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We extend our virial approach to study the neutral-current neutrino response of nuclear matter
at low densities. In the long-wavelength limit, the virial expansion makes model-independent pre-
dictions for neutrino-nucleon scattering rates and the density SV and spin SA responses. We find
SA is significantly reduced from one even at low densities. We provide a simple fit Sf

A(n, T, Yp) of
the axial response as a function of density n, temperature T and proton fraction Yp, which can be
incorporated into supernova simulations in a straight forward manner. This fit reproduces our virial
results at low densities and the Burrows and Sawyer random phase approximation (RPA) model
calculations at high densities. Preliminary one-dimensional supernova simulations suggest that the
virial reduction in the axial response may enhance neutrino heating rates in the gain region during
the accretion phase of a core-collapse supernovae.

PACS numbers: 21.65.+f, 26.50.+x, 25.30.Pt, 97.60.Bw

I. INTRODUCTION

Neutrinos radiate 99% of the energy and play a crucial
role in core-collapse supernovae [1–3]. The scattering of
neutrinos and their transport of energy to the shock re-
gion are sensitive to the physics of low-density nucleonic
matter, which is a complex problem due to bound nuclei
and the strong correlations induced by nuclear forces. A
recent three-dimensional supernova simulation was sen-
sitive to modest changes in neutral-current neutrino-
nucleon interactions and exploded when strange-quark
contributions were included [4]. However, these strange-
quark contributions were probbaly taken to be unreal-
istically large [5]. In this paper, we explore if similar
reductions in neutral-current interactions can arise, not
from strange-quark contributions but, from correlations
in low-density nucleonic matter. The physics of neutrino-
matter interactions is a broad and active field, where
many interesting studies of neutrino-matter interactions
have been performed recently [6–20].

For low densities and high temperatures, the virial
expansion provides a model-independent approach. In
previous works, we have presented the virial equation
of state of low-density nuclear matter [21] and of pure
neutron matter [22]. In particular, the virial expansion
can be used to describe matter in thermal equilibrium
around the neutrinosphere in supernovae. The temper-
ature of the neutrinosphere is roughly T ∼ 4 MeV from
about 20 neutrinos detected in SN1987a [23, 24] and the
mass density is ρ ∼ 1011 − 1012 g/cm3. For pure neu-
tron matter, the virial expansion in terms of the fugacity
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z = eµ/T is valid for

ρ =
2m

λ3
z +O(z2) . 4× 1011 (T/MeV)3/2 g/cm3 , (1)

where m is the nucleon mass and λ = (2π/mT )1/2 de-
notes the thermal wavelength. A conservative validity
range of the virial equation of state is given by z < 1/2,
which gives the limiting density in Eq. (1). Therefore,
the virial approach is applicable for the conditions of the
neutrinosphere. Following our virial equation of state,
we have generalized the approach to study spin-polarized
neutron matter and the consistent neutrino response of
neutron matter at low densities [25].

In this paper, we use the virial expansion to describe
how neutrinos interact with low-density nuclear matter
composed of protons and neutrons. We neglect alpha
particles and other light nuclei [26, 27]. These will be
included in later work. In Sec. II, we present our formal-
ism. Our results for the axial response and preliminary
one-dimensional supernova simulations are presented in
Sec. III. Finally, we conclude in Sec. IV.

II. NEUTRINO RESPONSE

In this section, we use the virial expansion to describe
how neutrinos interact with low-density nuclear matter.
We focus on neutral-current neutrino interactions. We
expect similar results for charged-current reactions, how-
ever we leave these to later work. We calculate the neu-
trino cross section per unit volume. The virial expansion
provides model-independent results in the limit of low
momentum transfer q → 0.

The free cross section for neutrino-nucleon neutral-
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current scattering is

dσ0

dΩ νN
=
G2
FE

2
ν

4π2

(
Ca,N

2(3− cos θ) + Cv,N
2(1 + cos θ)

)
,

(2)
where GF is the Fermi constant, Eν the neutrino energy,
and θ the scattering angle. The axial coupling up to
strange-quark corrections is |Ca,N | = |ga|/2 = 0.63 where
ga is the axial charge of the nucleon. The weak vector
charge is Cv,n = −1/2 for scattering from a neutron n

and Cv,p = 1/2 − 2 sin2 θW ≈ 0 for scattering from a
proton p. Here θW is the weak mixing angle. The cross
section in Eq. (2) neglects corrections of order Eν/m from
weak magnetism and other effects, for details see [28].

The free cross section per unit volume for scattering
from a mixture of neutrons and protons is then given by

1

V

dσ0

dΩ
= nn

dσ0

dΩ νn
+ np

dσ0

dΩ νp
, (3)

=
G2
FE

2
ν

16π2

(
g2
a(3− cos θ)(nn + np)

+ (1 + cos θ)nn

)
. (4)

In the medium this cross section is modified by the den-
sity (vector) SV and the spin (axial) SA response. The
response of the system to density fluctuations is described
by SV , while SA describes the response of the system to
spin fluctuations. The response functions are normalized
to unity in the low-density limit SV , SA → 1 as n → 0.
The cross section per unit volume in the medium is then
given by

1

V

dσ

dΩ
=
G2
FE

2
ν

16π2

(
g2
a(3− cos θ)(nn + np)SA

+ (1 + cos θ)nnSV

)
. (5)

Note that dσ/dΩ reduces to the free cross section dσ0/dΩ
as SA, SV → 1. In general both SV and SA depend on
momentum transfer q. However, in the limit q → 0 we
can derive model independent virial results.

A. Virial equation of state

Next, we briefly review the virial equation of state for
a system with neutrons and protons [21]. We will use this
to calculate SV and SA. The pressure P is expanded to
second order in the fugacities of neutrons zn and protons
zp,

P

T
=

lnQ

V
=

2

λ3

[
zn + zp + (z2

n + z2
p)bn + 2zpznbpn

]
. (6)

Here T is the temperature, V is the volume of the system,
and Q is the grand-canonical partition function. The
fugacities are related to the neutron µn and proton µp

chemical potentials by zn = eµn/T and zp = eµp/T . Fi-
nally the second virial coefficients bn and bpn are calcu-
lated from nucleon-nucleon elastic scattering phase shifts.
These are tabulated in Ref. [21].

The neutron nn and proton np densities follow from
derivatives of lnQ,

ni = zi
∂

∂zi

( lnQ

V

)∣∣∣
V,T

. (7)

This gives

nn =
2

λ3
(zn + 2z2

nbn + 2zpznbpn) , (8)

np =
2

λ3
(zp + 2z2

pbn + 2zpznbpn) . (9)

B. Vector response

The vector response SV is equal to the static structure
factor Sq, see for example, Refs. [25, 29]. For a single-
component system

SV (q = 0) =
T

(∂P/∂n)T
. (10)

Using the virial equation of state this can be rewritten
with dP/dn = n/(Tz)(dz/dn) as

SV =
1

n
z
∂

∂z
n . (11)

Following Ref. [7], we generalize this result to a mixture
of neutrons and protons:

SV =
Cnv

2Snn + 2Cnv C
p
vSnp + Cpv

2Spp

Cnv
2nn + Cpv

2
np

, (12)

where

Snn = zn
∂

∂zn
nn = nn +

4

λ3
z2
nbn , (13)

Snp = zp
∂

∂zp
nn =

4

λ3
zpznbpn , (14)

Spp = zp
∂

∂zp
np = np +

4

λ3
z2
pbn . (15)

Using Eqs. (13,14,15), we have for SV

SV = 1 +
4

λ3

Cnv
2z2
nbn + 2Cnv C

p
vznzpbpn + Cpv

2z2
pbn

Cnv
2nn + Cpv

2
np

.

(16)
In the limit Cpv ≈ 0 this reduces to the neutron-matter
result [25]

SV = 1 +
4

λ3

z2
nbn
nn

. (17)
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FIG. 1. (Color online) Vector response SV versus density n
for proton fractions of Yp = 0 dashed and 0.3 solid lines. The
curves are for temperatures of (left to right with increasing
thickness) 2.5, 5, 10, and 15 MeV. The solid circles show
where zn = 0.5. The virial expansion is most valid to the left
of these points.

Here the impact of protons is to somewhat modify the
neutron fugacity zn because of the bpn term in the
neutron density, Eq. (8). The virial coefficient bn ≈
0.32 is small and positive. As a result the vector re-
sponse is slightly enhanced (larger than one) as shown in
Fig. 1. Attractive nucleon-nucleon interactions increase
the probability to find nucleons close together. These
density fluctuations increase the (local) weak charge and
produce a vector response SV > 1.

C. Axial response

To calculate the axial response SA we generalize our
virial equation of state to describe spin-polarized nuclear
matter. Let z+

p , z+
n be the fugacities for spin up p and

n, and z−p , z−n be the spin down fugacities. Generalizing
the results of Ref. [25], we have for the density of spin-up
neutrons n+

n

n+
n =

1

λ3

[
z+
n + 2b+z

+
n

2
+ 2z+

n (b−z
−
n + b+pnz

+
p + b−pnz

−
p )
]
.

(18)
We discuss the spin virial coefficients b+, b−, b+pn and b−pn
in Sec. II D. Likewise the density of spin-down neutrons
n−n is

n−n =
1

λ3

[
z−n + 2b+z

−
n

2
+ 2z−n (b−z

+
n + b+pnz

−
p + b−pnz

+
p )
]
.

(19)
Similarly, the density of spin-up protons n+

p is

n+
p =

1

λ3

[
z+
p + 2b+z

+
p

2
+ 2z+

p (b−z
−
p + b+pnz

+
n + b−pnz

−
n )
]
,

(20)

while the density of spin-down protons n−p is

n−p =
1

λ3

[
z−p + 2b+z

−
p

2
+ 2z−p (b−z

+
p + b+pnz

−
n + b−pnz

+
n )
]
.

(21)
We define axial or spin fugacities zan = (z+

n /z
−
n )1/2 and

zap = (z+
p /z

−
p )1/2 and following Ref. [7] write the axial

response as

SA =
SApp + SAnn − 2SAnp

nn + np
, (22)

with

SAnn = zan
∂

∂zan
(n+
n − n−n )

∣∣∣
zan=1

= nn +
4

λ3
(b+ − b−)z2

n ,

(23)

SAnp = zap
∂

∂zap
(n+
n − n−n )

∣∣∣
zap=1

=
4

λ3
znzp(b

+
pn − b−pn) ,

(24)

SApp = zap
∂

∂zap
(n+
p − n−p )

∣∣∣
zap=1

= np +
4

λ3
(b+ − b−)z2

p .

(25)

Note that the minus sign for the SAnp term in Eq. (22) is
because the axial charge of a neutron is opposite to that
of a proton. To clean up the notation, we define the axial
virial coefficients

ba = b+ − b− , (26)

bapn = b+pn − b−pn . (27)

The final result for SA can then be written as

SA = 1 +
4

λ3

(z2
p + z2

n)ba − 2zpznb
a
pn

nn + np
. (28)

To lowest order in the density one has zp ≈ λ3np/2 and
zn ≈ λ3nn/2 so that

SA ≈ 1 + λ3
(n2
n + n2

p)ba − 2nnnpb
a
pn

np + nn
. (29)

Note that we use the full Eq. (28) for results in the next
section. Because the spin virial coefficient ba ≈ −0.6
(see below), the axial response is reduced SA < 1. This
is because two neutrons or two protons are likely to be
correlated in a 1S0 state because of the Pauli principle
and this spin zero state reduces the spin response.

We define the total response Stot as the ratio of the
in-medium transport cross section to the free one,

Stot =

∫
dΩ dσ

dΩ (1− cos θ)∫
dΩ dσ0

dΩ (1− cos θ)
. (30)

From Eqs. (4) and (5), we thus have

Stot =
5g2
aSA + (1− Yp)SV

5g2
a + 1− Yp

, (31)
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where Yp is the proton fraction. The total response de-
pends on both SV and SA. However, in general SA is
most important because of the large factor 5g2

a. We
present results for SA in Sec. III. However first we discuss
the spin virial coefficients.

D. Spin virial coefficients

The virial coefficient ba = b+ − b− is discussed in Ref.
[25] and describes spin interactions between two protons
or two neutrons. We now discuss bapn = b+pn − b−pn that
involves interactions between protons and neutrons. The
virial coefficient b+pn describes interactions between a p

and a n with like spin projections, while b−pn describes in-
teractions between nucleons with unlike spins. We there-
fore have

bapn =
1

21/2
(eEd/T − 1)

+
21/2

πT

∫ ∞
0

dEe−E/2T [δ+
pn(E)− δ−pn(E)] , (32)

with

δ+
pn(E) =

1

2
δ3S1

+
1

6
δ3P0

+
1

2
δ3P1

+
5

6
δ3P2

+
1

2
δ3D1

+
5

6
δ3D2

+
7

6
δ3D3

+ . . . . (33)

Here Ed is the deuteron binding energy and the factor
in front of each phase shift is (2J + 1)/[2(2S + 1)] where
the factor of 1/2 is from the average over isospin 1 and 0
states. In our calculation, we have neglected states with
L > 2. Similarly, we have

δ−pn(E) =
1

4
δ1S0

+
1

4
δ3S1

+
3

4
δ1P1

+
1

12
δ3P0

+
1

4
δ3P1

+
5

12
δ3P2

+
5

4
δ1D2

+
1

4
δ3D1

+
5

12
δ3D2

+
7

12
δ3D3

+ . . . .

(34)

Now the factor for each phase shift is (2J+1)/[4(2S+1)],
where the 1/4 is from an average over both isospin 1 and
0 and spin 1 and 0 states. We calculate the spin virial
coefficients based on the Nijmegen partial-wave analysis
of nucleon-nucleon scattering [30]. Our results for ba and
bapn are collected in Table I. The other virial coefficients
bn and bpn needed to calculate the neutrino responses
have all ready been tabulated in Ref. [21].

In contrast to ba, bapn is positive because a proton and

a neutron can be correlated into the spin one 3S1 state
(deuteron like), enhancing the spin response. However
the axial charge of a proton is opposite to that of a neu-
tron. This leads to a minus sign in Eq. (28) for the bapn
term. As a result, both ba and bapn reduce the total axial
response and lead to SA < 1.

T (MeV) ba bapn
1 -0.638 6.18
2 -0.653 1.74
3 -0.651 1.05
4 -0.648 0.785
5 -0.643 0.640
6 -0.637 0.561
7 -0.631 0.504
8 -0.625 0.463
9 -0.620 0.432
10 -0.615 0.408
12 -0.605 0.374
14 -0.597 0.352
16 -0.589 0.336
18 -0.583 0.324
20 -0.577 0.315

TABLE I. Spin virial coefficients ba and bapn based on nucleon-
nucleon phase shifts.

E. Combining correlations, strange-quark, weak
magnetism, and recoil corrections

We end this formalism section by describing the com-
bination of correlation, strange-quark, weak magnetism,
and recoil corrections. To a good approximation all of
these effects can be combined in a straight forward way
that avoids double counting. We write for the neutrino
cross section per unit volume, see Eq. (5),

1

V

dσ

dΩ
≈ G2

FE
2
ν

16π2

([
(ga + gsa)2nn + (ga − gsa)2np

]
(3− cos θ)SA + (1 + cos θ)nnSV

)
R(Eν/m) . (35)

Effects from nucleon-nucleon correlations in the medium
are described by the vector SV and axial SA response
functions, see Eqs. (17) and (28), respectively. The vec-
tor response is slightly greater than one and the axial
response is significantly less than one. As a result corre-
lations reduce the cross section for both neutrino-proton
and neutrino-neutron scattering.

Strange quark contributions to the nucleon spin are de-
scribed by the parameter gsa (note ga = 1.26). Melson et
al. [4] consider gsa = −0.2 and this value reduces neutrino-
neutron and increases neutrino-proton scattering cross
sections. For neutron-rich conditions this leads to a net
reduction in the neutrino scattering opacity. Therefore
both correlation effects and strange quarks, if present
(with gsa < 0), reduce the opacity, and the two effects
add. Note that in Ref. [4] strange-quark contributions
were probbaly taken to be unrealistically large [5]. On
the one side, strange-quark contributions to the vector
current have been measured by several parity-violating
electron scattering experiments to be small [31], but di-
rect experimental limits on strange-quark contributions
to the nucleon spin are relatively poor and are based on
an old Brookhaven neutrino scattering experiment [32].
Therefore, it would be very useful to have a better labo-
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(d)

FIG. 2. (Color online) Axial response SA versus density n for temperatures of T = 2.5 MeV (a), 5 MeV (b), 10 MeV (c), and
15 MeV (d). The red dashed lines are our virial expansion results, Eq. (28), for the indicated proton fractions. The solid red
dots indicate where zn = 0.5. The virial expansion is most valid to the left of these points. The green dotted lines show the
original Burrows and Sawyer RPA results [7]. Finally the solid black lines show the interpolating fit Sf

A, Eq. (36).

ratory limit on gsa from a modern neutrino-nucleon scat-
tering experiment.

Finally recoil and weak magnetism corrections can be
approximately described by a factor R(Eν/m). This is
discussed in Ref. [28] and reduces antineutrino-nucleon
scattering cross sections, while having only a modest ef-
fect on neutrino-nucleon cross sections.

III. RESULTS FOR THE AXIAL RESPONSE

In this section, we focus on results for the axial re-
sponse SA, and not on the vector response SV , for two
reasons. First, the axial response is more important for
neutrino-transport cross sections because of a large 5g2

a

factor, see Eq. (35). Second, we have not included alpha
particles or other light nuclei. Preliminary calculations
suggest that spin zero alpha particles can significantly
enhance SV , but do not strongly impact SA. Therefore

we postpone a full discussion of SV to later work, where
we will explicitly include alpha particles and other light
nuclei. For the present, a reasonable approximation is to
simply set SV = 1 in Eq. (31).

In Fig. 2 we show SA for temperatures of T = 2.5
to 15 MeV. Our virial results (red dashed lines) are
valid at low densities. To evaluate SA for higher den-
sities, where zn > 0.5, one presently needs to employ a
model-dependent calculation. We consider the random
phase approximation (RPA) calculations of Burrows and
Sawyer [7], because they are simple, well known, and
have been employed in supernova simulations. We cau-
tion that these calculations may have a number of limita-
tions. First they predict that the vector response is less
than one SV < 1 while Fig. 1 shows SV > 1. Second the
calculations use a Landau parameter for the effective in-
teraction that is appropriate for symmetric nuclear mat-
ter. A Landau parameter appropriate for pure neutron
matter could lead to a smaller SA. See also the discussion
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Fit parameter Value
A0 920
B0 3.05
C0 6140
D0 1.5 × 1013

TABLE II. Fit parameters for Sf
A fitting function, see

Eqs. (36–39). These assume n in fm−3 and T in MeV.

in Ref. [25]. In future work we will revisit the behavior
of SA at high densities, but for now we consider the Bur-
rows and Sawyer results. The green dotted lines in Fig. 2
show the Burrows and Sawyer RPA calculation [7]. Note
that the RPA depends very weakly on the momentum
transfer q and we use q = 3T .

Finally, we fit the virial results for SA at low densities
and the RPA results at high densities with an interpo-

lating function SfA(n, T, Yp) that is a simple function of
density n, temperature T , and proton fraction Yp:

SfA(n, T, Yp) =
1

1 +A(1 +Be−C)
, (36)

where the functions A, B, and C are given by

A(n, T, Yp) = A0

n(1− Yp + Y 2
p )

T 1.22
, (37)

B(T ) =
B0

T 0.75
, (38)

C(n, T, Yp) = C0
nYp(1− Yp)

T 0.5
+D0

n4

T 6
. (39)

The fit parameters A0, B0, C0, and D0 are collected in
Table II for n in fm−3 and T in MeV. This fit is most
accurate for 5 < T < 10 MeV, Yp ≤ 0.3, and n < 0.05
fm−3, but yields reasonable values outside this range. We
make an implementation of this fitting function available
in NuLib [33] at http://www.nulib.org. Note that if
one sets B0 = 0 in Eq. (38), Eq. (36) will approximately
reproduce the original Burrows and Sawyer RPA results
at low density. We see that SA is significantly reduced
from 1 even at relatively low densities. This is especially
the case at low Yp.

We briefly explore the effect of the reduced axial re-
sponse arising from the virial expansion on the heating
rate obtained in simulations of the accretion phase of a
core-collapse supernovae. To compare with Ref. [4], we
use the Lattimer and Swesty [34] equation of state (with
K0 = 220 MeV) and the 20M� progenitor star from
Ref.[35]. We use the one-dimensional code GR1D [33],
available at http://www.GR1Dcode.org. For the sake of
comparison with Ref. [4], we perform simulations with
and without strange-quark contributions. We show the
heating rate realized in the gain region in Fig. 3. The
solid lines denote simulations using no strange quark cor-
rections, while the dashed lines denote simulations using
gsa = −0.2. The black lines are for simulations that use
free particle rates, while the orange lines denote simula-
tions using the virial corrected rates. Similar to Ref. [4],

FIG. 3. (Color online) Heating rate in the gain region for
one-dimensional simulations of the accretion phase of core-
collapse supernovae for various assumptions on the neutral-
current neutrino-nucleon scattering cross section. The solid
lines represent simulations that ignore the contribution to the
rates from strange quarks, whereas dashed lines denote sim-
ulations that include strange-quark contributions, assuming
gsa = −0.2 for comparison with Ref. [4]. The black lines
show the heating rate for simulations that assume SA = 1,
while orange lines show the larger heating rates with Sf

A from
Eq. (36).

the assumed strange-quark contribution raises the heat-
ing rate by ∼ 20% around 100 ms after bounce. We find
the virial rates increase the heating by ∼ 5% around
100 ms after bounce and higher at later times. We ex-
pect the reduction in SA to play an even larger role
at later times when the neutrinos decouple from regions
with higher matter densities.

Our preliminary two-dimensional SN simulations, with

a reduced axial response SfA, Eq. 36, explode 100-150 ms
earlier than simulations with SA = 1, for 15, 20, and 25

M� stars. For a 12 M� star, SfA leads to an explosion at
late times while a simulation with SA = 1 fails to explode.
Further details of these simulations will be provided in a
later publication. Very recent results by Burrows et al.
[36], based on an earlier version of this paper, find similar
but perhaps somewhat larger effects of the reduced axial

response SfA.

IV. SUMMARY AND CONCLUSIONS

Supernova simulations may be sensitive to the neutral-
current interactions of mu and tau neutrinos at low den-
sities near the neutrinosphere. In this paper, we have
calculated the axial or spin response SA of nuclear mat-
ter in a virial expansion that is model-independent at low
densities and high temperatures. We find SA to be sig-
nificantly reduced. Our results can be incorporated into
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supernova simulations by multiplying both the neutrino-
proton and neutrino-neutron neutral current scattering
rates by Stot given by Eq. (31) with SV = 1 and SA
given by our fit function SfA from Eqs. (36), (37), (38),
and (39). Preliminary one-dimensional supernova simu-
lations suggest that the reduction in the axial response
may enhance the neutrino heating rates in the gain re-
gion during the accretion phase of a core-collapse super-
nova. In future work, we will extend the calculation to
the vector response SV in a virial expansion and study
the impact of light nuclei.
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