them directly consider Pauli repulsion as a
possible mechanism.

In order to investigate the effect of Pauli repulsion on
heavy-ion fusion, we introduce a novel microscopic method
called density-constrained frozen Hartree-Fock (DCFHF) to
compute the interaction between nuclei while accounting ex-
actly for the Pauli exclusion principle between nucleons. The
microscopically derived bare nucleus-nucleus potential in-
cluding Pauli repulsion is then used to study deep sub-barrier
fusion. For simplicity, we focus on systems with doubly-
magic nuclei which are spherical and non-superfluid. As an
example, 16O+16O, 40,48Ca+40,48Ca, 16O,48Ca+208Pb reac-
tions are studied theoretically and compared with experimen-
tal data.

To avoid the introduction of new parameters, we adopt the
idea of Brueckner et al. [22] to derive the bare potential from
an energy density functional (EDF) E[ρ] written as an integral
of an energy density H [ρ(r)], i.e.,

E[ρ] =
∫

dr H [ρ(r)] . (1)

The bare potential is obtained by requiring frozen ground-
state densities ρi of each nucleus (i = 1,2) which we com-
pute using the Hartree-Fock (HF) mean-field approxima-
tion [23, 24]. The Skyrme EDF [25] is used both in HF calcu-
lations and to compute the bare potential. It accounts for the
bulk properties of nuclear matter such as its incompressibility
which is crucial at short distances [16, 22, 26]. Neglecting the
Pauli exclusion principle between nucleons in different nuclei
leads to the usual frozen Hartree-Fock (FHF) potential [27–
30]

VFHF(R)=
∫

dr H [ρ1(r)+ρ2(r−R)]−E[ρ1]−E[ρ2], (2)
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where R is the distance vector between the centres of mass of
the nuclei. The FHF potential, assumed to be central, can then
directly be used to compute fusion cross-sections [31–33].

Our new DCFHF method is the static counter-part of the
density-constrained time-dependent Hartree-Fock approach
developed to extract the nucleus-nucleus potential of dynami-
cally evolving systems [34]. In particular, this approach shows
that the Pauli exclusion principle splits orbitals such that some
states contribute attractively (bounding) and some repulsively
(antibounding) to the potential [35]. In order to disentangle
effects of the Pauli exclusion principle from the dynamics, we
need to investigate the bare potential without polarisation ef-
fects. The dynamics can be included in a second step via,
e.g., coupled-channels [31] or TDHF [28, 36, 37] calculations.
A discussion about the use of DCFHF potentials in coupled-
channels calculations can be found in supplemental material
[URL].

In the present method, it is important that the nuclear den-
sities remain frozen as the densities of the HF ground-states
of the collision partners. Consequently, the DCFHF approach
facilitates the computation of the bare potential by using the
self-consistent HF mean-field with exact frozen densities. The
Pauli exclusion principle is included exactly by allowing the
single-particle states, comprising the combined nuclear den-
sity, to reorganize to attain their minimum energy config-
uration and be properly antisymmetrized as the many-body
state is a Slater determinant of all the occupied single-particle
wave-functions. The HF minimization of the combined sys-
tem is thus performed subject to the constraint that the local
proton (p) and neutron (n) densities do not change:

δ 〈 H− ∑
q=p,n

∫
dr λq(r) [ρ1q(r)+ρ2q(r−R)] 〉= 0 , (3)

where the λn,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton densities. See Sup-
plemental Material [URL] for details of the implementation of
the DCFHF method. This equation determines the state vector
(Slater determinant) |Φ(R)〉. The DCFHF potential, assumed
to be central, is then defined as

VDCFHF(R) = 〈Φ(R)|H|Φ(R)〉−E[ρ1]−E[ρ2] . (4)

FHF and DCFHF calculations of bare nucleus-nucleus po-
tentials were done in a three-dimensional Cartesian geometry
with no symmetry assumptions using a static version of the
code of Ref. [42] and using the Skyrme SLy4d interaction [43]
which has been successful in describing various types of nu-
clear reactions [30]. The three-dimensional Poisson equation
for the Coulomb potential is solved by using Fast-Fourier
Transform techniques and the Slater approximation is used
for the Coulomb exchange term. The static HF equations and
the DCFHF minimizations are implemented using the damped
gradient iteration method. The box size used for all the cal-
culations was chosen to be 60× 30× 30 fm3, with a mesh
spacing of 1.0 fm in all directions. These values provide very
accurate results due to the employment of sophisticated dis-
cretization techniques [44, 45].

The FHF (solid line) and DCFHF (dashed line) potentials
are shown in Figs. 1(a-c) for 40Ca+40Ca, 48Ca+48Ca, and

16O+208Pb systems, respectively. We observe that the Pauli
exclusion principle (present only in DCFHF) induces a repul-
sion at short distance in the three systems. The resulting ef-
fects are negligible outside the barrier and relatively modest
near the barrier. However, the impact is more important in the
inner barrier region, with the production of a potential pocket
at short distance. Interestingly, the most important effect of
Pauli repulsion is to increase the barrier width. It is then ex-
pected to reduce the sub-barrier tunneling probability as the
latter decreases exponentially with the barrier width.

The impact of Pauli repulsion on the nucleus-nucleus po-
tential varies with the systems. In 16O+16O (see Fig. 2), the
pocket height is negative and Pauli repulsion is expected to
have a small impact on fusion in this system, except poten-
tially at astrophysical energies. However, the pocket becomes
shallower with increasing charge product Z1Z2 and almost dis-
appears in 48Ca+208Pb (see Fig. 3). This is consistent with the
fact that more nuclear overlap (and thus a larger Pauli repul-
sion) is required to compensate the larger Coulomb repulsion
between the fragments. However, the two-body picture for
such heavy systems is questionable. Fig. 3 shows indeed an
extreme case where the DCFHF calculation predicts that fu-
sion is impossible at 3% below the barrier. In fact, a smooth
transition toward an adiabatic potential for the compound sys-
tem is expected [20] which would allow fusion to occur at
lower energies. Finally, the Pauli repulsion not only depends
on Z1Z2, but also on the number of neutrons. This is illus-
trated in Fig. 4 which compares the DCFHF potentials for the
three 40,48Ca+40,48Ca systems. At touching distance, addi-
tional neutrons increase the barrier radius (due to the neutron
skin) and thus decrease its height. For this reason, 48Ca+48Ca
has the lowest barrier and 40Ca+40Ca the largest one. How-
ever, 48Ca+48Ca also exhibits the strongest Pauli repulsion
of the three systems. This is interpreted as an effect of the
larger number of neutrons overlapping at short distance, thus
increasing the Pauli repulsion. Note also that, once dynamics
is included, fusion in these systems may behave differently
and static effects on the bare potential could be washed out
by the dynamics [33]. In particular, fusion in the 40Ca+48Ca
system is expected to be strongly affected by transfer chan-
nels [40, 46], a feature which has only recently been studied
in microscopic approach [47].

In principle, the Pauli repulsion is expected to be energy
dependent. One source of energy dependence is the dimin-
ishing of the overlap between wave functions with relative ki-
netic momentum at higher energies reducing the Pauli repul-
sion [5, 6, 8, 48]. Other sources are the dependence of the EDF
on the current density (needed for Galilean invariance) [6] and
non-local effects of the Pauli exclusion principle leading to an
energy dependence of the local equivalent potential [49, 50].
These effects, however, are expected to impact the Pauli repul-
sion at energies much higher than the barrier (at least twice the
barrier energy in 16O+16O [5, 6]), and can then be neglected
in near barrier fusion studies.

We have also tested other methods to account for Pauli re-
pulsion in the bare potential. For instance, antisymmetrizing
overlapping ground-state wave-functions [5–7] can be done
with a Gram-Schmidt procedure. Although the resulting po-
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FIG. 1. (Color online) (a-c) Nucleus-nucleus potential without (FHF) and with (DCFHF) Pauli exclusion principle between nucleons of
different nuclei. Potentials from a Gram-Schmidt antisymmetrization (dotted-dashed line) and from DCFHF without rearrangement of the spin-
orbit density (thin dashed line) are shown in panel (a). M3Y (dotted line) and M3Y+rep (dotted-dashed line) phenomenological potentials [38]
are shown in panel (c). (d-f) Experimental [13, 39–41] and theoretical (coupled-channels calculations with couplings to low-lying collective
2+ and/or 3− states) fusion cross-sections σ f us. versus centre of mass energy Ec.m.. (g-i) Logarithmic slopes of σ f us.Ec.m. versus Ec.m.−VB
where VB is the barrier energy. In (g-i), FHF and DCFHF cross-sections are obtained without couplings, the latter being included via a shift in
Ec.m. (see text).

tential properly accounts for the Pauli exclusion principle,
it leads to much higher repulsion as illustrated in Fig. 1(a)
(dotted-dashed line) for the 40Ca+40Ca system in which the
potential pocket, and therefore the fusion barrier, simply dis-
appear. Let us use a simple model to explain the origin of this
large repulsion. Consider two single-particle wave functions
ϕ1,2 belonging to the HF ground-states of the two different
nuclei and which have a small overlap in the neck region at
r0 only: ϕ∗1 (r)ϕ2(r) ' αδ (r− r0). By definition, the total
frozen density of these two nucleons is ρF = |ϕ1|2 + |ϕ2|2.
The evaluation of observables, however, requires antisym-
metrized wave-functions such as ϕ̃±=N±(ϕ1±ϕ2) with nor-
malization coefficients N± = (2±α ±α∗)−1/2 and overlaps

〈ϕ̃−|ϕ̃+〉= 0. The corresponding density reads

ρ̃ = |ϕ̃+|2 + |ϕ̃−|2 ' ρF −
1
2
(α +α

∗)2
δ (r− r0).

It is reduced in the neck compared to the frozen density and
thus leads to a smaller nuclear attraction between the nuclei or,
equivalently, to a spurious repulsion between the fragments as
seen in Fig. 1(a). Naive antisymmetrization procedures are
then not compatible with the frozen density picture. This was
also recognized in the earlier work concerning α-nucleus scat-
tering studies [51], where specialized normalization operators
were developed to reconstruct the states following a Gram-
Schmidt orthogonalization. However, these methods could
only be applied using semi-analytic methods. The DCFHF
achieves this without any approximation. These methods have
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also been subsequently criticized by groups performing res-
onating group method (RGM) calculations [52–55]. In princi-
ple, RGM does provide a theoretical approach to construct in-
ter nuclear potentials with full antisymmetrization. However,
such calculations have thus far been limited to light systems
and direct reactions due to their complexity.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kinetic
energy density τ(r) (e.g., via the Thomas-Fermi model) [6–
8, 56, 57]. This method would be valid if the effect of the Pauli
exclusion principle was only to rearrange the kinetic energy
term h̄2

2m τ without impacting other terms of the functional. In
fact, the EDF also depends on τ via the “t1,2” momentum de-
pendent terms of the Skyrme effective interaction [25] and,
then, a variation of τ(r) also affects the nuclear part of the po-
tential [6, 56]. At the same time, we have also observed that
including the Pauli exclusion principle has a strong impact on
the spin-orbit energy. This is illustrated in Fig. 1(a) for the
40Ca+40Ca system. For this system, removing the spin-orbit
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FIG. 4. (Color online) Same as Fig. 2 for 40Ca+48Ca. DCFHF po-
tentials of the other ACa+ACa are also reported.

interaction in the FHF potential (not shown in the figure) has
little effect, but strongly increases the repulsion between the
fragments in the DCFHF potential (thin dashed line). This
shows that the spin-orbit energy absorbs a large part of the
Pauli repulsion. Thus, the Pauli exclusion principle has a more
complicated effect than just increasing the kinetic energy.

Coupled-channels calculations of fusion cross-sections
were performed with the CCFULL code [58] using Woods-
Saxon fits of the FHF and DCFHF potentials. By default, the
incoming wave boundary condition (IWBC) was used. For
shallow pocket potentials, however, the IWBC should be re-
placed by an imaginary potential at the potential pocket to
avoid numerical instabilities. This is done for calculations
with the 16O+208Pb DCFHF potential using a modified ver-
sion of CCFULL with Woods-Saxon parameters {VI = 30 MeV,
aI = 1 fm, rI = 0.3 fm} for the imaginary potential. Cou-
plings to the low-lying collective 2+ (in calcium isotopes)
and 3− states are included with standard values of the cou-
pling constants [39, 59]. In CCFULL, one (two) vibrational
mode(s) can be included in the projectile (target). For the 2+

states, we then use the fact that, for symmetric systems, the
mutual excitation of one-phonon states in both nuclei can be
approximated by one phonon with a coupling constant scaled
by
√

2 [60]. Here, the CC calculations are kept simple and in-
clude only the most relevant couplings. Improvements could
be obtained, e.g., by including anharmonicity of the multi-
phonon states [61]. The resulting fusion cross-sections are
plotted in Figs. 1(d-f). Calculations with the FHF potential
systematically overestimate the data while the DCFHF poten-
tial leads to a much better agreement with experiment at all
energies, and ranging over eight orders of magnitude in cross-
sections. This shows the importance of taking into account
Pauli repulsion in the bare potential for fusion calculations.
We emphasise that these calculations are performed without
adjustable parameters.

The behaviour of fusion at deep sub-barrier en-
ergies is often studied using the logarithmic slope
d ln(σ f us.Ec.m.)/dEc.m.. Large logarithmic slopes are a
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signature of a rapid decrease of σ f us. with decreasing energy.
Deep-sub-barrier fusion hindrance is characterised by the
failure of theoretical models to reproduce large logarithmic
slopes observed experimentally at low energy. To avoid
numerical instabilities due to shallow potentials in the calcu-
lations of logarithmic slopes, couplings to internal excitations
of the nuclei have been removed in the calculations of barrier
transmission and accounted for via an overall lowering of VB
by less than 5% depending on the structure of the reactants
[13]. Indeed, it has been shown that couplings have little
effects on the logarithmic slope at these energies [13]. We
see in Fig. 1(g-i) that the inclusion of Pauli repulsion in
DCFHF indeed increases the logarithmic slope at low energy.
Although Pauli repulsion is shown to play a crucial role, it
is not yet sufficient to reproduce experimental data at deep
sub-barrier energies. Other contributions are expected to
come from dissipative effects [13] and from the transition
between the nucleus-nucleus potential to the one-nucleus
adiabatic potential [20]. However, repulsive effects from the

incompressibility of nuclear matter invoked in [16] are not
observed in our microscopic calculations. Both the FHF and
DCFHF calculations use the same Skyrme functional (SLy4d)
with a realistic compression modulus of the symmetric
nuclear matter K∞ ' 230 MeV. Although the FHF potential
properly takes into account effects due to incompressibility,
it is very close to standard phenomenological potentials. We
illustrate this with the example of the M3Y potential [16] in
Fig. 1(c). The addition of a repulsive component at short dis-
tance [M3Y+rep parametrisation shown with a dotted-dashed
line Fig. 1(c)], introduced phenomenologically in [16] to
explain experimental fusion data at deep sub-barrier energies,
then cannot be justified by an effect of incompressibility. It
is more likely that it simulates other effects such as Pauli
repulsion.
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