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Nucleon capture cross sections enter various astrophysical processes. The measurement of proton
capture on nuclei at astrophysically relevant low energies is a challenge, and theoretical computations
in this long-wavelength regime are sensitive to the long-distance asymptotics of the wave functions.
A theoretical foundation for estimating and correcting errors introduced in capture cross sections
due to Hilbert space truncation has so far been lacking. We derive extrapolation formulas that
relate the infrared regularized capture amplitudes to the infinite basis limit and demonstrate their
efficacy for proton-proton fusion. Our results are thus relevant to current calculations of few-body
capture reactions such as proton-proton fusion or proton capture on the deuteron, and also open
the way for the use of ab initio many-body wave functions represented in finite Hilbert spaces in
precision calculations of nucleon capture on heavier nuclei.

a. Introduction. Processes in which a nucleon is cap-
tured by a nucleus occur in many areas of pure and ap-
plied physics. They play an important role in big bang
nucleosynthesis and in the nuclear astrophysics of stars,
novae, X-ray bursts and supernovae, see, e.g. Ref. [1]
for a recent review. Capture reaction rates are essen-
tial inputs for computations of stellar models [2]. Pro-
ton capture cross sections are very difficult to measure
at astrophysically relevant energies below the Coulomb
barrier, forcing us to rely on theoretical results. Here, ab
initio computations [3–6] and studies based on effective
field theory [7–11] aim at achieving model-independent
results with reliable uncertainty estimates.

We note that precise theoretical calculations are a chal-
lenge too, because the regime of low-energies and long de
Broglie wave lengths requires one to employ very large
Hilbert spaces. It is therefore important to control the
uncertainties in theoretical calculations of cross sections
that are due to limitations of finite model spaces. This is
the purpose of this work. Let us consider proton-proton
fusion, i.e., p + p → d + νe + e+, as the simplest ex-
ample of a proton capture reaction. This reaction has
been studied extensively and a calculation that reduces
the uncertainty well below 1 % would be an important
development [2, 6, 11]. As we will see below, the correc-
tions due to finite Hilbert spaces become relevant if such
a precision is aimed at in ab initio computations.

Truncation of the Hilbert space imposes ultraviolet
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(UV) and infrared (IR) momentum cutoffs [12–15], lead-
ing to systematic errors in observables. Thus, capture
reactions into bound states computed in finite Hilbert
spaces will suffer from truncation errors regardless of how
well the continuum is treated. An example of previous
corrections of such shortcomings is presented in Ref. [16].
Formulas for extrapolation of various bound-state ob-
servables to the infinite-basis limit were derived in Refs.
[17–20]. In the same spirit, we study and quantify the
IR corrections to the capture and fusion cross sections
calculated from wave functions represented in truncated
Hilbert spaces. We make use of the dependence of the IR
length scale L on the parameters of the oscillator basis,
which is known for the two-body problem [18], the no-
core shell model [21], and many-body product spaces [22].
Below, we also present the IR length relevant for hyper-
spherical harmonics with Laguerre polynomials as radial
wave functions.

Recent progress in ab initio computations of reactions
and scattering states [23–29] (see also Ref. [30] for a re-
cent review) has made it possible to calculate capture
cross sections of medium mass and heavy nuclei using
discrete-basis representations of bound state wave func-
tions. This makes it a timely issue to understand and
correct the shortcomings pertaining to the finite Hilbert
space treatment of the bound states involved.

b. Theoretical derivation. In what follows, we fo-
cus on the nucleon-nucleon (NN) processes as examples
where the truncation error can be fully understood. This
allows us to derive IR extrapolation formulas that have
a more general applicability. The generalization to heav-
ier nuclei will be discussed below. We assume that the
nuclear interaction vanishes beyond the range R. Thus,
at relative distances r ≥ R the bound state radial wave
function calculated in a truncated basis has the asymp-
totic form [18]

u(L)(r)→ A∞e
−γ∞r

[
1− e−2γ∞(L−r)

]
. (1)
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Here, γ∞ and A∞ are, respectively, the binding momen-
tum and the asymptotic normalization coefficient in the
infinite volume limit [18]. Equation (1) is asymptotically
valid for all partial waves. However, its higher order cor-
rections for s-wave are of O(e−γ∞(2L+r)), much smaller
than theO(1/(γ∞r)) corrections for higher partial waves.

Calculations of capture cross sections in a truncated
basis, therefore, effectively involve the radial matrix ele-
ments

Iλ(k; η;L) ≡
∫ L

0

dr u(L)(r) rλ uk(r) , (2)

where k is the momentum of the scattering wave function
uk(r) in the initial state. η is the Sommerfeld parame-
ter and λ defines the multipolarity of the transition. For
an electromagnetic capture process, the multipolarity is
equal to λ for electric transitions and to λ + 1 for mag-
netic transitions. For the weak process, the dominant
contribution at low energies comes form I0(k; η;L).

At r ≥ R and kr � η, the radial wave function of the
initial state has the form

uk(r)→ cos δl sin

[
kr − η log(2kr) + σl −

πl

2

]
+ sin δl cos

[
kr − η log(2kr) + σl −

πl

2

]
, (3)

with σl being the Coulomb phase shift. For the case
of neutron capture, σl = 0 = η. Apart from the sub-
leading η dependence, Eq. (3) has additional O(1/(kr))
corrections for l > 0 even in the absence of Coulomb
interaction.

We now proceed to derive the IR truncation error,
∆Iλ(k; η;L), in the matrix element Iλ(k; η;L) calculated
in Hilbert spaces with L � R. However, in order to
use the asymptotically valid approximations for the wave
functions given in Eqs. (1) and (3), we additionally re-
quire kL � η for proton capture and fusion reactions,
and kL � l for capture in partial waves with orbital
angular momentum l.

We begin by splitting the radial integral, Eq. (2), into
two regions,

Iλ(k; η;L) =

(∫ R

0

+

∫ L

R

)
dr uL(r) rλ uk(r) . (4)

The second integral, which is independent of the details
of the nuclear interaction, can be evaluated analytically
using Eqs. (1) and (3) to give

∫ L

R

dr u(L)(r) rλ uk(r) =

∫ ∞
R

dr u(∞)(r) rλ uk(r)

+ 2 Re [fλ(k; η;L)] , (5)

where u(∞)(r) is u(L)(r) at L→∞, and

fλ(k; η;L) =
i

2
A∞ ei(δl+σl−πl/2) (2k)−iη

[(γ∞ − ik)(−λ−1+iη)

× Γ(λ+ 1− iη, γ∞L− ikL)

− e−2γ∞L(−γ∞ − ik)(−λ−1+iη)

× Γ(λ+ 1− iη,−γ∞L− ikL)] , (6)

is the result of an overlap integral of the asymptotic in-
coming and outgoing scattering wave function with the
finite volume bound state wave function.

Here Γ(c, z) is the complex continuation of the incom-
plete Gamma function [31]. We have dropped terms of
O(e−γ∞(2L−R)) in Eq. (5). For asymptotically large val-
ues of γ∞L, we can also replace u(L)(r) in the first in-
tegral in Eq. (4), which includes the contribution from
the r � L region, by u(∞)(r). Equation (4) can then be
written as

∆Iλ(k; η;L) = Iλ(k; η;∞)− Iλ(k; η;L)

= −2 Re [fλ(k; η;L)] , (7)

where

Iλ(k; η;∞) =

∫ ∞
0

dr u(∞)(r) rλ uk(r) (8)

is the radial matrix element Iλ(k; η;L) at L→∞.
In addition to the exponentially suppressed term we

explicitly dropped above, we have also neglected the con-
tributions to ∆Iλ(k; η;L) from the higher-order η depen-
dence and higher partial wave corrections to Eqs. (1) and
(3). These terms scale as ∆Iλ−1(k; η;L) and are there-
fore only suppressed by a factor of 1/L. Using the leading
order approximation in the asymptotic expansion of the
Gamma function,

Γ(c, z) = zc−1 e−z
(

1 +
c− 1

z
+ . . .

)
, (9)

valid for |z| � 1 and | arg z| < 3π/2, in Eq. (6), the IR
truncation error in the capture matrix element reduces
to a much simpler form,

∆Iλ(k; η;L) =
2A∞γ∞
γ2∞ + k2

Lλe−γ∞L

× sin

(
δl + σl −

πl

2
+ kL− η log 2kL

)
, (10)

for asymptotically large values of γ∞L. We note that the
approximation for Γ(c, z) used here in order to arrive at
Eq. (10) is exact for λ = 0 neutron capture. However, at
larger values of λ and η, this approximation gets worse
and it may be necessary to obtain the IR truncation error
using Eqs. (6) and (7) instead.

Since the relative error in the cross section is twice that
in the matrix element, we find from Eq. (10) that the IR
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truncation error in the cross section scales as e−γ∞L. We
note that this e−γ∞L convergence with increasing γ∞L is
much slower than the e−2γ∞L behavior found for bound-
state observables such as energies and radii [17].

The extrapolation formula, Eq. (7), and its asymptotic
form, Eq. (10), are the main results of this work. These
equations hold for heavier nuclei and for all reasonable
models of the nuclear Hamiltonian because the single-
particle wave functions have the asymptotic forms given
in Eqs. (1) and (3) in the range R ≤ r < L. They are
valid for neutron capture as well as for proton capture
unless the energy is low enough to warrant the use of
Coulomb wave functions Fl(kr) and Gl(kr) for all r . L
instead of the sine and the cosine functions in Eq. (3).
Furthermore, the same radial matrix elements contribute
to break-up cross sections as well.

c. Numerical results. For numerical calculations, we
use the chiral effective field theory (EFT) interaction
from Ref. [32]. We obtain the pp and np scattering states
by solving the momentum-space Schrödinger equation.
We then calculate the radial matrix elements, Iλ(k; η;L),
numerically for a range of L values by expanding the
deuteron wave function in HO bases of varying dimen-
sionality.

In the IR regime, the finite harmonic oscillator basis
we use is indistinguishable from a spherical box with ra-
dius [18]

L =
√

2(N + 3/2 + 2) b . (11)

Here N is the maximum number of oscillator quanta and
b =

√
1/(µΩ), the oscillator length for a system with

reduced mass µ and oscillator frequency Ω, respectively.
The hyperspherical harmonics basis is popular in few-
body problems [33, 34] and has also been used in the
computation of capture reactions [3, 6]. For this rea-
son, we also discuss the IR length LHH relevant for this
method. Using the hyperradius ρ and a momentum scale
β, the hyperradial basis functions√

m!β3A−3

Γ(a+m+ 1)
(βρ)

a−3A+4
2 e−

1
2βρLam(βρ)

are orthonormal under the hyperradial integration mea-
sure dρρ3A−4 that is adequate for a translationally in-
variant A-body system [35, 36]. Here Lam denotes the as-
sociated Laguerre polynomial and a is a parameter. Not-
ing the similarity between the hyperradial wave functions
and the radial wave functions of the three-dimensional
harmonic oscillator, i.e. identifying a = l + 1/2 and
N = 2n + l in Eq. (11), where n is the largest degree
of the Laguerre polynomial used, we infer that the IR
length for the hyperspherical radial basis is

LHH = (4n+ 2a+ 6)β−1 . (12)

For the NN processes, it is computationally feasible
to calculate Iλ(k; η;L) in a large enough basis and ob-
tain an accurate numerical approximation to Iλ(k; η;∞).
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FIG. 1. (Color online) IR truncation error in the axial-vector
matrix element of pp fusion at 50 keV center-of-mass en-
ergy (black circles) and in the deuteron binding energy (blue
squares). The relative errors for the axial-vector matrix ele-
ments and those for the binding energy are expressed in per-
centage and parts per million (ppm) respectively.

We begin by comparing the numerical truncation er-
ror, ∆Iλ(k; η;L), thus obtained with those predicted by
Eq. (10).

In Fig. 1, we plot the relative error due to a
IR cutoff in the matrix element of the Gamow-Teller
operator between the deuteron s-wave and the pp
1S0 wave functions at 50 keV center-of-mass energy,
∆I0(k; η;L)/I0(k; η;∞). For comparison, we also show
the relative IR truncation error in the deuteron binding
energy. The error in the matrix element at L = 35 fm
is about 0.3 %, which translates to an error in the cross
section of about 0.6 %. The size of this error is rele-
vant for computing pp fusion cross sections to percentage
precision, which recent calculations [6] aim at. In con-
trast, the deuteron binding energy shows a much faster
IR convergence — the relative error at L = 35 fm is
about 0.5×10−6 — reinforcing our claim that a basis that
gives highly accurate results for bound state observables
may still yield large systematic errors in capture cross
section calculations. Furthermore, we have checked and
verified that the L-dependences of these errors are consis-
tent with theoretical predictions — approximate e−γ∞L

behavior for the capture matrix element as derived above,
and e−2γ∞L for deuteron binding energy [18].

In Fig. 2, we plot the truncation error for the pp fusion
matrix element shown earlier in Fig. 1 along with the
analytic result given by Eq. (10). Since η = 0.5 is not
particularly small, we get a good agreement between the
analytic formula and numerical data at larger values of
L, where the corrections to Eq. (10) due to higher-order
η-dependence are less important.

For comparison, we plot ∆Iλ(k; η;L) for the same pro-
cess at 1 MeV center-of-mass energy for the same range
of L values in Fig. 3. Since η = 0.11� 1 at this energy,
we find a much better agreement even at smaller L.

Finally, in Fig. 4, we plot the IR truncation error in
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FIG. 2. (Color online) Numerical (black, dotted) and ana-
lytic (red, dashed) results for the correction ∆I0(k; η;L) to
the radial overlap between the 1S0 pp scattering wave func-
tion at 50 keV center-of-mass energy and the deuteron s-wave
state.
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FIG. 3. (Color online) Numerical (black, dotted) and ana-
lytic (red, dashed) results for the correction ∆I0(k; η;L) to
the radial overlap between the 1S0 pp scattering wave func-
tion at 1 MeV center-of-mass energy and the deuteron s-wave
state.

the matrix element of the electric dipole (E1) operator
between the deuteron s-wave and the np 3P1 wave func-
tions, which contributes to the radiative np capture,

n+ p→ d+ γ, (13)

and its reverse process, deuteron photodisintegration.
Here the analytic formula for ∆Iλ(k; η;L) has neglected
terms from the O(1/(kr)) corrections to Eq. (3). Since
these terms are suppressed by a factor of 1/L, we get a
better agreement between the analytic and the numerical
results at larger L values.

The analytic results shown above in Figs. 2, 3 and 4
were not fit to the data. The quantities A∞, γ∞, and
δl were known a priori from the wave functions, and
the IR truncation error was thus completely predicted
by Eq. (10). For systems with A > 2, however, ex-
tracting values for the single-particle separation energies,
asymptotic normalization coefficients and phase shifts
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FIG. 4. (Color online) Numerical (black, dotted) and analytic
(red, dashed) results for the correction ∆I1(k; η;L) to the
radial matrix element of the E1 operator between the np 3P1

scattering wave function at 1 MeV center-of-mass energy and
the deuteron s-wave state.

might not be as straight-forward. Moreover, the use of
our analytic results in practical applications is to obtain
Iλ(k; η;∞) by extrapolation when the size of the basis
is constrained due to unavailability of computational re-
sources. One computes Iλ(k; η;L) at several large values
of L, and fits Eq. (10) [or, if required, Eq. (7)] to this data
with Iλ(k; η;∞), A∞, γ∞, and δl treated as fit parame-
ters. We present the results of such extrapolations for the
pp fusion process in Table I. The extrapolations are ro-
bust not only at 1 MeV but also at 50 keV center-of-mass
energy, where the neglected contributions to our extrap-
olation formula are larger. We found that the differences
in Iλ(k; η;∞) values for different sets of input data are
very small compared to those of the other fit parame-
ters, A∞, γ∞, and δl (data not shown). These are not
determined very well by the fit because of the relatively
large number of fit parameters in Eq. (10). However, we
want to remark that in any standard calculation these
could be fit to several other observables such as finite
volume binding energies or radii thereby increasing the
constraints on these parameters significantly.

Since Eq. (10) is valid at asymptotically large values
of L, we obtain better fits when the input data contains
larger L values. However, even for smaller L, the ex-
trapolation error is much smaller than the IR truncation
error one would make by avoiding extrapolation and sim-
ply using I0(k; η;Lmax) instead.

d. Summary. We studied the dependence of the nu-
cleon capture cross section on the radius L of the hard
wall with Dirichlet boundary condition, which arises as
an effective infrared cutoff when the bound-state wave
function is represented in a truncated basis. We pre-
sented an expression of this radius for computations
based on hyperspherical harmonics. We showed that the
infrared convergence of the cross section thus calculated
is much slower than that of bound state properties whose
errors generally scale as e−2γ∞L [17, 18, 20]. We also
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η = 0.50 η = 0.11

Lmin Lmax I0(k; η;Lmin) I0(k; η;Lmax) I0(k; η;∞) I0(k; η;Lmin) I0(k; η;Lmax) I0(k; η;∞)

15.30 20.29 0.4063 0.4440 0.4704 2.585 2.621 2.590

20.29 24.28 0.4440 0.4583 0.4712 2.621 2.611 2.592

15.30 24.28 0.4063 0.4583 0.4706 2.585 2.611 2.591

15.30 39.51 0.4063 0.4708 0.4711 2.585 2.592 2.592

TABLE I. Values of I0(k; η;∞) (in fm1/2) for pp fusion at 50 keV (η = 0.50) and 1 MeV (η = 0.11) center-of-mass energies,
obtained by fitting Eq. (10) to the (L, I0(k; η;L)) data for L ranging from Lmin to Lmax (in fm). The fit results agree very

well with the numerically-approximated values of I0(k; η;∞), which are 0.4711 and 2.592 fm1/2 for η = 0.50 and η = 0.11
respectively, for all fit intervals.

showed that this feature can lead to errors in the pp fu-
sion cross section that are comparable in size to uncer-
tainties induced by the nucleon-nucleon interaction and
the electroweak current operator in state-of-the-art cal-
culations [6, 11]. We derived a simple analytic formula for
controlled extrapolation of the cross section to the infi-
nite basis limit. By exploiting our ability to calculate the
two-body wave function for a very wide range of basis size
while concurrently maintaining ultraviolet convergence,
we tested our predictions for two different two-nucleon
capture processes. Our extrapolation formula also holds
for A > 2 nuclei since their single particle bound- and
scattering-state wave functions also have the form given
respectively by Eqs. (1) and (3). However, for the proton
capture process, the large value of η in heavier nuclei re-
stricts the domain of validity of our extrapolation formula
to very high energies. In such case, one needs to replace
Eq. (3) by the full Coulomb wave function to compute

the IR correction numerically. An analytic derivation of
such results, which could facilitate calculations at the en-
ergy regime relevant to the rp-process, is left for future
work.
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