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We show that observations of the core temperature of transiently-accreting neutron stars combined with ob-
servations of an accretion outburst give a lower limit to the neutron star core heat capacity. For the neutron stars
in the low mass X-ray binaries KS 1731-260, MXB 1659-29, and XTE J1701-462, we show that the lower limit
is a factor of a few below the core heat capacity expected if neutrons and protons in the core are paired, so that
electrons provide the dominant contribution to the heat capacity. This limit rules out a core dominated by a
quark color-flavor-locked (CFL) phase, which would have a much lower heat capacity. Future observations of
or limits on cooling during quiescence will further constrain the core heat capacity.

I. INTRODUCTION

The next few years promise new constraints on the dense
matter inside neutron stars. Progress on the equation of state
may come from the detection of gravitational waves from
merging neutron stars [1, 2], discovery of a neutron star with
mass above 2 M� [3], a measurement of the neutron star
moment of inertia using the double pulsar system [4, 5], or
precise mass and radius determination by X-ray timing with
the Neutron Star Interior Composition Explorer (NICER) [6].
Also of great interest are observations of neutron star ther-
mal evolution, in particular for neutron stars in close binaries
that undergo transient accretion outbursts. Observations of the
temperatures of these neutron stars have been used to limit
the neutrino emissivity of the neutron star core [7–9], which
sensitively depends on the composition. Most recently, it has
been shown that long-term monitoring of neutron stars after
accretion outbursts provides information on neutron star crust
physics. How the neutron star cools over months to years af-
ter accretion ends depends on the thermal conductivity and
heat capacity of the neutron star crust [10–13], including the
pasta regions near nuclear density [14]. In this paper, we show
that continued observations of these systems on timescales of
years can be used to obtain the first limits on the heat capacity
of the neutron star core.

Accreting neutron stars are useful sources to study thermal
evolution because their crusts are driven out of thermal equi-
librium by heating from compression-driven nuclear reactions
[15–17]. The crust reactions release an energy Qnuc ≈ 1–
2 MeV/mu per accreted nucleon [15, 16], mu being the atomic
mass unit; most of this heat is conducted inwards to the core.
The luminosity entering the core is Lin ≈ ṀQnuc, where Ṁ is
the mass accretion rate. The thermal conductivity in the core
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is large enough that it remains isothermal, described by a red-
shifted temperature T̃ (so that the local temperature at radius
r is T (r) = T̃ e−φ(r) where φ(r) is the gravitational potential
[18]). The thermal evolution of the neutron star core during
outburst is given by [e.g., 19]

C
dT̃
dt

= −Lν + Lin, (1)

where C is the heat capacity, and Lν is the core neutrino cool-
ing luminosity. Both Lν and Lin are defined in the frame of
infinitely distant observer; the connection between C and L
with local quantities is given by relativistic stellar structure
equations [see, e.g., 20].

Over long timescales, the core temperature reaches a value
at which the heating is balanced by neutrino losses and radia-
tive losses during quiescence

Lν(T̃ ) + Lγ(T̃ ) ≈ 〈Ṁ〉Qnuc, (2)

where 〈Ṁ〉 is the accretion rate averaged over outburst and
quiescent periods [17]. Observations of more than twenty low
mass X-ray binaries have measured the surface luminosity of
the neutron star in quiescence, providing a measurement of the
core temperature [21]. Comparing the measured luminosities
to theoretical predictions determines the neutrino emissivity
of the neutron star core. The observations show a range of
quiescent temperatures, compatible with modified Urca emis-
sivity in some sources, and indications of enhanced emissiv-
ity in others [22, 23]. How long a time span is needed to
obtain a valid average 〈Ṁ〉 is given by the Kelvin-Helmholtz
time-scale of the star, which depends on the heat capacity and
ranges from 102 to 105 years [24].

This previous work assumes that the core has reached its
equilibrium temperature, and that the energy released during
any single accretion outburst does not significantly change the
core temperature. In this paper, we consider the opposite limit.
For cold neutron stars, the core heat capacity is rather low, al-
lowing the core to heat up significantly during outburst and
cool down in quiescence. During an outburst of duration to,
an energy E ≈ ṀQnucto flows into the core from the crust. As-
suming that the core heat capacity C is proportional to temper-
ature (as appropriate for degenerate fermions), C = AT̃ where
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A is a constant, and that neutrino losses are negligible, the
core will increase in temperature by an amount ∆T̃ = T̃ f − T̃i
given by T̃ 2

f − T̃ 2
i = 2E/A, where T̃ f and T̃i are the initial

and final temperatures. If the core starts off cold, T̃i � T̃ f ,
then ∆T̃ ≈ T̃ f . Solving for the heat capacity, we then find
C = AT̃ f = 2E/T̃ f , which can be calculated given values for
Ṁ, to, and T̃ f obtained from observations. In reality, we do
not know the starting temperature of the core and so this is
actually a lower limit on the heat capacity

C >
2E
T̃ f

, (3)

where larger values of C mean that the core temperature
started off closer to the measured value after the outburst.

To illustrate that this might be an interesting limit, consider
an outburst with accretion rate of Ṁ ≈ 0.1 ṀEdd ≈ 1017 g s−1

(where ṀEdd is the Eddington accretion rate) and duration 10
years. The energy deposited into the core is then

E ≈ 6.0 × 1043 erg
(

Ṁ
1017 g s−1

) (
to

10 yr

) (
Qnuc

2 MeV/mu

)
. (4)

A core temperature of T̃ = 108 K then gives a limit C &
1036 T̃8 erg K−1 from Eq. (3), where we use the shorthand no-
tation T̃8 ≡ T̃/108 K. For a core consisting of non-superfluid
neutrons and protons, the heat capacity is expected to be
C ∼ 1038 T̃8 erg K−1 (e.g. [25]), much larger than the limit.
However, the nucleons may be superfluid, in which case their
contribution to the specific heat is suppressed exponentially,
and the heat capacity is set by the leptons giving a value
C ∼ 1037 T̃8 erg K−1. Even smaller values of heat capacity
are possible, for example if the high density matter forms a
color-flavor-locked (CFL) phase [26], lowering the electron
content of the core.

We start in Sec. II by looking in detail at the low mass X-ray
binary KS 1731-260, which was observed in outburst for over
12 years before going into quiescence in 2001 [27]. The long
outburst makes KS 1731-260 a promising source to derive the
heat capacity limit, since it should have deposited the most
energy into the core; it also has one of the lowest measured
temperatures, and has been monitored for almost 15 years in
quiescence [28, 29]. We use the quiescent temperature mea-
surement of KS 1731-260 to constrain the neutron star core
temperature, and model the thermal relaxation of the neutron
star in quiescence to constrain the crust heating and envelope
composition. We then discuss the theoretical expectations for
the neutron star heat capacity and compare to the lower limit
from KS 1731-260 and other sources (Sec. III). We discuss
what further limits could be obtained on the core heat capac-
ity by continued monitoring of these sources in future years
(Sec. IV).

II. THE LIMIT ON CORE HEAT CAPACITY FROM
KS 1731-260

In this section, we investigate in more detail the lower limit
on the core heat capacity from observations of KS 1731-260.

We discuss the core temperature (Sec. II.A), use the cooling
curve to deduce the envelope composition and investigate un-
certainties in input parameters (Sec. II B), and the effect of
accretion rate variations in outburst (Sec. II C).

A. Core temperature

Following the outburst, the neutron star temperature in
KS 1731-260 was observed to decline over 8 years from
T∞eff

= 103 eV to 63.1 eV as the crust relaxed back into ther-
mal equilibrium with the core [28]. Once the star has ther-
mally relaxed most of its interior, i.e., its core and most of its
crust, are isothermal except for the outermost layers, which
are called the envelope. Models of the neutron star envelope
[30, 31] and of the temperature gradient permeating it allow
us to estimate a range of values for T̃ from the observed T∞eff

.
A large uncertainty in determining T̃ from the observations

is the composition of the envelope. During the outburst, light
elements accumulate on the surface of the star where they burn
to heavy element ashes. Depending on the state of the burning
at the end of the outburst, the envelope can consist of heavy
or light elements (e.g. [32]). For an iron envelope, the relation
between the effective temperature and core temperature for a
thermally relaxed neutron star is Tc,8 = 1.288 (T 4

s,6/g14)0.455

[30] where Ts,6 = (T∞eff
/106 K)(1 + z), Tc = T̃ (1 + z), 1 +

z ≡ e−φ(R) being the surface redshift factor, and we write the
surface gravity g = (GM/R2)(1 + z) as g14 = g/1014 cm s−2.
For a 1.4 M�, 12 km neutron star, g14 = 1.6 and 1 + z = 1.24,
and we find

T̃ = 7.0 × 107 K
(

T∞eff

63.1 eV

)1.82

(Fe envelope). (5)

For a light element envelope, the core temperature will be
lower, because the envelope is less opaque. In that case,
Tc,8 = 0.552 (T 4

s,6/g14)0.413 [31], and we find

T̃ = 3.1 × 107 K
(

T∞eff

63.1 eV

)1.65

(He envelope). (6)

A different choice of mass and radius does not change the in-
ferred core temperature dramatically. For example, for a much
more compact neutron star with mass 2M� and radius 10 km,
giving g14 = 4.18 and 1 + z = 1.57, we find core temper-
atures about 20% smaller: 2.4 × 107 K for a light element
envelope and 5.5 × 107 K for a heavy element envelope. Our
value of core temperature is in good agreement with [33] who
also used a heavy element envelope (column depth of helium
yHe = 106 g cm−2) and found T̃ = 6.6 × 107 K (Eq. [5] gives
6.4 × 107 K for their choice of M = 1.5 M� and R = 11 km).

B. Energy deposited in the core and the limit on heat capacity

To improve on Eq. (4) and further constrain the energy that
was deposited in the neutron star core, we carried out crust
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cooling simulations following [11] to model the observed de-
cline of the temperature of KS 1731-260. The adjustable pa-
rameters in the model are the core temperature, the impurity
parameter Qimp, which sets the thermal conductivity of the in-
ner crust (see [34] for a recent discussion of the interpretation
of Qimp), the temperature at the top of the grid Tb at a density
ρ ≈ 6 × 108 g cm−3, the mass and radius of the neutron star,
the accretion rate during the outburst, and the composition of
the neutron star envelope. As discussed by [11], the role of Ṁ
is to determine the strength of the deep crustal heating ṀQnuc,
where we assume Qnuc = 1.7 MeV/mu [15, 16, 35], while Tb
determines the temperature in the outer crust set by shallow
heat sources (see [33] for a recent discussion of shallow heat
sources).

We consider two different envelope compositions which we
refer to as Fe (iron) and He (helium) envelopes. The He enve-
lope is the same as in [11] and has a column depth of helium
of 109 g cm−2; the Fe envelope has a helium column depth
104 g cm−2 and a composition of iron at higher column depth.
Although a continuum of envelope models is possible with
different values of yHe, the effect of the envelope depends on
the composition in a narrow range of densities known as the
sensitivity strip [30], so in practice it is a good approximation
to consider only the two cases in which either a light element
or heavy element is present in the sensitivity strip region.
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FIG. 1. Example fits to the KS 1731-260 temperature measure-
ments. The model shown as a solid line has an outburst duration of
12.0 years, accretion rate 0.1 Eddington, a heavy element envelope,
Qimp = 1.3, a fixed Tb = 4.0× 108 K at the top of the crust during the
accretion phase, and a core temperature T̃ = 7.4×107 K. The neutron
star mass and radius are 1.4 M� and 12 km. The inwards luminosity
during the outburst reaches 2.4 × 1035 erg s−1. The dotted curve is a
model with a helium envelope as in [11], and has a core temperature
of T̃ = 3.6 × 107 K, while Qimp = 2.3 and Tb = 2.2 × 108 K. The
inwards luminosity during the outburst reaches 2.2 × 1035 erg s−1.

Two example lightcurves are shown in Figure 1 compared
to the observed temperatures for KS 1731-260. The data
points are from [28] with the addition of the latest tempera-
ture measurement [29]. This latest measurement is consistent
with the previous temperature measured 6 years earlier and

confirms that the star has wholly relaxed from the accretion
outburst. For these models, we set M = 1.4 M�, R = 12 km,
and Ṁ = 1.3 × 1017 g s−1, and then adjust Tb, Tc and Qimp to
obtain the best fit to the data. The model shown as a dotted
curve uses a light element envelope and has similar parameters
to [11]. However, we find that a heavy element envelope gives
a much better fit to the data (solid curve). This is in agreement
with [33] who found a best fit column depth of light elements
of 106 g cm−2. The main effect of the opaque heavy element
envelope is to increase the crust temperature needed to match
the data. The hotter outer crust has a lower thermal conduc-
tivity because of increased electron-phonon scattering. The
steeper temperature gradient translates into faster cooling ini-
tially (t . 200 d) (see Eq. [12] of Ref. [11]). However, in the
inner crust, there is a reduced temperature contrast with the
core and a larger heat capacity leading to slower cooling in
the latter part of the lightcurve (t & 200 d). The overall effect
is to flatten out the break in the cooling curve compared to
a light element envelope, bringing it into agreement with the
data.
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FIG. 2. The luminosity entering the core Lin during the outburst,
assuming either constant accretion rate or variable accretion rate.
These models have a heavy element envelope. The dotted line shows
the luminosity from crust reactions for the constant accretion rate
case. The luminosity at late times is larger than this value because
of the additional heat flowing into the crust from the upper boundary
(representing shallow heat sources). All luminosities shown are for
an observer at infinity.

Figure 2 shows the luminosity entering the core during the
outburst. During quiescence, there is an outwards luminos-
ity at the crust/core boundary as the core cools. Once accre-
tion begins, the crust is heated, and the luminosity at the core
boundary changes sign and starts to increase in magnitude.
After approximately 2000 days the crust is nearly in a thermal
steady-state and the luminosity entering the core asymptoti-
cally approaches ṀQnuc + Ltop, the sum of the energy released
by nuclear reactions in the crust and the luminosity entering
the crust from lower densities. For the heavy element en-
velope model, the inwards luminosity in the steady state is
2.4 × 1035 erg s−1. The shallow heating from the top of the
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crust accounts for 30% of the total, 6.9×1034 erg s−1. Integrat-
ing over the outburst, we find a total energy E = 7.5×1043 erg.
The light envelope model has E about 20% smaller. Note that
E is defined in the frame of a distant observer, as are Q and
Ṁ.

Combining the observed core temperature with the energy
release during outburst gives the lower limit (from Eq. [3])

C > 2.1 × 1036 erg K−1
(

T̃7

7

)−1 (
E

7.5 × 1043 erg

)
, (7)

where we use the value of T̃ from the heavy element envelope
since that gives the best fit to the cooling curve. Using the
assumed C ∝ T scaling gives

C
T̃8

> 3.1 × 1036 erg K−1
(

T̃7

7

)−2 (
E

7.5 × 1043 erg

)
. (8)

We used a MCMC method to explore the parameter space to
check the sensitivity of E to changes in parameters. We used
the emcee package [36] to drive our cooling code. Rather
than neutron star mass M and radius R as parameters, we
use R and surface gravity g. This helps convergence because
mass and radius variations enter most directly into the cooling
curves through the surface gravity, which sets the crust thick-
ness (crust thickness ∝ 1/g2) [11]. In all cases we use a heavy
element envelope. We adopt uniform priors for all variables.

Figure 3 shows the posterior distribution of the parameters
T̃ , Tb, Qimp, Ṁ, R and g, as well as the corresponding values
of M, E and C. We see the same upper limit on the impurity
parameter Qimp . 10 found in [11]. Low values of accre-
tion rate Ṁ . 0.4 ṀEdd are preferred, and as found by [11],
values of Ṁ = 0 with no deep heating are allowed, in which
case the crust is heated entirely from above by the heat flux
entering at the upper boundary. The preferred values of M
and R are similar to those in Ref. [11] (see Fig. 14 of that pa-
per), with R ≈ 13 km for a 1.4 M� neutron star. Taking the
mean and standard deviation of the distribution of C, we find
log10 (C/T̃8 erg K−1) = 36.4 ± 0.3. The distribution peaks
at C ≈ 2.5 × 1036 erg K−1T̃8, similar to Eq. (8), but values
C ≈ 1036 erg K−1T̃8 and as large as C ≈ 1037 erg K−1T̃8 are
allowed for some parameter ranges.

C. Effect of accretion rate variations during outburst

The quiescent cooling curve depends on the temperature
profile in the crust at the end of the outburst. However, as em-
phasized by [33], the accretion rate during the outburst was
variable. The observed long term light curve plotted in Figure
1 of [37] shows that the luminosity in the last two years of
the outburst was about three times smaller than at the peak.
In the simulations so far we took the accretion rate to be con-
stant at the mean value during the outburst. For the deep heat-
ing in the inner crust where the thermal time is long, this is a
good approximation, but the shallow heat source can respond
quickly (thermal timescale of tens of days) to accretion rate
variations. Ref. [33] showed that neglecting accretion rate

variations results in a factor of two underestimate of the shal-
low heating strength (see also [38] for another example of this
effect). Since E is dominated by deep heating, we might ex-
pect that it would be less sensitive to accretion rate variations.

To investigate the effect of accretion rate variations on E,
we ran a model in which the accretion rate during the last two
years was half the average value (with the accretion rate dur-
ing the first ten years adjusted to maintain the same average
over the outburst). Instead of holding the temperature at the
top of the crust fixed, we included an extra shallow heat source
at the same density ρ ≈ 4×108 g cm−3 as [33], finding similar
values for the shallow heat strength needed to match the cool-
ing curve (1.3 MeV with accretion rate variations, 0.8 MeV
without). The dashed curve in Figure 2 shows the luminosity
entering the core as a function of time. It rises to a larger lumi-
nosity initially because of the 20% larger accretion rate than in
the constant accretion rate case. After 10 years, the accretion
rate drops and the luminosity evolves towards a new equilib-
rium, falling below the constant accretion rate curve. In total,
we find E = 8.5× 1043 erg, as compared to 7.5× 1043 erg pre-
viously, so that while the shallow heat source varies by almost
a factor of two between the two cases, the energy entering the
core changes by only about 10%. Accretion rate variations are
important for correctly deducing the size of the shallow heat
source, but do not significantly change the amount of energy
deposited into the core.

III. COMPARISON WITH PREDICTIONS FOR THE HEAT
CAPACITY OF A NEUTRON STAR CORE

We now compare our derived lower limit on the core heat
capacity with expected values from equation of state models.
We start by estimating the expected magnitude of C from dif-
ferent particle species in the core (Sec. III A), and then cal-
culate the heat capacity of detailed neutron star models for a
specific equation of state for different masses and including a
density-dependent superfluid gap (Sec. III B). We compare to
observations in Sec. III C.

A. Expected size of heat capacity

In dense matter at low temperature heat is primarily car-
ried by fermionic particle-hole excitations at the Fermi sur-
face, providing a heat capacity per unit volume

∑
i cF,i, the

sum being over fermion species i, with

cF,i = Ni(0)
π2

3
k2

BT =
m∗i pF,i

3~3 k2
BT '

2 × 1019
(

m∗i
mn

) ( pF,i

400 MeV

)
T8

ergs
cm3 K

(9)

where pF,i, m∗i , and Ni(0), are the Fermi momentum, Landau
effective mass and density of state at the Fermi surface, re-
spectively, of species i, and T8 is the local temperature in units
of 108 K. Phase transitions to a superfluid state can give rise
to bosonic collective excitations (Goldstone bosons), but these
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FIG. 3. Results of a MCMC fit to the data for KS 1731-260 with parameters T̃ , Qimp, Tb, Ṁ, R and g. Also shown are the resulting distributions
of M, E and the lower limit on core heat capacity C. The contours show where the probability falls to exp(−x2/2) of its peak value, for
x = 0.5, 1, 1.5, 2. The histograms show the marginalized distributions for each of the 9 parameters (as indicated by the x-axis; the y-axis is in
arbitrary units).

are much smaller than the fermionic contribution. (The spe-
cific heat per unit volume from these excitations at low tem-
perature is given by

cB,i =
2π2 c3

15 v3
B,i

(kBT )3 ' 1.5 × 1010
(

c
vB,i

)3

T 3
8

ergs
cm3 K

. (10)

where vB,i is the velocity of the Goldstone Boson with linear
dispersion relation ω = vB,ik, and c is the speed of light.)

The neutron star’s total heat capacity is

C =

∫ R

0

4πr2 ∑
i cidr√

1 − 2GM(r)/(c2r)
. (11)

We can write this as C = k(4πR3/3)
∑

i ci,c, where ci,c is the
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heat capacity of species i at the center of the star and k is an
order unity constant (since the density is slowly varying with
radius through much of the core). For example, assuming a
density profile of the form ρ(r) = ρc

[
1 − (r/R)2

]
(the Tolman

VII equation of state [39]), assuming ci ∝ ρ
1/3, and neglecting

the general relativistic factor in Eq. (11) gives k = 0.688 [40].
Using this value and considering the neutrons only, since they
dominate by number, with the effective mass of the neutron
assumed to be m∗N = 0.7mN , we find

C = 1.3 × 1038 erg K−1 T̃8 fc ×( R
12 km

)2 (
M

1.4 M�

)1/3 (
1 + z
1.24

)2

. (12)

In calculating Eq. (12), we include two global redshift factors
(1 + z)2 = (1 − 2GM/Rc2)−1 to approximate the change in
the volume element in equation (11) and to convert the red-
shifted core temperature to the local temperature at the center
of the star; in addition, the scaling C ∝ Volume · ρ1/3

c is writ-
ten as R2M. Following [40], we include the scaling factor fc
to account for other species. Adding the proton contribution
typically gives fc ≈ 1.25.

It is well known the pairing between nucleons at the Fermi
surface is possible and leads to p-wave neutron superfluid-
ity, and s-wave proton superconductivity in the core, and will
result in an exponential suppression of their respective con-
tributions to the heat capacity [for a review, see 41]. The
suppression ∝ exp (−2∆/T ), where ∆ ' 1 MeV is the super-
fluid/superconducting pairing gap, is severe at low tempera-
ture and can suppress the nucleon contribution to well below
that expected for leptons. This implies that when the NS core
is composed entirely of nucleons and leptons, the lepton con-
tribution provides a robust lower limit on the total heat capac-
ity, corresponding to fc ∼ 0.1 in Eq. (12).

In a larger class of models that include phase transitions
to matter containing quarks, hyperons, or meson condensates,
the population of leptons necessary for electric neutrality is re-
duced by the additional negatively charged hadronic or quark
components. This reduction is modest in most models and
we conclude that the lower limit on the heat capacity, set by
the lepton contribution, is still & 1037 ergs/K T̃8. There is,
however, one interesting exception. The color-flavor-locked
(CFL) phase of dense quark matter contains equal numbers
of up, down, and strange quarks and thereby does not need
leptons in the ground state to ensure electric charge neutral-
ity (see Ref. [42] for a comprehensive review of color super-
conducting phases of dense quark matter). This phase is a
color superconductor, and all nine quark (3 flavors × 3 col-
ors) participate in BCS pairing due to an attractive interac-
tions mediated by the exchange of gluons. The preferred
pairing pattern in which quarks of different flavors pair en-
sures equal number densities for all flavors of quarks. Fur-
ther, since all of the quarks are paired, their contribution is
exponentially suppressed by the factor ∝ exp (−2∆/T ) where
∆ ' 10–100 MeV � T is the pairing gap in dense quark
matter, and the heat is carried by Goldstone bosons. These
Goldstone bosons arise naturally due to the breaking of global
symmetries in the superconducting state, and their velocities

vB ≈ c/
√

3 are large. From Eq. (10) we can deduce that this
contribution to the specific heat of the CFL phase will be about
eight orders of magnitude smaller than the electron contribu-
tion in nuclear matter at T = 108 K. Consequently, were CFL
quark matter to occur in the inner parts of the NS core their
contribution can be discounted. In models where CFL quark
matter occupies a large fraction of the core the total heat ca-
pacity of the star would be well below the usual lepton bound,
C � 1037 erg/K T̃8.

B. Detailed calculation of core heat capacity

To properly calculate the heat capacity of the neutron-star
core from a particular nuclear interaction self-consistently for
different masses, and to include the density-dependence of the
superfluid gaps, we have employed the IU-FSU relativistic
mean-field model [43]. In the RMF model the nucleon ef-
fective mass (aka Dirac mass) then becomes a function of the
mean-field baryon density, m∗D = m + Σs(ρ), where Σs(ρ) is
the nucleon scalar self-energy. The Landau effective mass at a

fixed baryon density is given through m∗ =

√
m∗2D + p2

F/c
2.

The employed IU-FSU parameterization was originally de-
rived with the goal of softening the symmetry energy to gener-
ate smaller neutron star radii, and stiffening the overall EOS at
higher density to generate a larger limiting neutron-star mass.
This model predicts a relatively small neutron-skin thickness
of 208Pb (see Table I)—a fundamental nuclear-structure ob-
servable that will be measured with increasing accuracy at the
Jefferson Laboratory [44]. Although the extensive experimen-
tal database of nuclear masses and charge radii is sufficient to
constrain most of the bulk parameters of neutron-rich matter,
it is insufficient to constrain those associated with the density
dependence of the symmetry energy.

By tuning two purely isovector parameters of the RMF
model [45, 46], one can generate a family of model interac-
tions that are almost indistinguishable in their predictions for
a large set of the nuclear ground state observables that are
mostly isoscalar in nature, yet predict different isovector ob-
servables such as the neutron skin of neutron-rich heavy nu-
clei. Following this scheme, and as a contrast to the original
IU-FSU model, we generate two additional interactions with
varying density dependence of the symmetry energy (see Ta-
ble I). We note that whereas a consistency towards a softer
symmetry energy seems to emerge based on the recent combi-
nation of laboratory measurements and astrophysical observa-
tions [47, 48], the density dependence of the symmetry energy
still remains highly uncertain and models with stiffer sym-
metry energy with L = 95 MeV are not yet ruled out [49].
Piekarewicz et al. [50] showed that models which predict in-
termediate values of the slope of the symmetry energy pre-
dict large values of the crust-core transition pressure; as a re-
sult, the neutron star crust is thicker and the crustal fraction
of the moment of inertia is larger. Thicker crusts are con-
sistent with the observation of pulsar glitches, when crustal
entrainment effects are taken into account [50, 51]. Owing
to its maximum transition pressure of Pt = 0.518 MeV fm−3
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Model J L Ksym B/A Rch Rskin
[MeV] [MeV] [MeV] [MeV] [fm] [fm]

IU-FSU 31.30 47.20 +28.53 −7.89 5.49 0.16
IU-FSU (max) 33.88 65.00 −60.30 −7.89 5.47 0.22
IU-FSU (stiff) 37.02 95.00 −57.86 −7.87 5.46 0.27

Experiment −7.87 5.50 0.33 +0.16
−0.18

TABLE I. Predictions for the bulk parameters characterizing the
behavior of infinite nuclear matter at saturation density ρ0 =

0.1546 fm−3. The binding energy per nucleon and incompressibility
coefficient of symmetric nuclear matter are identical in these inter-
actions with ε0 = −16.40 MeV and K0 = 231.33 MeV, respectively,
whereas J, L, and Ksym which represent the energy, slope, and curva-
ture of the symmetry energy (see [52] for definitions), are quite dif-
ferent. Also shown are the binding energy per nucleon B/A, charge
radius Rch, and neutron-skin thickness Rskin of 208Pb, along with their
corresponding experimental values.

we refer to this model as IU-FSU (max). We should mention
that both the original IU-FSU model and the IU-FSU (stiff),
which has a stiff slope of the symmetry energy (L = 95 MeV),
predict almost twice smaller crust-core transition pressures
Pt = 0.289 MeV fm−3 and Pt = 0.293 MeV fm−3, respec-
tively. The corresponding transition densities for these mod-
els are anticorrelated with the value of the slope of the nuclear
symmetry energy at saturation, ρt = 0.087fm−3 for IU-FSU,
ρt = 0.077 fm−3 for IU-FSU (max), and ρt = 0.057 fm−3 for
IU-FSU (stiff).

In Table II predictions for the total and core heat capacity
for various mass neutron stars are given. In calculating these
numbers we assumed an isothermal star with redshifted con-
stant temperature of T̃ = 108 K. Notice that the core heat ca-
pacity scales linearly with the temperature, whereas there is a
slight deviation from linearity between the total heat capacity
and the temperature due to the contribution from ions in the
crust. The total heat capacity is given assuming that the neu-
trons in the crust are normal; in practice, they are expected to
be superfluid, which reduces the crust heat capacity by about
an order of magnitude compared to the value in Table II.

If all nucleons in the core are in a superfluid state, then
the core heat capacity contains only contributions from lep-
tons and is drastically reduced. As an example, for a 1.4 M�
neutron star in the IU-FSU model superfluidity reduces the
heat capacity from Ccore = 1.709 × 1038 erg K−1 to Ccore =

0.194 × 1038 erg K−1, which is almost an order of magnitude
lower (see Table II).

Figure 4 shows the core heat capacity as a function of
the neutron-star mass for the three RMF interactions and the
APR EOS. The displayed result broadly brackets the range
of the core heat capacity due to variations of the EOS. For
example, the core heat capacity of a canonical 1.4 M� neu-
tron star is in the range 1.60 T̃8 < C38 < 2.12 T̃8, where
C38 = C/(1038 erg K−1). The heat capacity increases roughly
linearly with mass, coming from a combination of the scalings
with M1/3 and redshift in Eq. (12).

Taking the IU-FSU as a reference model, we also display
in Figure 5 the core heat capacity as a function of neutron-
star mass for various phases of matter in the core. Micro-

M Model Rtot Rcore ρc Ctot Ccore Ccore,l
[M�] [km] [fm−3] [1038 erg K−1]

1.20 APR 11.853 10.430 0.490 1.379 1.368 0.139
IU-FSU 12.519 11.283 0.404 1.583 1.469 0.152
IU-FSU (max) 12.895 11.379 0.402 1.698 1.517 0.165
IU-FSU (stiff) 13.525 12.033 0.382 1.897 1.741 0.182

1.40 APR 11.708 10.586 0.544 1.596 1.586 0.178
IU-FSU 12.511 11.504 0.471 1.813 1.709 0.194
IU-FSU (max) 12.804 11.581 0.470 1.923 1.761 0.212
IU-FSU (stiff) 13.328 12.141 0.452 2.120 1.985 0.238

1.60 APR 11.560 10.669 0.607 1.830 1.821 0.226
IU-FSU 12.406 11.592 0.567 2.048 1.956 0.244
IU-FSU (max) 12.629 11.649 0.569 2.153 2.011 0.267
IU-FSU (stiff) 13.064 12.124 0.548 2.345 2.230 0.304

1.80 APR 11.371 10.681 0.683 2.099 2.091 0.287
IU-FSU 12.109 11.476 0.743 2.291 2.213 0.308
IU-FSU (max) 12.264 11.509 0.747 2.388 2.270 0.336
IU-FSU (stiff) 12.625 11.906 0.718 2.574 2.481 0.386

TABLE II. Predictions for the properties of various mass neutrons
stars, such as the total radius Rtot, the core radius Rcore, the cen-
tral baryon density ρc, total heat capacity Ctot, core heat capacity
when nucleons are in the normal state Ccore, and with just lepton con-
tributions only Ccore,l = Ccore,e + Ccore,µ—corresponding to the case
when all nucleons are in the superfluid state. An isothermal star with
T̃ = 108 K is assumed. The heat capacities have contributions from
ions, electrons, muons, protons and neutrons, the latter four species
being in beta-equilibrium at the core of the neutron star. The total
heat capacity assumes that the crust neutrons are normal.
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FIG. 4. The core heat capacity C as a function of neutron-star mass
M for the APR equation of state and the three RMF models dis-
cussed in the text: from top to bottom these are IU-FSU (stiff) with
red dotted line; IU-FSU (max) with blue dashed line; IU-FSU with
black solid line; and APR with green dash-dotted line. Also is shown
(brown dash-dot-dotted line) is the result from Eq. (12) with a con-
stant radius R = 12 km and scaling factor fc = 1.25. The core heat ca-
pacities labeled “npeµ” are due to all particle species, whereas those
labeled “eµ” are due to leptonic contributions only.
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FIG. 5. The core heat capacity as a function of neutron-star mass is
shown for various states of neutron-star matter with IU-FSU as ref-
erence model. The black solid line corresponds to the npeµ matter
when nucleons are in normal state, the blue short-dashed line cor-
responds to the case when protons are in 1S 0 superconducting state
whereas neutrons are in 3P2 superfluid state using the pairing gap
model of Ref. [53], and the red dash-dot-dotted line corresponds to
the case when all neutrons and protons are superfluid in the core. The
curves labeled with ρt show the heat capacity when there is a transi-
tion to an exotic state of matter with vanishingly small specific heat,
such as the CFL phase of quark matter, at a baryon density ρt.
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FIG. 6. The critical temperature for the various kinds of superfluidity
in the neutron star matter as a function of baryon density. The figure
is derived using the pairing gap model of Ref. [53]. The boundary
between the inner crust and the core is located at ρb ≈ 0.05–0.1 fm−3.

scopic theories of dense matter suggest that protons suffer a
singlet 1S 0 state pairing at intermediate nuclear densities of
about 0.5ρ0 to about few ρ0 , where ρ0 is nuclear saturation
density. On the other hand, neutrons form pairs in the 1S 0
state at densities pertaining to the crust of neutron stars. As
the density increases the effective neutron-neutron attraction

becomes repulsive, and at ρ & ρ0 the effective attraction again
develops between neutrons as a result of the triplet 3P2 state.

The density-dependence of the pairing gap, and hence the
superfluid critical temperature, is quite uncertain and model
dependent [41]. For example, one interpretation of the pos-
sible rapid cooling of the neutron star in Cassiopeia A in-
volves the development of the neutron 3P2 superfluid state in
the presence of extensive proton 1S 0 superconductivity [54]:
in such a model, given the low temperature of KS 1731-260’s
core, the heat capacity of both neutrons and protons would be
strongly suppressed in the whole core and only the lepton con-
tribution would remain. As a alternative example, consider the
density-dependence of the pairing gap from [53] (see Fig. 6).
A significant fraction of protons and neutrons are then paired
in the stellar interior. For T < Tcrit, the nucleon specific heat
capacity can be written as cN = cN0 f (T ), where cN0 is the
specific heat capacity of normal nucleons, and the factor f (T )
describes the variation of heat capacity by superfluidity [55].
Following the same method as outlined in Ref. [55], we calcu-
lated the heat capacity of the neutron star when both neutrons
and protons are superfluid. The core heat capacity is reduced,
but remains ≈ 2–4 times larger than the lepton-only value.
For a 1.4 M� neutron star, about 3.6% of protons and 33.4%
of neutrons remain normal due to the density dependence of
the pairing gap (see Fig. 6). This shows that depending on
the gap model, the heat capacity may not be as small as the
lepton-only value, which corresponds to the extreme case of
superfluidity, when all nucleons are superfluid in the entire
region of the star. Including a transition to a CFL phase at a
density ρt, where we assume that the CFL phase does not con-
tribute to the heat capacity, can significantly reduce the heat
capacity if ρt . 2 ρ0.

C. Comparison with observations

Figs. 7 and 8 show two different ways to compare these
theoretical expectations with observations. For the observa-
tions, we include the lower limit on C for KS 1731-260 de-
rived in Sec. II, and also add three other sources: MXB 1659-
29, XTE J1701-462, and HETE J1900.1-2455. MXB 1659-29
and HETE J1900.1-2455 have the lowest temperatures of ob-
served quiescent transients, while XTE J1701-462 had a larger
accretion rate and shorter outburst by about an order of mag-
nitude compared to KS 1731-260. Given the good agreement
with the value of E we inferred from our lightcurve model-
ing for KS 1731-260 and the value estimated from equation
(4), we use equation (4) to estimate E for the three addi-
tional sources. There are other transients with observed cool-
ing curves, but they are not as constraining and so we do not
include them here. These include MAXI J0556-332 which
had a high accretion short outburst similar to XTE J1701-462,
but with a much larger temperatures [56], and EXO 0748-676
with a long but weaker outburst [57].

The outburst properties are given in Table III, together with
the values of T̃ , E, and C that we infer using Eq. (4) for E,
Eqs. (5) or (6) for T̃ , and Eq. (8) for C. For KS 1731-260, we
assume an Fe envelope as discussed in §II. For MXB 1659-29
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FIG. 7. The core temperature reached by an initially cold core as
a function of the energy deposited. The data points are the de-
rived energy and core temperature for KS 1731-260, MXB 1659-
29, XTE J1701-462, and HETE J1900.1-2455 from Table III. We
also show an additional point with error bars for KS 1731-260 de-
rived from the detailed fits to the cooling curve shown in Fig. 3.
For KS 1731-260 we assume a Fe envelope, and for MXB 1659-
29 and XTE J1701-462 we assume a He envelope (as indicated
by fits to their cooling curves). The envelope is unconstrained for
HETE J1900.1-2455, and so we show the core temperature for both
He and Fe. The grey bands show the range of calculated heat ca-
pacities from Table II for leptons only (as appropriate if the nucleons
are fully-paired) or for electrons, muons, protons and neutrons (un-
paired nucleons). The dotted lines show values of C = 1036, 1037 and
1038 T̃8 erg K−1.

10-1 100 101

Energy deposited (2 MEdd yr MeV/mu)

20

40

60

80

100

120

T e
ff

(e
V

)

unpaired nucleons

leptons only

He

Fe

He

Fe

KS1731 - 260
MXB1659 - 29
XTEJ1701 - 462
HETEJ1900. 1 - 2455

FIG. 8. The quiescent temperature as a function of energy deposited
during the outburst. The deposited energy is measured in units cor-
responding to a 1 year outburst with Ṁ = ṀEdd and Qnuc = 2 MeV
per nucleon. The shaded curves show the predicted temperatures
corresponding to the range of calculated heat capacities in Table II
for either leptons only or unpaired nucleons, and for either a light
element (He) or heavy element (Fe) envelope.

and XTE J1701-462, we assume a light element envelope that
has been successfully used to fit their cooling curves (see [11]
for MXB 1659-29 and [12] for XTE J1701-462). The data for
HETE J1900.1-2455 consist of one observation from which
the temperature is derived and several upper limits, so that
the cooling curve cannot be used to distinguish the envelope
composition [58]. We include both heavy and light envelopes
in Table III for HETE J1900.1-2455. For MXB 1659-29, we
take T∞eff

= 55 eV, which is the value obtained in Ref. [59]
by allowing the X-ray absorption column NH to be free in the
fit to the observed spectrum. If instead NH is held fixed, the
temperature is lower T∞eff

= 49 eV [59], giving a value of T̃ that
is 20% smaller, and C > 5.8×1036 erg K−1T̃8. However, given
the uncertainty in the interpretation of the observed spectrum
[59], we choose the more conservative limit.

Figure 7 shows the expected T̃ as a function of the energy
deposited for the range of values of C calculated in Table II
with either all particles contributing (neutrons, protons, elec-
trons and muons), or for electrons and muons only. Figure 8
shows a comparison directly to observed quantities: the ex-
pected T∞eff

in quiescence as a function of the outburst proper-
ties. The shaded curves show the range of values of T∞eff

pre-
dicted for leptons only or for unpaired nucleons, and for dif-
ferent envelope compositions (with lighter envelopes having a
larger T∞eff

at a fixed core temperature or energy deposited).
The three sources KS 1731-260, MXB 1659-29, and

XTE J1701-462 have similar lower limits C ≈ 2–5 ×
1036 T̃8 erg K−1 (Table III). These lower limits are all con-
sistent with the expected lepton contribution to the heat ca-
pacity, but rule out a transition to a CFL phase at densities
≈ 1–2 ρ0. The most constraining source is MXB 1659-29.
Despite having less energy deposited than KS 1731-260 be-
cause of its shorter outburst, the lower observed temperature
and helium envelope result in a more constraining lower limit
by almost a factor of two. HETE J1900.1-2455 has a simi-
lar effective temperature to MXB 1659-29, and gives a similar
limit on heat capacity if it has a He envelope.

The temperature of HETE J1900.1-2455 is based on a sin-
gle observation [58] and may drop to a lower value in the fu-
ture. Figure 8 shows that if HETE J1900.1-2455 has a light
element envelope, the degree of neutron and proton pairing in
the core would begin to be constrained if the effective temper-
ature dropped below ≈ 40 eV. Sources with a more energetic
outburst can be hotter and still give an equivalent constraint.
For example, XTE J1701-462 or MAXI J0556-332 would rule
out a lepton only heat capacity for the core if they were to cool
to below ≈ 60 eV (for a light element envelope).

IV. THERMAL EVOLUTION OF THE CORE IN
OUTBURST AND QUIESCENCE

The lower limit of the core’s heat capacity, Eq. (3), implic-
itly assumes that neutrino emission from the core is negligi-
ble. In this section, we critically examine this assumption and
define joint constraints on C and Lν. We then show how obser-
vational limits on the core cooling during quiescence, perhaps
coupled with a measurement of the recurrence time, will fur-
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Source Ṁ to E43 T∞eff
T̃8 Envelope C Ref.

[1018 g s−1] [yr] [eV] composition [T̃81036 erg K−1]

KS 1731-260 0.1 12 7.2 63.1 0.7 Fe 2.9 [28]
MXB 1659-29 0.1 2.5 1.5 55 0.25 He 4.8 [59]
XTE J1701-462 1 1.6 9.6 121.9 0.92 He 2.2 [60]
HETE J1900.1-2455 0.023 10 1.4 54 0.24 (0.53) He (Fe) 4.7 (1.0) [58]

TABLE III. Observed quiescent temperatures and outburst properties of accreting neutron stars. The energy deposited in the core during
outburst E43 is determined from Eq. (4), and core temperature T̃ from Eq. (5) or (6) depending on the indicated envelope composition. The
lower limit on the heat capacity (normalized to 108 K assuming C ∝ T ) is from Eq. (8).

ther constrain C and Lν.
The results of this section are presented in Fig. 9 for

KS 1731-260. The following subsections describe in more de-
tail the different components of this plot. In brief, the specific
heat must lie above the lower dark curve, which approaches
the minimum value of Eq. (3) for negligible Lν; the neutrino
luminosity must lie to the left of the vertical dark line, which
indicates where the core temperature saturates during outburst
(Sec. IV A); the shaded regions indicate constraints from lim-
its on the changes in the core temperature during quiescence
(Sec. IV B); and the light contours indicate different values of
the recurrence time (Sec. IV C).
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FIG. 9. Possible values of the specific heat C and neutrino luminosity
Lν (assumed ∝ T̃ 6) for KS 1731-260. Neutrino cooling from the core
exceeds radiative cooling from the surface to the right of the vertical
dotted line. The minimum specific heat is indicated by the lower dark
curve; it asymptotically approaches the value derived in Eq. (3) for
sufficiently small Lν. At right, the vertical dark line indicates where
Lν(T̃8 = 7) = Lin; this is the largest neutrino luminosity compatible
with the observed T̃ . The thin grey contours indicate values of con-
stant recurrence time. The dark grey region at lower right is excluded
by the absence of cooling (at < 13%) after 6 years in quiescence. If
cooling were absent (< 5%) after 10 years, then the light grey region
would be further excluded.

In this section, we make repeated use of the thermal evolu-
tionary equation for the core (Eq. 1),

C
dT̃
dt

= −Lγ(T̃ ) − Lν(T̃ ) + Lin, (13)

where Lin = 0 during quiescence. The photon luminosity,
Lγ(T̃ ), follows from Equations (5) and (6):

Lγ = 9.8 × 1032 T̃ 2.2
8 erg s−1 (heavy); (14)

Lγ = 7.5 × 1033 T̃ 2.4
8 erg s−1 (light). (15)

This equation assumes that the core is isothermal, which holds
only if the thermal conduction time across the core is much
shorter than the cooling or heating timescale, and the core
conductivity is large enough to transport heat inwards with
a small temperature contrast. The conduction time across the
core is

cP

K
R2 ∼ 3 yr

(
cP

1019 erg cm−3 K−1

) ( R
10 km

)2

(
K

1023 erg cm−1 s−1 K−1

)−1

, (16)

where we insert a typical value of thermal conductivity K due
to neutrons at 108 K [61, 62] and use the heat capacity of de-
generate fermions from Eq. (9). This conduction time is a
factor of a few times smaller than both the outburst timescale
and time in quiescence for KS 1731-260, and in the case of
rapid core evolution with a small C, the thermal time is even
shorter. The temperature contrast required to transport the in-
wards luminosity is also small, ∆T ≈ L/4πRK ∼ 106 K for
Lin ∼ 1035 erg s−1, so the isothermal assumption is reasonable.

A. Neutrino cooling during outburst and an upper limit on the
core neutrino luminosity

The neutrino emissivity of the neutron star core is highly
uncertain, depending on the particle content and allowed weak
reactions. A large enough neutrino emissivity would remove
a significant amount of the energy deposited in the core dur-
ing the outburst and invalidate our assumption that all of the
energy that flows into the core from the crust heats the core.

Neutrino cooling processes generally divide into two
classes [40]: fast, such as direct Urca,

εdU
ν ≈ 1026 erg cm−3 s−1

( T
109 K

)6

; (17)
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and slow, such as modified Urca,

εmU
ν ≈ 1020 erg cm−3 s−1

( T
109 K

)8

. (18)

The fast processes scale as T 6, whereas the slow go as T 8.
To estimate the corresponding neutrino luminosity, we neglect
the variation in neutrino emissivity with density and gravita-
tional redshift and write Lν ≈ (4πR3

c/3)εν(T̃ ), with core radius
Rc = 11 km, to obtain

Lν,dU = 6 × 1038 T̃ 6
8 erg s−1 (19)

Lν,mU = 6 × 1030 T̃ 8
8 erg s−1. (20)

The modified Urca cooling exceeds photon cooling in quies-
cence (Eq. [14]) for T̃8 > 2.4. Hence, modified Urca is not im-
portant during the outburst of KS 1731-260. If a slow cooling
process (i.e., one ∝ T̃ 8) were important for regulating the core
temperature, it would need to be at least 103 times stronger
than modified Urca.

For a fast emission process, neutrino cooling exceeds radia-
tive cooling at T̃8 = 0.7 for Lν/T̃ 6

8 > 3.8 × 1033 erg s−1, which
is about 10−5 of the direct Urca luminosity. This threshold is
indicated by the vertical dotted line in Fig. 9. We can rule out
a neutrino emission as large as direct Urca, however, because
the core neutrino luminosity cannot exceed the luminosity en-
tering the core during outburst: Lν < Lin ≈ 2 × 1035 erg s−1

(Fig. 2). As the core is heated and its temperature rises (as-
suming the heat capacity is low enough to give a large temper-
ature change), the neutrino emissivity will eventually come
into balance with the heating rate, and the core temperature
will saturate. For direct Urca, the saturation temperature is
much smaller than the inferred core temperature. Setting
Lν < Lin implies an upper limit to the emissivity of any fast
neutrino process,

εfast
ν

(T/109 K)6 < 1023 erg cm−3 s−1
(

T̃8

0.7

)−6 (
Lin

2 × 1035 erg s−1

)
,

(21)
which is about 10−3 of the direct Urca emissivity. This limit
is shown as the dark vertical line in Fig. 9.

Neutrino cooling during the outburst removes heat from the
core; as a result, the core heat capacity can be below the limit
in Eq. (8). As Lν → Lin, the lower limit on heat capacity C →
0. In this limit, very small values of C are allowed because
the core temperature reached during outburst is limited by the
saturation value for which Lν ≈ ṀQnuc. This lower limit on
C as a function of Lν is shown by the lower dark curve in
Fig. 9. The lower limit on C from Eq. (8) remains valid until
Lν is within a factor of a few of the maximum allowed value.
Such a large Lν would, however, also produce a measurable
decrease in the core temperature during quiescence. We show
next that current data already rule out such a large neutrino
emissivity for KS 1731-260.

B. Cooling of the core during quiescence and future bounds on
the core heat capacity

Cooling via neutrino losses during quiescence is potentially
observable. If we neglect Lγ in Eq. (13), then for a linear
dependence on T̃ for C and Lν ∝ T̃α the core temperature
evolves over a time ∆t from Ti to T f as(

T̃i

T̃ f

)α−2

− 1 = (α − 2)
∆t
τ

(22)

where α = 6 for fast neutrino cooling and

τ =
CT̃

Lν(T̃ )
≈ 3000 yr

C38T̃8

Lν,35
(23)

is the cooling timescale. For ∆t � τ, we may expand Eq. (22)
and use Eq. (23) to obtain

C38

Lν,35
=

(
∆T̃/T̃
0.3%

)−1 (
tq

10 yr

)
T̃−1

8 . (24)

Further monitoring of the quiescent temperature of KS 1731-
260 can therefore either measure or limit C/Lν. If the core
temperature remains constant, we will obtain a lower limit on
C as a function of Lν.

Eq. (24) shows that if neutrino losses during outburst are
significant, then the temperature in quiescence should show
a rapid decline. For example, setting C = 1036 erg K−1 and
Lν = 1035 erg s−1 gives ∆T̃/T̃ ≈ 30% over 10 years. A tem-
perature change this large should be straightforward to ob-
serve. Indeed, the most recent temperature measurement for
KS 1731-260 rules out temperature changes this large. Taking
the two measurements of T∞eff

= 64.5±1.8 eV and 64.4±1.2 eV
separated by 6 years [29], we find the 1σ error in the slope is
0.4 eV yr−1. Assuming T̃ ∝ T 1.8

eff
(appropriate for a heavy ele-

ment envelope) gives a 2σ upper bound on the change in core
temperature of < 13% over 6 years for KS 1731-260 (equiv-
alent to < 20% over 10 years). This lack of cooling excludes
the dark shaded region in Fig. 9. As a result, the lower limit on
C from Eq. (8) holds; indeed, for Lν . Lin ≈ 2 × 1035 erg s−1,
the lower limit on C exceeds that of Eq. (8).

If a decrease in core temperature is measured during quies-
cence, we can then determine C/Lν. Since we already have an
upper limit on Lν, we would then have a corresponding upper
limit on C. Setting Lν = Lin in Eq. (24) gives

C < 1038 erg K−1
(
∆T̃/T̃
0.01

)−1 (
tq

10 yr

) (
T̃8

0.7

)−1

(
Lin

2 × 1035 erg s−1

)
. (25)

The upper limit on core heat capacity we would obtain for a
measured 5% change in temperature over 10 years is indicated
by the upper boundary of the light shaded region in Fig. 9.
When combined with the lower limit from heating, we would
then confine both the neutrino luminosity and heat capacity
to a narrow range of possible values within the light shaded
region. Alternatively, tighter constraints on ∆T̃/T̃ would in-
crease the excluded area at the lower right in Fig. 9.
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C. The recurrence time and the core temperature

The duration of the quiescent period in KS 1731-260 is un-
known. If the neutron star is quiescent for too brief a time for
its core to completely cool, then it starts the subsequent out-
burst slightly hotter. This continues over repeated outbursts
until the heat injected during outburst is radiated away by pho-
tons or neutrinos during quiescence. As a result, the core tem-
perature at the end of the outburst is hotter than if it were
heated only by that one outburst.

To illustrate this, we integrate Eq. (13) in outburst neglect-
ing Lγ and Lν, so that the energy deposited into the core is
E = Linto. We then integrate over quiescence for a time tr − to
with Lin → 0, and apply the constraint that the temperature
at the end of quiescence equal that at the start of the outburst.
We are assuming that Lν � Lin; under these conditions, the
core temperature at the end of outburst has a simple analytical
form:

T̃ =

(
2E

C/T̃8

)1/2 [
1 −

(
1 + (α − 2)

tr
τ

)−2/(α−2)
]−1/2

. (26)

Here tr is the outburst recurrence time and α is the temper-
ature exponent for the cooling mechanism: if neutrino cool-
ing dominates α = 6 (8) for fast (slow) processes; if neutrino
cooling is negligible then α = 2.2 for cooling from radia-
tive emission from the surface with a heavy element envelope
(Eq. [5]). The cooling timescale for fast neutrino losses is de-
fined in Eq. (23); for radiative cooling it is

τγ =
CT̃

Lγ(T̃ )
≈ 3 × 105 C38T̃−1.2

8 yr. (27)

In the limit tr � τ, Eq. (26) reduces to Eq. (2). For tr �
τ, the core temperature T̃ becomes solely a function of the
heat deposited during outburst and the neutron star core acts
as a calorimeter with the temperature related to specific heat
according to Eq. (8).

The behavior of the core temperature T̃ with recurrence
time tr is illustrated in Figure 10. For this plot, the heat de-
posited in an outburst is 7.2× 1043 erg, cf. eq. (4) with an out-
burst time of 12 yr; the specific heat has a linear temperature
dependence with C/T̃8 = 1038 erg K−1; and the neutrino cool-
ing is solely from modified Urca, Eq. (20). The timescale for
the core to cool is τγ ≈ 3 × 105 yr (cf. Eq. [27]). For tr > τγ,
the core temperature at the end of the outburst is set by the
Eq. (3). For shorter recurrence times, the core temperature is
set by the need to radiate away the deposited energy in qui-
escence, Eq. (2). This is done by radiative emission from the
surface. in the region marked Lγ(T̃ ) = Q〈Ṁ〉. At still shorter
recurrence times, the core temperature is large enough that
neutrino cooling becomes important (indicated by horizontal
dotted line), and the temperature is set by Lν(T̃ ) = Q〈Ṁ〉.

Given the inferred core temperature T̃ = 7 × 107 K, for this
combination of specific heat and neutrino emission the recur-
rence time would be ≈ 5 000 yr, as indicated by the dark circle
on the plot. Different scenarios for C and Lν generate a family
of curves T̃ (tr), and by setting T̃ (tr) = 7 × 107 K and solv-
ing for tr, we can map out contours of constant tr, as shown

10
2

10
3

10
4

10
5

10
6

10
7

tr (yr)

10
7

10
8

T
(K

)

t r
=

L = L

L (T) = Q M

L (T) = Q M

T = 2E/C

FIG. 10. Core temperature T̃ at the end of the outburst as a func-
tion of outburst recurrence time tr. The energy deposited into the
core is 7.2 × 1043 erg and the specific heat is C/T̃8 = 1038 erg K−1.
The light dotted vertical line indicates the radiative cooling timescale
(Eq. [27]). For recurrence times longer than this, the core cools com-
pletely and the temperature at the end of the outburst obeys the sim-
ple relation, Eq. (3); for shorter recurrence times, the core tempera-
ture is set by balancing E = Lγtr (cf. Eq. [2]) or by balancing E = Lνtr

for sufficiently high T̃ , as indicated by the horizontal dotted line
marking where neutrino cooling (modified Urca; Eq. [20]) equals
radiative cooling. At the inferred core temperature T̃ = 7 × 107 K,
the recurrence time in this scenario is thus 5 000 yr, as indicated by
the dark circle.

in Fig. 9 (light grey curves). Starting at the lower left of the
plot, where both C and Lν are small, we are in the calorime-
ter regime (lower dark curve), and tr > τγ. Moving upwards
on the plot to the larger C while keeping Lν small, we are
in the regime Lγ = Q〈Ṁ〉, so that tr ≈ 5 000 yr. The mov-
ing from the upper left toward the upper right by increasing
Lν, the recurrence time becomes progressively shorter so that
Lν = Q〈Ṁ〉; as tr → 0 we approach the limiting neutrino lu-
minosity Lν = Lin (dark vertical line).

Another way to improve the lower limit on the heat capac-
ity would be to use multiple outbursts from the same source.
For example, a short recurrence time for KS 1731-260 would
tightly constrain Lν to lie close to its upper limit (vertical solid
curve, Fig. 9), while limits on the variability would bound C
(§ IV B). If the core temperature were measured before and
after an outburst, the change in temperature of the core due
to the energy deposited during the outburst could be directly
measured. The resulting constraint on the heat capacity would
likely be much more constraining than our lower limit, which
assumes that the core is very cold at the start of the outburst.
A complication in doing this is that the envelope composi-
tion will most certainly be different in the two quiescent pe-
riods [32]. This could perhaps be resolved by modeling the
shape of the quiescent cooling curve, as we have done here
for KS 1731-260 (Sec. II). One source for which this could
be attempted in the near future is MXB 1659-29, which re-
cently went into outburst again after more than 14 years in
quiescence [63].
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V. CONCLUSIONS

We have shown that observations of the temperature of ac-
creting neutron stars in quiescence provide a lower limit to
the heat capacity of the neutron star core. This limit is de-
rived by assuming that the neutron star core cools completely
between outbursts, opposite to the usual assumption that the
core is in long term equilibrium, used to constrain the core
neutrino emissivity. The core is then a calorimeter that can be
used to determine the heat capacity given the energy deposited
and final core temperature. The main uncertainty in deriving
the lower limit is the envelope composition, which can change
the inferred core temperature by a factor of 2–3. However, the
envelope composition is constrained by the shape of the cool-
ing curve; in particular we show that KS 1731-260 is best fit
with a heavy element envelope (as also recently pointed out
by [33]). The lower limits to the core heat capacity for the
sources KS 1731-260, MXB 1659-29, and XTE J1701-462
are in the range C & 2–5 × 1036 T̃8 erg K−1, where T̃8 is the
core temperature in units of 108 K. This is a factor a 2–3 be-
low the heat capacity expected from electrons, which set the
heat capacity when the nucleons are superfluid in the core.
This limit rules out a large fraction of the core being made up

of a CFL phase. We have also shown that continued observa-
tions in quiescence can strengthen the lower limit and, if cool-
ing in quiescence is detected, provide a complimentary upper
limit on the core heat capacity. Long timescale observations
of quiescent neutron stars provide a new way to constrain the
unknown composition of dense matter in neutron star cores.
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