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Using the theoretical approaches describing well the available data on t-integrated coherent pho-
toproduction of light and heavy vector mesons in Pb-Pb UPCs at the LHC in Run 1, we calculate
the momentum transfer distributions for this process for ρ and J/ψ vector mesons in the kinematics
of Run 2 at the LHC. We demonstrate that nuclear shadowing not only suppresses the absolute
value of the cross sections, but also shifts the momentum transfer distributions toward smaller val-
ues of the momentum transfer |t|. This result can be interpreted as a broadening in the impact
parameter space of the effective nucleon density in nuclei by 14% in the case of ρ and the nuclear
gluon distribution by 5− 11% in the case of J/ψ.

I. INTRODUCTION

High-energy exclusive (elastic) processes with various beams and targets provide information on the distribution
of scattering centers in the target in the plane perpendicular to the beam direction (the impact parameter plane),
which makes possible the transverse imaging of the target. Its examples are well-known and numerous. Measuring
the intermediate energy elastic scattering of electrons and protons on nuclei allows one to reconstruct the charge and
matter (proton+neutron) distributions in nuclei, respectively. The data on elastic proton–proton scattering at high
energies are widely used to learn about the proton profile in the impact parameter space. The recent relativistic
analyses of elastic form factors of hadrons (proton, neutron, pion) measured in elastic scattering were carried out in
terms of the transverse quark densities. More generally, generalized parton distribution functions (GPDs) accessed
in hard exclusive processes encode information of the quark and gluon distributions in a given target (including
transitions between the hadronic states) in terms of light-cone momentum fractions and the impact parameter. Thus,
they at least in principle hold the promise for obtaining a three-dimensional picture of hadrons and nucleus in
Quantum Chromodynamics (QCD), which is one of the key objectives of the physics program of a future Electron-Ion
Collider [1].
Part of this program involving high energy quasireal photons overlaps with studies of proton–proton, proton–nucleus

and nucleus–nucleus ultraperipheral collisions (UPCs) [2] at the Large Hadron Collider (LHC). In particular, during
Run 1 in Pb-Pb UPCs, the ALICE collaboration [3] measured coherent photoproduction of ρ mesons on heavy nuclei
and the ALICE [4, 5] and CMS [6] collaborations measured coherent J/ψ photoproduction on nuclei. Comparison
of these data with numerous model calculations [7–14] demonstrated that the best agreement is observed only if the
calculations account for the effect of strong nuclear shadowing, which suppresses the ρ photoproduction cross section
by approximately a factor of six and the J/ψ cross section by approximately a factor of three. In particular, it was
shown that the Gribov–Glauber approach to nuclear shadowing combined with phenomenology of real and virtual
photon diffraction [8, 11] provides a good description of the data. While the statistics of ρ and J/ψ photoproduction
in Run I was insufficient for the detailed study of the transverse momentum distributions of vector mesons in these
processes, some hints of such shifting have been observed by both ALICE [3] and STAR [15, 16] collaborations. Note
that the preliminary PHENIX data on coherent and incoherent J/ψ photoproduction in Au-Au UPCs at

√
sNN = 200

GeV accompanied by forward neutron emission [17] probes the nuclear gluon distribution at the momentum fraction
x ≈ 0.015, where the nuclear shadowing suppression is not large; see the good description of this data in Ref. [18]. At
the same time, the limited precision of the data and its wide binning in t along with the expected small gluon nuclear
shadowing make it very difficult to study the modification of the t distribution discussed in this work. The much
higher statistics of Run 2 at the LHC allows one to study the influence of strong nuclear shadowing on the transverse
momentum distributions.
In this paper, using the theoretical approaches describing well the available data from Run 1, we extend our

previous study [19] and calculate the momentum transfer distributions for coherent photoproduction of ρ and J/ψ
vector mesons on nuclei in Pb-Pb UPCs in Run 2 at the LHC. We show that nuclear shadowing not only suppresses
the absolute value of the cross sections, but also changes the shape of the differential cross sections by shifting the
momentum transfer distributions toward smaller values of the momentum transfer |t|. One can interpret these results
as an effective broadening in the impact parameter space of the nucleon density in nuclei in the case of ρ and the
nuclear gluon distribution in the case of J/ψ. It is a generic and model-independent consequence of the fact that
nuclear shadowing suppression at small impact parameters is stronger than that at the nucleus periphery.
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II. COHERENT PHOTOPRODUCTION OF LIGHT AND HEAVY VECTOR MESONS ON NUCLEI

Collisions of ions at large impact parameters, which are called ultraperipheral collisions (UPCs) in the literature,
give an opportunity to study photon-initiated processes at unprecedentedly high energies [2]. The cross section of
coherent vector meson V photoproduction in nucleus–nucleus UPCs reads:

dσAA→V AA(y)

dydt
= Nγ/A(y)

dσγA→V A(y)

dt
+Nγ/A(−y)

dσγA→V A(−y)
dt

, (1)

where Nγ/A is the flux of equivalent photons emitted by either of the nuclei; dσγA→V A(y)/dt is the differential cross
section of coherent vector meson photoproduction on nuclei; y is the vector meson rapidity and t is the invariant
momentum transfer squared. For a given y, the photon has the energy of ω = (MV /2)e

y, when emitted by the
nucleus moving in the direction of V , or the energy of ω = (MV /2)e

−y, when emitted by the nucleus moving in the
opposite direction. Note that allowing the final nucleus to disintegrate in the γA→ V A′ process, one can use Eq. (1)
to calculate also incoherent vector meson photoproduction on nuclei in UPCs.
In the ρ meson case, the coherent γA → ρA cross section in the approach based on the combination of the vector

meson dominance (VMD) model and the Glauber model of nuclear shadowing (we collectively called it VMD-GM)
reads [20]:

dσVMD−GM
γA→ρA (Wγp)

dt
=

(

e

fρ

)2 (1 + η2)σ2
ρN

16π

∣

∣

∣

∣

∫

d2~b ei~q⊥
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∫

dzρA(b, z)e
iq‖ze−

1

2
(1−iη)σρN

∫
∞
z
dz′ρA(b,z′)

∣

∣

∣

∣

2

. (2)

In Eq. (2),Wγp is the invariant photon–nucleus energy per nucleon; σρN is the total vector meson–nucleon cross section;
fρ is the γ − ρ coupling constant; η is the ratio of the real to the imaginary parts of the γp→ ρp amplitude; ρA(b, z)

is the nucleon density, which depends on the longitudinal (z) and transverse (~b) coordinates of the active nucleon in
a nucleus; ~q⊥ and q‖ are the transverse and longitudinal components of the momentum transfer, t = −q2‖ − ~q2⊥. This

approach and its generalizations [21, 22] taking into account the influence of the higher ρ′ component of the photon
wave function and nondiagonal ρ ↔ ρ′ transitions provide a good description of the available fixed-target data and
the RHIC data on ρ photoproduction in Au-Au UPCs at

√
sNN = 62.4 GeV and 130 GeV corresponding to Wγp ≤ 10

GeV [23, 24].
With an increase of the photon energy, the inclusion of only lower hadronic components (ρ′) of the photon wave

function becomes insufficient and one needs to take into account the effect of inelastic (Gribov) nuclear shadowing
corresponding to the photon diffraction into large masses. In Ref. [8], this was realized using the Good–Walker
formalism of cross section fluctuations [25, 26] by introducing the distribution PV (σ) giving the probability for the
photon to interact with a nucleon target with the cross section σ. Note that in addition to significant inelastic nuclear
shadowing, the cross section fluctuations result in the reduction of the effective ρ meson–nucleon cross section probed
in the γp → ρp process compared to the additive quark model estimate. The resulting approach, which was called
the modified VMD–Glauber–Gribov model (mVMD-GGM) in Ref. [8], leads to good description of all available data
on coherent ρ photoproduction on nuclei, including the RHIC Au-Au UPC data at

√
sNN = 200 GeV [27] and the

LHC Pb-Pb UPC data at
√
sNN = 2.76 TeV [3] corresponding to Wγp > 10 GeV.

Neglecting the longitudinal momentum transfer, the γA→ ρA cross section in the mVMD-GGM approach has the
following form in the high-energy limit:

dσmVMD−GGM
γA→ρA (Wγp)

dt
=

(

e

fρ

)2
1

4π

∣

∣

∣

∣
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d2~b ei~q⊥
~b

∫

dσPV (σ)
(

1− e−
1

2
(1−iη)σTA(b)

)

∣

∣

∣

∣

2

, (3)

where TA(b) =
∫

dzρA(b, z) is the density of nucleons in the transverse plane (the nuclear optical density) and PV (σ) is
the distribution over cross section fluctuations for the γN → ρN transition. This normalized distribution is centered
around the effective ρ meson–nucleon cross section extracted from the HERA γp → ρp data and has the dispersion
determined by the photon diffractive dissociation γp → Xp into large masses measured at the Fermilab, see details
in Ref. [8].
Coherent nuclear scattering at t 6= 0 is always accompanied by incoherent and inelastic processes, which contaminate

the elastic signal. Hence, in practice one needs to separate the coherent and incoherent signals and examine the
smearing of diffractive minima by the incoherent contribution. In UPCs, incoherent processes are characterized by
inelastic final states in the forward direction and can be separated from the coherent process by examining the t
dependence. To address these issues, we calculate the incoherent γA → ρA′ cross section (A′ 6= A denotes products
of nuclear disintegration) using the following well-known expression [20]:

dσVMD−GM
γA→ρA′ (Wγp)

dt
=
dσγp→ρp(Wγp)

dt

∫

d2~b TA(b)e
−σin

ρNTA(b) , (4)



3

where σin
ρN = σρN − σ2

ρN/(16πBρ) is the inelastic ρ–nucleon cross section; Bρ = 10.9 + 0.46 ln(Wγp/72 GeV)2 GeV−2

is the slope of the t dependence of the γp → ρp cross section at the relevant energies [28, 29]. Note that in Eq. (4)
we neglected the effect of cross section fluctuations and, thus, obtained the upper limit on the inelastic cross section.
The key feature of incoherent photoproduction on nuclear targets is that the t dependence of the nuclear cross section
is dictated by the t dependence of photoproduction on the nucleon:

dσγp→ρp(Wγp, t)

dt
=

(

e

fρ

)2 (1 + η2)σ2
ρN

16π
eBρt . (5)

Turning to the J/ψ case, we notice that the main interest in studying exclusive J/ψ photoproduction at high
energies is that it gives an almost direct access to the gluon distribution gT (x, µ

2) in a given target [30, 31] at the
resolution scale of µ2 = O(m2

c) (mc is the mass of the charm quark) in the kinematical region, where the gluons
carry a small fraction x = M2

J/ψ/W
2
γp ≪ 1 of the target momentum. To the leading orders in the strong coupling

constant and the non-relativistic expansion for the J/ψ distribution amplitude, the cross section of coherent J/ψ
photoproduction on nuclei in the high-energy limit is usually written in the following form, see, e.g., Ref. [12]:

dσγA→J/ψA

dt
=
dσγp→J/ψp(t = 0)

dt

(

Rg,A
Rg,p

)2 (
gA(x, µ

2)

Agp(x, µ2)

)2

F 2
A(t) , (6)

where dσγp→J/ψp(t = 0)/dt is the differential cross section on the proton at t ≈ 0; gA(x, µ
2)/[Agp(x, µ

2)] is the ratio

of the nuclear and proton gluon distributions; FA(t) =
∫

d2b ei~q⊥
~bTA(b) is the nuclear form factor; Rg,A and Rg,p are

the so-called skewness factors for the nucleus and proton gluon GPDs, respectively, which can be estimated using the
small-x behavior of the corresponding gluon distributions [32]. Note that while the leading order description of J/ψ
photoproduction is subject to sizable corrections [33, 34], we expect that they largely cancel in Eq. (6).
Equation (6) assumes that nuclear shadowing does not affect the t dependence of dσγA→J/ψA/dt, which is then

given by the nuclear form factor squared F 2
A(t). This is an approximation valid, when the effect of nuclear shadowing

is insignificant. However, as we discussed in the Introduction, this is not the case. Hence, strong nuclear shadowing
should also modify the t dependence of the dσγA→J/ψA/dt cross section. Generalizing Eq. (6) to the case of large
nuclear shadowing, we obtain:

dσγA→J/ψA

dt
=
dσγp→J/ψp(t = 0)

dt

(

Rg,A
Rg,p

)2 (
gA(x, t, µ

2)

Agp(x, µ2)

)2

, (7)

where gA(x, t, µ
2) is the nucleus generalized gluon distribution in the special limit, when both gluon lines carry the

equal light-cone momentum fractions of x. In this case, GPDs can be expressed in terms of the impact parameter
dependent PDFs [35]. In particular, we have for gA(x, t, µ

2):

gA(x, t, µ
2) =

∫

d2~b ei~q⊥
~bgA(x, b, µ

2) , (8)

where xgA(x, b, µ
2) is the impact parameter dependent gluon nuclear PDF [36, 37], which gives the probability to

find in a nucleus a gluon with the light-cone momentum fraction x at the transverse distance b from the nucleus
(center-of-mass) center. Using the results of Ref. [18] for the calculation of gA(x, b, µ

2), the expression for the cross
section of coherent J/ψ photoproduction on nuclei reads:

dσγA→J/ψA

dt
=
dσγp→J/ψp(t = 0)

dt

∣

∣

∣

∣

∫

d2~b ei~q⊥
~b

[(

1− σ2
σ3

)

TA(b) +
2σ2
σ2
3

ℜe
(

1− e−
1

2
σ3(1−iη)TA(b)

)

]∣

∣

∣

∣

2

. (9)

Equation (9) is a series in powers of TA(b) (numbers of interactions with target nucleons), which builds the nuclear
shadowing suppression. The term proportional to T 2

A(b) describes the interaction with two nucleons, whose strength
is given by the σ2 cross section:

σ2 =
16πBdiff

(1 + η2)xgp(x, µ2)

∫ 0.1

x

dxIP βg
D(3)
p (β, xIP , µ

2) , (10)

where Bdiff ≈ 6 GeV−2 is the slope of the t dependence of the cross section of hard inclusive diffraction on the proton
in deep inelastic scattering (DIS) γ∗p→ Xp [38]; η ≈ 0.17 is the ratio of the real to imaginary parts of the γ∗p→ Xp

amplitude estimated using the Gribov–Migdal relation; g
D(3)
p (β, xIP , µ

2) is the gluon diffractive parton distribution



4

of the proton [38, 39], which depends on the diffractive exchange (“Pomeron”) momentum fraction xIP , the gluon
momentum fraction β, and the scale µ2. Using the leading order (LO) H1 diffractive PDFs and the CTEQ6L1 gluon
density [40], we find that σ2 = 21 mb at x = 0.001 and µ2 = 3 GeV2. The interaction with three and more nucleons is
modeled by the effective cross section of σ3, which is constrained using the formalism of cross section fluctuations in
Ref. [36]. We estimate that σ3 = 26−45 mb, which presents the main source of theoretical uncertainties on gA(x, b, µ

2)
in this approach. One can see from Eq. (9) that nuclear shadowing (the sum of terms proportional to T nA(b), with
n ≥ 2) affects not only the magnitude of σγA→J/ψA, but also the t dependence of dσγA→J/ψA/dt.
It is important to note that while Eqs. (6) and (9) give discernibly different predictions for dσγA→J/ψA/dt, their

predictions for the t integrated σγA→J/ψA cross section differ by less than approximately 15% (the approximate
expression gives the larger cross section than the exact one). This gives a less than 8% correction to the nuclear
suppression factor of SPb for coherent J/ψ photoproduction in Pb-Pb UPCs predicted using Eq. (6) [11, 12], which
is comparable to the experimental uncertainty of the LHC data for this process [4–6].
In the same formalism, we estimate the cross section of incoherent J/ψ photoproduction on nuclear targets [18]:

σpQCD
γA→J/ψA′(Wγp)

dt
=
dσγp→J/ψp(Wγp)

dt

∫

d2~b TA(b)

[

1− σ2
σ3

(

1− e−
σ3
2
TA(b)

)

]2

. (11)

For the t dependence of the elementary γp→ J/ψp cross section, we use the following simple exponential form:

dσγp→J/ψp(Wγp)

dt
=
dσγp→J/ψp(t = 0)

dt
eBJ/ψt , (12)

where BJ/ψ(Wγp) = 4.5+ 0.4 ln(Wγp/90 GeV), which describes well the HERA data on the t dependence of the cross
section of J/ψ photoproduction on the proton, see, e.g. [12].

III. RESULTS AND DISCUSSION

Figure 1 shows our results for the dσγA→V A(Wγp)/dt cross section for ρ (top panel) and J/ψ (lower panel) coherent
photoproduction on 208Pb as a function of |t|. The cross sections are normalized to their values at t = tmin, where
tmin = −m2

NM
4
ρ/W

4
γp, and are evaluated at Wγp = 62 GeV for ρ and Wγp = 124 GeV for J/ψ, which corresponds

to y = 0 for Pb-Pb UPCs at
√
sNN = 5.02 TeV. In the upper panel, the red solid curve labeled “mVMD-GGM”

corresponds to Eq. (3). In the bottom panel, the red solid curve labeled “LTA” shows the result of Eq. (9) calculated
with the lower value of σ3, which corresponds to the upper limit on the shadowing effect for J/ψ photoproduction.
For reference, we also show the normalized nuclear form factor squared obtained using the nucleon density of 208Pb
of Ref. [41] (the blue dot-dashed curve labeled “|FA(t)/A|2”). In the ρ meson case, we also show the result of the
calculation at Wγp = 10 GeV corresponding to the RHIC kinematics (the green dashed line labeled “RHIC”). One
can see that the normalized momentum transfer distribution is a weak function of Wγp between the RHIC and LHC
energies.
One can see from the figure that nuclear shadowing modifies the t dependence of dσγA→V A(Wγp)/dt by shifting

the positions of the diffractive minima and maxima towards smaller values of |t|. For instance, the shift of the first
minimum is ∆pt ≈ 18 MeV for ρ and ∆pt ≈ 14 MeV for J/ψ. Note that in the ρ meson case, the predicted t
dependence very weakly depends on details of the model of cross section fluctuations. In the J/ψ case, the effect of
cross section fluctuations is implicit in Eq. (9) and the ∆pt shift depends on the value of the average σ3 cross section,
which has a significant uncertainty and constrained to lie in the σ3 = 26−45 mb interval. The result of the calculation
with the lower value of σ3, which corresponds to the scenario with the larger gluon shadowing in the leading twist
model of nuclear shadowing [36], is presented in Fig. 1. For the larger value of σ3 and the correspondingly smaller
gluon shadowing, the modification of the t distribution of dσγA→J/ψA(Wγp)/dt compared to |FA(t)/A|2 is smaller;
the corresponding shift is ∆pt ≈ 6 MeV.
The shift of the t dependence of the dσγA→V A(Wγp)/dt cross section shown in Fig. 1 can be interpreted as an

increase (broadening) in the impact parameter space of the nucleon density in nuclei in the case of ρ and the nuclear
gluon distribution in the case of J/ψ. Characterizing the average transverse size of these distributions by the equivalent
radius of RA, one can estimate the relative increase of RA as ∆RA/RA ≈ ∆pt/pt, which gives ∆RA/RA ≈ 1.14 for
ρ and ∆RA/RA ≈ 1.05 − 1.11 for J/ψ. The latter estimate agrees with the results of the analysis of the average
transverse size of the nuclear gluon distribution of Ref. [36]. The transverse broadening of the nuclear gluon and sea
quark distributions caused by nuclear shadowing can also be studied in other exclusive processes such as, e.g., deeply
virtual Compton scattering, where it leads to dramatic oscillations of the beam-spin cross section asymmetry [36].
Figure 2 shows our predictions for dσAA→ρA′A(y = 0)/dydt as a function of |t| (top panel) and dσAA→ρA′A(y =

0)/dydpt as a function of pt (bottom panel) for Pb-Pb UPCs at
√
sNN = 5.02 TeV for Run 2 at the LHC (A′ denotes
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FIG. 1: The dσγA→V A(Wγp)/dt cross section for ρ (top panel) and J/ψ (lower panel) for 208Pb normalized to its value at
t = tmin as a function of |t|. The cross section are calculated atWγp = 62 GeV for ρ andWγp = 124 GeV for J/ψ, corresponding
to the LHC Run 2

√
sNN = 5.02 TeV and y = 0. The resulting t dependence is compared to that given by the normalized

nuclear form factor squared |FA(t)/A|2. For ρ meson, we also show the result of the calculation atWγp = 10 GeV corresponding
to the RHIC kinematics (the green dashed line labeled “RHIC”).

both coherent A′ = A and incoherent A′ 6= A cases). The blue dot-dashed and black dotted curves give the coherent
[Eqs. (1) and (3)] and incoherent [Eqs. (4)] contributions, respectively; the red solid curve is the sum of the coherent
and incoherent terms. One can see from the figure that while the incoherent contribution partially fills in the first
diffractive minimum in the t dependence, the minimum still remains visible and its position as a function of |t| or pt
is unaffected.
The differential dσAA→J/ψA′A(y = 0)/dydt cross section for J/ψ photoproduction is shown in Fig. 3. The upper

panel corresponds to the calculations with the higher leading twist gluon shadowing (smaller σ3) [36] (as in Fig. 1):
The blue dot-dashed and black dotted curves give separately the coherent and incoherent contributions, while the red
solid curve is their sum. In the lower panel, we compare the sum of coherent and incoherent contributions calculated
using the higher (the red solid curve) and lower (the blue dot-dashed curve) gluon nuclear shadowing. One can see
from the lower panel of the figure that the higher gluon shadowing leads to a larger shift of the t distribution. Also,
as in the ρ meson case, the incoherent contribution partially fills in the first diffractive minimum, which still remains
visible.
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FIG. 2: Photoproduction of ρ mesons in Pb-Pb UPCs at y = 0 and
√
sNN = 5.02 TeV: dσAA→ρAA(y = 0)/dydt as a function of

|t| (top panel) and dσAA→ρAA(y = 0)/dydpt as a function of pt (bottom panel). The blue dot-dashed and black dotted curves
give separately the coherent and incoherent contributions, while the red solid curve is their sum.

Note that our results for the incoherent contribution to the AA → V A′A cross section were derived using com-
pleteness of final nuclear states and neglecting inelastic γN → V X processes on the nucleon [18]. This approach
underestimates the measured t-integrated cross section of incoherent J/ψ photoproduction in Pb-Pb UPCs at the
LHC at

√
sNN = 2.76 TeV [4] by approximately a factor of 1.5. Hence, a more accurate treatment of the incoherent

contribution will somewhat increase its magnitude at the values of t shown in Fig. 3, which will result in a less
pronounced first diffractive minimum.
The standard method of separating the coherent and incoherent contributions is an examination of their t (pt)

dependence; this is illustrated in Figs. 2 and 3. In addition, one can experimentally suppress the incoherent contri-
bution by using zero degree calorimeters registering forward neutrons. Since quasi-elastic scattering leads to emission
of one or more neutrons with 85% probability, requiring that no neutrons are emitted (the so-called 0n0n-channel)
suppresses the incoherent contribution at the 15% level, see the discussion in Ref. [18].
To further illustrate the effect of impact parameter dependent nuclear shadowing on the cross section of coherent

J/ψ photoproduction on nuclei, in Fig. 4 we show our results for the J/ψ rapidity distribution in Pb-Pb UPCs
at

√
sNN = 5.02 TeV: the lower band labeled “b-dep.” is calculated using Eq. (9), while the upper band labeled

“b-indep.” is calculated using Eq. (6). One can see from the figure that taking into account the non-trivial impact
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FIG. 3: Photoproduction of J/ψ mesons in Pb-Pb UPCs at y = 0 and
√
sNN = 5.02 TeV: dσAA→J/ψAA(y = 0)/dydt

as a function of |t|. Top panel: The blue dot-dashed and black dotted curves give separately the coherent and incoherent
contributions calculated using the higher gluon shadowing, while the red solid curve is their sum. Bottom panel: The sum of
coherent and incoherent contributions calculated using the higher (red solid curve) and lower (blue dot-dashed curve) gluon
nuclear shadowing.

parameter dependence of gA(x, b, µ
2) somewhat lowers our predictions for dσAA→J/ψAA(y)/dy. For instance, at y = 0,

we predict that dσ(y = 0)/dy = 2.82− 3.93 mb for the calculation with the impact parameter dependent shadowing
(the “b-dep.” curves) and dσ(y = 0)/dy = 3.28− 4.24 mb for the “b-indep.” case. It corresponds to a 15% reduction
of dσ(y = 0)/dy for the higher gluon shadowing scenario (the lower boundary of the shaded bands in Fig. 4) and 8%
reduction of dσ(y = 0)/dy in the lower gluon shadowing case (the upper boundary of the bands in Fig. 4). As we
already mentioned in Sect. II, this effect does not affect the good agreement between our earlier predictions [11, 12]
and the Run 1 LHC data [4–6].
As we mentioned in the Introduction, UPC measurements at the LHC compliment the physics program of a future

Electron-Ion Collider. To illustrate the EIC potential for transverse imaging in real photon–nucleus scattering, in
Fig. 5 we show the shift of the first diffractive minimum of the dσγA→J/ψA/dt (red solid curve) and dσγA→ρA/dt

(blue dot-dashed curve) cross sections with the respect to the first minimum of F 2
A(t), ∆pt, as a function of the

atomic number of A at Wγp = 45 GeV. This value of Wγp conforms with the EIC kinematics and, in the case of J/ψ,
corresponds to x = M2

J/ψ/W
2
γp = 0.005. One can see from the figure that the ∆pt shift is sizable and increases with
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FIG. 4: The J/ψ rapidity distribution in Pb-Pb UPCs at
√
sNN = 5.02 TeV: the lower band labeled ‘b-dep.” corresponds to

impact parameter dependent nuclear shadowing [Eq. (9)], while the upper band labeled “b-indep.” is obtained using Eq. (6)
neglecting the non-trivial impact parameter dependence of gluon nuclear shadowing.

a decrease of A. The latter is a consequence of the fact that while the position of the first minimum of F 2
A(t) scales

as A−1/3, the position of the first minimum of dσγA→V A/dt scales somewhat slower due to nuclear shadowing, which
makes ∆pt a decreasing function of A. Note that this A-behavior of ∆pt changes for small A ≤ 4, where one should
approach the formal limit of ∆pt → 0 for A→ 1. At the same time, ∆pt/pt behaves monotonously and increases with
an increase of A for all atomic numbers.

 0

 10

 20

 30

 40

 50

 0  50  100  150  200

W=45 GeV

∆p
t
 
[
M
e
V
]

A

γA → J/ψA
γA → ρA

FIG. 5: The shift of the first diffractive minimum of dσγA→J/ψA/dt (red solid curve) and dσγA→ρA/dt (blue dot-dashed curve)

with the respect to that of F 2

A(t), ∆pt, as a function of the atomic number A at Wγp = 45 GeV. In the J/ψ case, it corresponds
to x =M2

J/ψ/W
2

γp = 0.005.

In our analysis, we neglected the interference contribution in Eq. (1) and the resulting photon contribution to the
transverse momentum distributions [42]. This contribution is confined to very low pt < 10 MeV and, hence, does not
affect the results of our analysis focusing on the first diffractive minimum situated at much larger values of pt.
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Note that the shift of the diffractive minima due to nuclear shadowing that we observe is caused by soft diffraction
in the case of ρ and by leading twist hard diffraction in the case of J/ψ. In the J/ψ case, this mechanism can
be contrasted with predictions of other approaches available in the literature. In the kt-factorization approach [43],
the unintegrated nuclear gluon distribution receives contributions from multiple scattering of both quark–antiquark
(so-called Glauber regime) and quark–antiquark–gluon dipoles on a nucleus, which determine the initial condition for
the nonlinear evolution equation. Note that the successful description of the proton diffractive structure functions
measured in ep DIS at HERA requires both quark-antiquark and quark-antiquark–gluon dipoles in the color dipole
formalism; it provides a connection to our leading twist approach, where the nuclear gluon shadowing is determined
by the gluon diffractive parton distribution of the proton. The inclusion of the quark–antiquark–gluon contribution
leads to a noticeable suppression of the predicted impact parameter distribution of coherent J/ψ photoproduction
on Pb with an increase of the photon energy. In the momentum space, it should correspond to a shift of the t
distribution toward smaller |t|, cf. Ref. [36]. Thus, regardless of the dynamical mechanism of nuclear shadowing, large
nuclear gluon shadowing leads to the modification of the t distribution of J/ψ photoproduction in ion UPCs. At the
same time, in the implementations of the color dipole framework, where coherent photoproduction of J/ψ on nuclei
proceeds via multiple rescattering of quark–antiquark dipoles [13, 44, 45], the shadowing correction is not large since
the average dipole–nucleon cross section is determined by the small size of J/ψ. As a result, the modification of the
t distribution of J/ψ photoproduction on nuclei compared to F 2

A(t) is smaller than predicted in our analysis.

IV. CONCLUSIONS

In this paper, using the theoretical approaches describing well the available data on t-integrated coherent photo-
production of light and heavy vector mesons in Pb-Pb UPCs at the LHC during Run 1, we calculated the momentum
transfer distributions for this process for ρ and J/ψ vector mesons in the kinematics of Run 2 at the LHC. We
demonstrated that nuclear shadowing not only suppresses the absolute value of the cross sections, but also shifts the
momentum transfer distributions toward smaller values of the momentum transfer |t|. This result can be interpreted
as a broadening in the impact parameter space of the effective nucleon density in nuclei in the case of ρ and the
nuclear gluon distribution in the case of J/ψ. Characterizing the average transverse size of these distributions by the
equivalent radius of RA, for the relative increase of RA we found ∆RA/RA ≈ 1.14 for ρ and ∆RA/RA ≈ 1.05− 1.11
for J/ψ.
The observed broadening of the transverse distributions is a model-independent consequence of nuclear shadowing,

whose suppression effect at small impact parameters is stronger than at the nucleus periphery. The transverse
broadening of the nuclear gluon and sea quark distributions caused by nuclear shadowing can also be studied at EIC
in such hard exclusive processes as, e.g., deeply virtual Compton scattering, where it leads to dramatic oscillations of
the beam-spin cross section asymmetry. All such measurements at the LHC and EIC will for the first time measure the
impact parameter dependent quark and gluon distributions in nuclei and, hence, make an important step in obtaining
a three-dimensional image of parton distributions.
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