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Abstract

Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unsta-

ble, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields

are spontaneously generated and can reach magnitudes much exceeding typical values of the fields

in equilibrated plasma. We consider a high energy test parton traversing an unstable plasma that is

populated with strong fields. We study the momentum broadening parameter q̂ which determines

the radiative energy loss of the test parton. We develop a formalism which gives q̂ as the solution

of an initial value problem, and we focus on extremely oblate plasmas which are physically relevant

for relativistic heavy ion collisions. The parameter q̂ is found to be strongly dependent on time.

For short times it is of the order of the equilibrium value, but at later times q̂ grows exponentially

due to the interaction of the test parton with unstable modes and becomes much bigger than the

value in equilibrium. The momentum broadening is also strongly directionally dependent and is

largest when the test parton velocity is transverse to the beam axis. Consequences of our findings

for the phenomenology of jet quenching in relativistic heavy ion collisions are briefly discussed.
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I. INTRODUCTION

Jet quenching is observed in relativistic heavy ions collisions at the Relativistic Heavy

Ion Collider (RHIC) and the Large Hadron Collider (LHC). The experimental status of

the phenomenon is reviewed in e.g. the article [1] and the whole field is introduced in the

monograph [2]. There is mounting evidence that jet quenching is caused by the interaction

of jet partons with deconfined color charges and therefore the phenomenon is treated as a

signal that quark-gluon plasma (QGP) is produced at an early stage of relativistic heavy

ion collisions, see e.g. the reviews [3, 4].

The energy loss of an isolated high energy (test) parton traversing QGP plays a key role

in a quantitative understanding of jet quenching and has been intensively studied over a

long period of time, see e.g. the review [5]. The QGP produced in relativistic heavy ion

collisions equilibrates rapidly and spends most of its lifetime in a state of local equilibrium,

and therefore energy loss is usually computed in a locally equilibrated plasma which evolves

hydrodynamically [3, 4]. We therefore begin with a discussion of the basic concepts and

characteristic scales of the problem, using the language appropriate for a thermalized system.

Most of the energy of equilibrium plasma is carried by particles with typical momenta p of

the order of the temperature p ∼ T (hard modes). The momentum of the test parton is

usually taken to be much bigger than T . There are also gauge fields (soft modes) in the

plasma with momenta k of order ∼ gT , where g is the coupling constant and is assumed to

be small, g � 1. These soft modes are highly occupied due to the Bose-Einstein distribution

nBE(k) ∼ T/k ∼ 1/g, and can be treated as classical fields. At leading order the soft modes

carry only a small fraction of the total plasma energy but, because of their high occupation

numbers, they interact frequently with plasma particles and the test parton and therefore

play an important dynamical role.

The energetic test parton interacts with both hard and soft modes. Its interaction with

the hard plasma particles can take the form of elastic binary collisions, or radiative processes

which are sub-leading. The interactions with the soft collective modes come from both soft

scatterings and radiation which is mostly collinear with the test parton velocity. In the

case of light quarks and gluons, radiative energy loss is expected to give the dominant

contribution. For heavy test quarks radiative energy loss is presumably less important, due

to the effect of the dead cone [5] in which the emission of gluons is suppressed.
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Although the equilibration process of the QGP formed in relativistic heavy ion collisions

is fast, there is a brief early phase when the plasma is out of equilibrium and the momen-

tum distribution of the plasma constituents is anisotropic. The early state of the plasma

system is therefore unstable due to chromomagnetic modes (see e.g. the review [6]), and

the test parton spends some short period of time in a medium where chromomagnetic fields

grow exponentially. These fields interact strongly with the test parton because they have

large amplitudes, or – using the language of quantum mechanics – because there are highly

populated soft modes. The consequence is that during this brief pre-equilibrium phase the

test parton can loose a significant fraction of the total energy that it will ultimately give up

to the plasma.

We have recently studied collisional energy loss in weakly coupled unstable QGP [7]. Since

this is an initial value problem, the results depend (in fact quite strongly) on the choice of

initial conditions. The test parton typically looses energy as it traverses the plasma, but

depending on the way the initial conditions are chosen, it can also gain energy. This is a well

known phenomenon in electromagnetic plasmas, see e.g. [8]. The energy loss (or gain) of

the test parton depends exponentially on time, because of the presence of unstable modes in

the plasma. In addition to the time dependence, the energy change is also strongly direction

dependent.

In this paper we discuss the momentum broadening parameter q̂ which gives the average

transverse momentum broadening per unit length caused by the random kicks the test

parton receives as it passes through the plasma medium. The parameter q̂ determines the

radiative component of the energy loss [9] and therefore, together with our previous result

for collisional energy loss [7], provides a description of the soft part of the energy loss of an

energetic parton moving through an unstable plasma.

The parameter q̂ was computed in [10, 11] for the case of quark-gluon plasma with an

anisotropic momentum distribution. However, the plasma was treated as a static system and

the exponential growth of the unstable modes was not taken into account. The numerical

simulations of Ref. [12] show instead that q̂ receives a sizable contribution from these

unstable modes and grows in time. Such behavior was also suggested in [13].

Following the Langevin formulation of the problem which was proposed in [13], we com-

pute the parameter q̂ for a parton traveling through QGP with an oblate momentum dis-

tribution, which is relevant for relativistic heavy ion collisions. We find that the parameter
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q̂ indeed grows exponentially in time due to the unstable modes. The formalism that we

develop can be applied generally to either a QED plasma of ultrarelativistic electrons and

positrons or a QGP. In the first part of the paper we use language that is applicable to a

QED plasma, and in Sec. VIII we discuss how to modify our expressions so that they apply

to QCD plasma.

Throughout the paper we use natural units where ~ = c = kB = 1.

II. FORMULATION OF THE PROBLEM

We consider a high energy test particle which moves across a plasma system. Its motion

is described by the Newtonian equation

d~p(t)

dt
= ~F

(
t, ~r(t)

)
. (1)

We use ~r(t), ~u and ~p(t), respectively, to denote the particle’s trajectory, velocity and mo-

mentum; F (t, ~r) ≡ e
(
~E(t, ~r) + ~u × ~B(t, ~r)

)
is the Lorentz force acting on the test particle

and; ~E(t, ~r) and ~B(t, ~r) are electric and magnetic fields in the plasma. We consider a high

energy test parton, which means that changes of its momentum are expected to be much

smaller than the momentum itself. The velocity of the test parton is therefore assumed to

be equal to the speed of light, ~u2 = 1, and ~u is also assumed to be a constant vector. The

trajectory of the test parton is ~r(t) = ~r(0) + ~ut, and the solution of Eq. (1) reads

~p(t) = ~p(0) +

∫ t

0

dt′ ~F
(
t′, ~r(t′)

)
. (2)

Within the Langevin approach, which is valid on time scales that are long compared to the

correlation times between the underlying microscopic forces in the medium, one considers

the ensemble average 〈pi(t) pj(t)〉 which equals

〈pi(t) pj(t)〉 = 〈pi(0) pj(0)〉+

∫ t

0

dt1

∫ t

0

dt2〈F i(t1, ~r1)F
j(t2, ~r2)〉 . (3)

We assume here that the force ~F (t, ~r) is independent of the initial momentum ~p(0) and that

the ensemble average of the force vanishes, which means 〈~F (t, ~r)〉 = 0. The fields in the

expression (3) are evaluated along the trajectory of the test parton and we use the notation

~ri ≡ ~r(ti) with i = 1, 2.
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We are interested in the parameter q̂ which measures the momentum broadening per unit

time of a test parton in the direction transverse to its initial velocity. The parameter is

defined as

q̂(t) ≡ d

dt
(δij − uiui)〈pi(t) pj(t)〉. (4)

Substituting the correlation function (3) into the definition (4) we obtain

q̂(t) = e2
d

dt

∫ t

0

dt1

∫ t

0

dt2

[
〈 ~E(t1, ~r1) · ~E(t2, ~r2)− ~u · ~E(t1, ~r1) ~u · ~E(t2, ~r2)〉

〈 ~B(t1, ~r1) · ~B(t2, ~r2)− ~u · ~B(t1, ~r1) ~u · ~B(t2, ~r2)〉

−〈~u ·
[
~E(t1, ~r1)× ~B(t2, ~r2)

]
〉+ 〈~u ·

[
~B(t1, ~r1)× ~E(t2, ~r2)

]
〉
]
. (5)

Thus we find that the parameter q̂ is determined by a set of field correlation functions, which

are calculated in the next two sections.

When momentum broadening results from multiple independent collisions of the test par-

ton with plasma constituents, the parameter q̂ is time-independent and the total transverse

momentum broadening equals 〈p2T 〉tot = q̂ L where L is the path length of the test parton in

the plasma, which is assumed to be static. In our approach the test parton interacts with a

time-dependent chromodynamic field generated in the plasma. The parameter q̂ is therefore

time dependent and the momentum broadening equals

〈p2T (t)〉 =

∫ t

0

dt′q̂(t′) . (6)

In the equilibrium limit, the parameter q̂ is time-independent, as discussed in detail in

Appendix C. Since the upper limit of the integral in (6) is proportional to L for a relativistic

parton, we find that in equilibrium the total momentum broadening is proportional to L.

However, such behavior is rather exceptional. In the case of unstable plasmas, which we are

primarily interested in, the momentum broadening 〈p2T (t)〉 can grow exponentially with L

if the exponentially growing modes are mostly responsible for the momentum broadening.

This is in fact the main result of our study.

III. FIELDS IN THE PLASMA

Our aim in this section is to derive expressions for the electric and magnetic fields present

in the plasma which enter the field correlators in Eq. (5). We start with a consideration of
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the situation before the test parton arrives. We have a non-equilibrated plasma populated

by fields (soft modes) that are generated by plasma constituents (hard modes) which are

described by the phase-space distribution function nσ(t, ~r, ~p). This function obeys the Vlasov

equation [
∂

∂t
+ ~v · ~∇+ qσ

(
~E(t, ~r) + ~v × ~B(t, ~r)

)
· ~∇p

]
nσ(t, ~r, ~p) = 0 , (7)

where qσ = ±e is the charge of plasma constituents (electrons and positrons). These particles

are assumed to be massless and thus the velocity related to the momentum ~p is ~v = ~p/p

with p ≡ |~p|.

We expand the distribution function nσ(t, ~r, ~p) around a stationary, homogeneous and

charge neutral but anisotropic state whose distribution function is denoted nσ(~p). The

distribution function is therefore written as

nσ(t, ~r, ~p) = nσ(~p) + δnσ(t, ~r, ~p) , (8)

where |δnσ(t, ~r, ~p)| � nσ(~p) and |∇i
pδnσ(t, ~r, ~p)| � |∇i

pnσ(~p)|. The fields ~E and ~B are

considered first order in the expansion (8) because, due to charge neutrality, they would be

zero everywhere in the homogeneous system. Equation (7) expanded up to the first order is(
∂

∂t
+ ~v · ~∇

)
δnσ(t, ~r, ~p) + qσ

(
~E(t, ~r) + ~v × ~B(t, ~r)

)
· ~∇pnσ(~p) = 0 . (9)

The fields in the plasma are self-consistently generated by the moving particles according

to Maxwell’s equations:

~∇ · ~B = 0 , ~∇× ~E +
∂ ~B

∂t
= 0 , (10)

~∇ · ~E = ρ , ~∇× ~B − ∂ ~E

∂t
= ~j , (11)

where the charge density ρ and current density ~j are given as

ρ(t, ~r) =
∑
σ

qσ

∫
d3p δnσ(t, ~r, ~p) , (12)

~j(t, ~r) =
∑
σ

qσ

∫
d3p~v δnσ(t, ~r, ~p) . (13)

We use Heaviside-Lorentz electromagnetic units which are usually used in quantum field

theory.

The coupled set of equations (9 - 11) can be solved self consistently. The physical inter-

pretation is as follows. In the Maxwell equations (10, 11) the current is viewed as the source
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for the fields, and in the Vlasov equation (9) the fields exert a force on the moving charges

that make up the current.

There is a subtle point associated with this procedure. When a parton enters an unequi-

librated plasma the total source is the sum of the contribution produced by local deviations

in the distribution of plasma particles from a stationary homogeneous state (see Eqs. (12,

13)), and the contribution from the parton itself. The electric and magnetic fields deter-

mined from Maxwell’s equations are therefore combinations of the induced field, with which

the parton interacts, and the parton’s own field. The interaction of the parton with its

own field should not contribute to the momentum broadening coefficient. Equivalently, the

momentum broadening coefficient should be zero for a parton moving through vacuum. In

section V we verify that this condition is satisfied.

The first step in solving equations (9 - 11) is to remove the differential operators by

Fourier transforming. The ordinary (two sided) Fourier transform converts a function of

time to a function of frequency using an integral over time which extends from minus infinity

to infinity. This is not what we want to do. We anticipate the fact that the parton will

enter our system at t0 = 0. We want to consider the interaction of this parton with the

fields of the plasma. The unequilibrated plasma is not time translation invariant and we

therefore need to develop a theoretical formalism in which the evolution of the parton can be

calculated in a way that depends on the initial conditions. In order to do this, we perform a

one sided Fourier transform, which uses a time integral from zero to infinity. For a generic

function h the one sided Fourier transform and its inverse are defined as

h(ω,~k) =

∫ ∞
0

dt

∫
d3r ei(ωt−

~k·~r)h(t, ~r), (14)

h(t, ~r) =

∫ ∞+iσ

−∞+iσ

dω

2π

∫
d3k

(2π)3
e−i(ωt−

~k·~r)h(ω,~k). (15)

The inverse transformation (15) involves the real parameter σ > 0 which is chosen so that

the integral over ω is taken along a straight line in the complex ω-plane, parallel to the real

axis and above all singularities of h(ω,~k). Integrals over ~r and ~k are always taken over full

~r− and ~k−space. Using equations (14, 15) we will take the one sided Fourier transform

of our self-consistent set of equations, solve for the fields as functions of frequency and 3-

momentum, and then perform the reverse transform to obtain the fields as functions of time

and position. These expressions will be restricted to positive times, but this is exactly what
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we need in equation (5) which determines the momentum broadening coefficient.

After taking the one sided Fourier transform, the Maxwell equations (10, 11) become

i~k · ~B(ω,~k) = 0 , (16)

i~k × ~E(ω,~k) = iω ~B(ω,~k) + ~B0(~k) , (17)

i~k · ~E(ω,~k) = ρ(ω,~k) , (18)

i~k × ~B(ω,~k) = ~j(ω,~k)− iω ~E(ω,~k)− ~E0(~k) , (19)

and the Vlasov equation (9) has the form

−i(ω − ~k · ~v)δnσ(ω,~k, ~p) + qσ

(
~E(ω,~k) + ~v × ~B(ω,~k)

)
· ∇pnσ(~p) = δn0σ(~k, ~p) , (20)

where we have defined

~E0(~r) ≡ ~E(t = 0, ~r) , ~B0(~r) ≡ ~B(t = 0, ~r) , δnσ0(~r, ~p) ≡ δnσ(t = 0, ~r, ~p) . (21)

Equations (16 - 20) depend on the initial conditions because the one sided Fourier transform

was used. Formally they reduce to the usual expressions for a time translation invariant

system when the initial conditions are set to zero.

We can rewrite the Maxwell equations (17, 19) in the form(
∆−1bare

)ij
(ω,~k)Ej(ω,~k) = −iωji(ω,~k) + iωEi

0(
~k)− i

(
~k × ~B0(~k)

)i
(22)

where the matrix
(
∆−1bare

)ij
(ω,~k) equals(

∆−1bare

)ij
(ω,~k) = (ω2 − ~k2)δij + kikj , (23)

and

∆ij
bare(ω,

~k) =
1

ω2 − ~k2

(
δij − kikj

ω2

)
. (24)

In quantum field theory ∆ij
bare(ω,

~k) is the bare gauge field (photon) propagator in tem-

poral axial gauge (A0 = 0). We emphasize however that in the case of QED our entire

derivation, and the resulting formula for the momentum broadening parameter, is clearly

gauge independent. This is evident from the fact that the calculation is formulated in terms

of the gauge invariant fields ~E and ~B together with the source variables ρ, ~j, nσ and δnσ

which are also gauge independent. In a QGP the situation is more subtle because the analogs

of the quantities ~E, ~B, ρ, ~j and δnσ are gauge dependent in QCD. This point is discussed
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in section VIII, where we show that the results for q̂ obtained from our formalism are also

gauge invariant in QCD.

To obtain the electric field ~E from Eq. (22) one needs an expression for the source current

which enters the equation on the right side. In order to produce a self-consistent expression

for the field, we obtain this current by solving the Vlasov equation (20) for δnσ(ω,~k, ~p) and

substituting the solution into the definition of the current (13). Eliminating the magnetic

field using Eq. (17), the current equals

−iωji(ω,~k) = Πij(ω,~k)Ej(ω,~k) (25)

+ ω
∑
σ

qσ

∫
d3p

(2π)3
~v

ω − ~v · ~k + iε

(
δn0σ(~k, ~p)− i qσ

2ω

(
~v × ~B0(~k)

)
· ~∇pnσ(~p)

)
,

where

Πij(ω,~k) = −ω
∫

d3p

(2π)3
vi

ω − ~v · ~k + iε

((
1−

~k · ~v
ω

)
δjl +

vjkl

ω

)
∇l
p

∑
σ

q2σnσ(~p) , (26)

which is the polarization tensor of an anisotropic plasma. If the system were translationally

invariant in time, one would use a two sided Fourier transformation instead of the one sided

transform, which is formally equivalent to dropping the initial conditions in Eq. (25). In this

case, we recover the familiar expression −iωji(ω,~k) = Πij(ω,~k)Ej(ω,~k), which says that

the polarization tensor connects the electric field with the induced current that produced it.

Integrating Eq. (26) by parts one obtains an expression that is frequently more useful

Πij(ω,~k) =
∑
σ

q2σ

∫
d3p

(2π)3
nσ(~p)

p

[
δij +

kivj + vikj

ω − ~v · ~k + iε
− (ω2 − k2)vivj

(ω − ~v · ~k + iε)2

]
. (27)

Since we are assuming ultrarelativistic (massless) plasma constituents, the integral over the

magnitude p and angular integrals factorizes. We take advantage of this to rewrite the

formula (27) as

Πij(ω,~k) =
m2

2

∫
dΩ

4π

[
δij +

kivj + vikj

ω − ~v · ~k + iε
− (ω2 − k2)vivj

(ω − ~v · ~k + iε)2

]
, (28)

where we have defined

m2 ≡ 2
∑
σ

q2σ

∫
d3p

(2π)3
nσ(~p)

p
. (29)

The parameter m is a characteristic mass scale that we use to define our units (in numerical

calculations we set m = 1). Physically the scale m is related to the Debye mass; this is
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discussed in Appendix A. We comment that although the polarization tensor is usually

used when discussing the QCD plasma, for an electromagentic plasma it is common to use

the dielectric tensor εij(ω,~k) which is related to Πij(ω,~k) as εij(ω,~k) = δij − ω−2Πij(ω,~k).

With the current (25) substituted into Eq. (22), we obtain an equation that contains only

fields and the initial fluctuation of the distribution(
∆−1(ω,~k)

)ij
Ej(ω,~k) = iωEi

0(
~k)− i(~k × ~B0(~k))i (30)

+ ω
∑
σ

qσ

∫
d3p

(2π)3
vi

ω − ~v · ~k

(
δn0σ(~k, ~p)− i qσ

2ω

(
~v × ~B0(~k)

)
· ~∇pnσ(~p)

)
,

where (
∆−1(ω,~k)

)ij
=
(
∆−1bare(ω,

~k)
)ij − Πij(ω,~k) (31)

is the retarded inverse gauge field propagator in the hard loop approximation. If we drop

the terms in Eq. (30) that depend on the initial conditions we get (∆ij
(
ω,~k)

)−1
Ej(ω,~k) = 0

which gives the familiar result that the dispersion equation for the collective modes of the

system is obtained from setting the determinant of the inverse propagator to zero.

In an isotropic plasma the function nσ(~p) depends on only the magnitude p ≡ |~p| which

means that ~∇pnσ(~p) ∼ ~p, and since ~p ‖ ~v the last term in the parenthesis on the right side

of Eq. (30) is zero. In an anisotropic system this term is not identically zero, but it is higher

order in the coupling and we neglect it. We therefore rewrite Eq. (30) as

Ei(ω,~k) = i∆ij(ω,~k)
[
ω Ej

0(~k)− (~k × ~B0(~k))j − iωN j
0 (~k;ω)

]
, (32)

where we have defined

N j
0 (~k;ω) ≡

∑
σ

qσ

∫
d3p

(2π)3
vj

ω − ~v · ~k
δn0σ(~k, ~p) . (33)

Using Faraday’s law or the homogeneous Maxwell equation (17) it is straightforward to

obtain the corresponding expression for the magnetic field

Bi(ω,~k) =
1

ω
εijlkjEl(ω,~k) +

i

ω
Bi

0(
~k) . (34)

The expressions (32, 34) determine the electric and magnetic fields which occur in the

plasma as responses to the initial conditions given by δn0σ, ~E0 and ~B0. In the next section

we show how to use them in equation (5) to obtain the transverse momentum broadening

coefficient.
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IV. FIELD CORRELATORS

Equation (5) gives q̂ in terms of the field correlators in coordinate space, which can be

written as momentum space correlation functions by Fourier transforming. For example,

〈Ei(t1, ~r1)E
j(t2, ~r2)〉 =

∫ ∞+iσ

−∞+iσ

dω1

2π

∫ ∞+iσ

−∞+iσ

dω2

2π

∫
d3k1
(2π)3

∫
d3k2
(2π)3

(35)

× e−i(ω1t1−~k1·~r1)e−i(ω2t2−~k2·~r2)〈Ei(ω1, ~k1)E
j(ω2, ~k2)〉 ,

where we have used as before ~ri = ~r(ti) = ~ri(0) + ~u ti with i = 1, 2. There is a similar

expression for each of the three other correlators 〈Bi(t1, ~r1)B
j(t2, ~r2)〉, 〈Ei(t1, ~r1)B

j(t2, ~r2)〉

and 〈Bi(t1, ~r1)E
j(t2, ~r2)〉. In this section we derive expressions for the momentum space

correlators; 〈Ei(ω1, ~k1)E
j(ω2, ~k2)〉 and the three other correlators which involve magnetic

fields. We follow the method developed in [14].

Equations (32) and (34) can be used to express the momentum space field correlators

as sums of terms each of which contains a correlator of two of the initial functions Ej
0(~k),

Bj
0(
~k) or N j

0 (~k;ω). There are nine such initial correlators: 〈Ei
0(
~k1)E

j
0(~k2)〉, 〈Ei

0(
~k1)B

j
0(
~k2)〉,

〈Ei
0(
~k1)N

j
0 (~k2;ω2)〉 etc. These initial correlators are calculated at the moment in time (t = 0)

when the parton arrives. We assume that in this initial state the system can be treated as

a noninteracting classical plasma which is fundamentally described by the statement that

two space time points (t1, ~r1) and (t2, ~r2) are correlated, if there is a particle in the system

with velocity that allows it to move between them. Mathematically this means we assume

〈δnσ1(t1, ~r1, ~p1) δnσ2(t2, ~r2, ~p2)〉

= δσ1σ2 (2π)3δ3(~p1 − ~p2) δ3
(
(~r1 − ~v1t1)− (~r2 − ~v2t2)

)
nσ1(~p1) . (36)

We also assume that the plasma particles have no internal degrees of freedom and obey

Boltzmann statistics. If the latter assumption is relaxed, the distribution function nσ(~p)

from the r.h.s. of Eq. (36) should be replaced by nσ(~p)
(
1± nσ(~p)

)
where the upper sign is

for bosons and the lower one for fermions. Since the free system is translationally invariant

in time, we use the usual two sided Fourier transform on the correlation function (36) and

obtain

〈δnσ(ω1, ~k1, ~p1) δnσ(ω2, ~k2, ~p2)〉 (37)

= δσ1σ2(2π)3δ3(~p1 − ~p2) (2π)3δ3(~k1 + ~k2) 2πδ(ω1 − ~k1 · ~v1) 2πδ(ω2 + ~k2 · ~v2)nσ1(~p1) .
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All other initial state correlation functions will be obtained from the correlation function

(37), as explained below.

Equation (33), which defines N j
0 (~k;ω), can formally be rewritten as

N j
0 (~k;ω) =

∫
dω′

2π

∫
d3p

(2π)3
vj

ω − ~v · ~k

∑
σ

qσδnσ(ω′, ~k, ~p) . (38)

The initial field ~E0(~k) can be obtained from the two sided Fourier transform of Maxwell’s

equations and has the form

Ei
0(
~k) =

∫
dω′

2π
Ei(ω′, ~k) = −i

∫
dω′

2π
ω′∆ij

bare(ω
′, ~k)jj(ω′, ~k) (39)

= −i
∫
dω′

2π

∫
d3p

(2π)3
ω′∆ij

bare(ω
′, ~k) vj

∑
σ

qσδnσ(ω′, ~k, ~p) .

The corresponding expression for ~B0(~k) is obtained from Eq. (39) using Faraday’s law (17).

We obtain

Bi
0(
~k) =

∫
dω′

2π
Bi(ω′, ~k) = εijlkj

∫
dω′

2π

El(ω′, ~k)

ω′
(40)

= −i εijlkj
∫
dω′

2π

∫
d3p

(2π)3
∆lm

bare(ω
′, ~k) vm

∑
σ

qσδnσ(ω′, ~k, ~p) .

We notice that the inverse bare propagator in equations (39, 40) was obtained using a two

sided Fourier transform, and in Eqs. (24, 31) it comes from a one sided transform. However,

the retarded propagator in coordinate space vanishes for t < 0 and therefore its one sided

and two sided Fourier transforms are the same.

The initial state correlators 〈Ei
0(
~k1)E

j
0(~k2)〉, 〈Ei

0(
~k1)B

j
0(
~k2)〉, 〈Ei

0(
~k1)N

j
0 (~k2;ω2)〉 etc. can

now all be determined from equations (38, 39, 40) and the free particle correlation function

(37). The momentum space field correlators can then be determined from these nine initial

correlators, as described in the first paragraph of this section.

V. CONSTRUCTION OF THE INTEGRAND

Using the field correlators whose derivation is described in the previous section, we can

compute the parameter q̂ in Eq. (5). The expressions for the correlators of the initial

values (38, 39, 40) involve integrals over ω′1, ω
′
2, ~p1, and ~p2. The coordinate-space field

correlators are written as integrals over ω1, ω2, ~k1 and ~k2 of the corresponding momentum
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space quantities (see Eq. (35)). The delta functions in Eq. (37) can be used to perform the

integrals over ω′1, ω
′
2,
~k2 and ~p2. Denoting ~k ≡ ~k1 and ~p ≡ ~p1, the lengthy result of the entire

procedure can be written in the form

q̂ = e2
∑
σ

q2σ

∫ ∞+iσ

−∞+iσ

dω1

2π

∫ ∞+iσ

−∞+iσ

dω2

2π

∫
d3k

(2π)3

∫
d3p

(2π)3
nσ(~p) (41)

×
[
IEE(t) CEE + IEB(t) CEB + IBE(t) CBE + IBB(t) CBB

]
.

In the square bracket in the last line of Eq. (41), we have divided the contributions from the

four different correlators. For each correlator, the factor IXY (t) (with {X, Y } ∈ {E,B})

contains all of the time dependence, and in addition depends on ω1, ω2, ~k and ~u. For the

electric field correlators, IEE(t) is obtained when the field correlators (35) are substituted

in Eq. (5) and equals

IEE(t) =
d

dt

∫ t

0

dt1

∫ t

0

dt2 e
−i(ω1−~k·~u)t1e−i(ω2+~k·~u)t2 . (42)

The notation CEE indicates the contribution from all other factors.

When the magnetic field enters the correlator, the exponential function e−iωiti is replaced

by
(
e−iωiti − 1

)
. The factors IEB(t), IBE(t), and IEE(t) are therefore

IEB(t) =
d

dt

∫ t

0

dt1

∫ t

0

dt2e
−i(ω1−~k·~u)t1

(
e−iω2t2 − 1

)
e−i

~k·~ut2 , (43)

IBE(t) =
d

dt

∫ t

0

dt1

∫ t

0

dt2
(
e−iω1t1 − 1

)
ei
~k·~ut1e−i(ω2+~k·~u)t2 , (44)

IBB(t) =
d

dt

∫ t

0

dt1

∫ t

0

dt2
(
e−iω1t1 − 1

)
ei
~k·~ut1

(
e−iω2t2 − 1

)
e−i

~k·~ut2 . (45)

Mathematically, the extra −1 reduces by one the order of the pole at ω = 0, and is necessary

to obtain a finite result. To see why, we note that the correlator involving the magnetic field

B(ω,~k) has a pole at ω = 0 which is one order higher than the corresponding correlator with

the electric field E(ω,~k). This is evident from the form of Faraday’s law (17) which relates

the electric and magnetic fields. Physically the introduction of the −1 factors in equations

(43 - 45) is necessary to constrain the field solutions to forms which have well defined one

sided Fourier transforms. A detailed explanation of these −1 factors is given in Appendix

B. The factors CEB, CBE and CBB contain all other contributions from the corresponding

correlators.

We note that the result for q̂ in Eq. (41) is clearly zero in vacuum, since the integrand

contains a factor of the distribution function nσ(~p). This shows that the interaction of the
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parton with its own field does not contribute to the momentum broadening coefficient, which

is necessary for the consistency of the procedure (see the discussion below equation (13)).

We can rewrite Eq. (41) using the same factorization trick as was discussed above equa-

tion (28). In the ultrarelativistic limit we have

q̂ = e2dscale

∫ ∞+iσ

−∞+iσ

dω1

2π

∫ ∞+iσ

−∞+iσ

dω2

2π

∫
d3k

(2π)3

∫
dΩ

4π
(46)

×
[
IEE(t) CEE + IEB(t) CEB + IBE(t) CBE + IBB(t) CBB

]
,

where we have defined

dscale ≡
∑
σ

q2σ

∫
d3p

(2π)3
nσ(~p) . (47)

The parameter dscale characterizes the average transverse momenta of the distribution and

is discussed in detail in Appendix A.

The calculation of the four C factors in Eq. (46) is straightforward but extremely tedious.

We have done it using Mathematica. The method is described in [15] and has been tested

in this context by calculating the integrand for the equilibrium plasma (see Appendix C).

As an example, we consider the 8th term in CEE which is

C(8)EE =
(k̂ · ~v)2(k̂ · ~u)2 ∆A(ω1, ~k) ∆A(ω2,−~k)

(ω̂1 − ~v · k̂)(ω̂2 + ~v · k̂)
(
1− (~v · k̂)2

) . (48)

Substituting the expression (48) into Eq. (46) gives

q̂
(8)
EE = e2dscale

∫ ∞+iσ

−∞+iσ

dω1

2π

∫ ∞+iσ

−∞+iσ

dω2

2π

∫
d3k

(2π)3

∫
dΩ

4π
IEE(t) (49)

× ∆A(ω1, ~k)∆A(ω2,−~k)
(k̂ · ~v)2(k̂ · ~u)2

(ω̂1 − ~v · k̂)(ω̂2 + ~v · k̂)
(
1− (~v · k̂)2

) ,
where ω̂i ≡ ωi/k with k ≡ |~k| and k̂ ≡ ~k/k. In the rest of this paper, we will explain several

aspects of our procedure with reference to this example.

The integrals over ω1 and ω2 will be done by closing the contour in the lower half plane

(see equations (14, 15) and the discussion below). In equilibrium plasma (where all collective

modes are damped and give contributions exponentially decaying in time) we include only

the contributions from the Landau poles obtained from the factors (ω̂1−~v ·k̂)(ω̂2+~v ·k̂) in the

denominator of each term (see Eq. (49)). These poles give time independent contributions

to q̂. The collective excitations of an anisotropic plasma include unstable modes (modes with

14



positive imaginary parts). These unstable modes are crucially important in the calculation

of momentum broadening. Due to the factors (42, 43, 44, 45), they give contributions to

q̂ that grow exponentially in time and overwhelm all other contributions in the long time

limit. In the next section we define the anisotropic distribution function that we will use,

and describe the dispersion relations it produces.

VI. EXTREMELY OBLATE PLASMA

In this section we introduce the specific anisotropic momentum distribution that we

will use in this paper. We define the momentum distribution and discuss the spectrum

of plasmons - collective modes of gauge bosons. We start with a brief discussion of an

equilibrium isotropic plasma.

In equilibrium the distribution of plasma constituents depends only on the magnitude of

the momentum p ≡ |~p| and can be represented as a sphere in momentum space. The gauge

field propagator ∆ij(ω,~k) can be split into two components commonly denoted ∆T (ω,~k) and

∆L(ω,~k) using two projection operators which are transverse and longitudinal with respect

to the momentum ~k. Solutions of the dispersion equations ∆−1T (ω,~k) = 0 and ∆−1L (ω,~k) = 0

give the well known dispersion relations for the transverse and longitudinal modes ωT (k)

and ωL(k), see e.g. the textbook [16].

An anisotropic momentum distribution can be obtained from the isotropic one in a simple

way by either squeezing or stretching it in one direction [17]. In studies of heavy ion collisions,

one usually takes the direction of deformation to be the beam axis, which we assume to be the

z-axis. The squeezed and stretched distributions are called, respectively, oblate and prolate.

The special cases of extremely oblate and extremely prolate systems are significantly simpler

to study mathematically. The distribution functions for these systems have the form

nex−prolate(~p) = δ(pT ) g(pL), (50)

nex−oblate(~p) = δ(pL)h(pT ), (51)

where we have written pL ≡ ~p · ẑ and pT ≡ |~p− ẑpL|. In the extremely prolate system, the

oscillatory behavior of the integrand, which comes from the real modes, is strong enough that

the growth produced by the imaginary modes is not clearly seen and the magnitude of q̂ is

similar to that in equilibrium plasmas. For this reason we consider only the extremely oblate
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system, which is most relevant to the study of heavy ion collisions where the momentum

distribution rapidly becomes oblate due to free streaming [18]. From now on we refer to

the extremely oblate distribution as simply ‘oblate’. We assume that the distributions of all

species of plasma particles are oblate. Our notation for the polarization tensor and gauge

boson propagator in an oblate system are given in Appendix D. Full details are available

in our extensive study of collective modes in plasma systems which considers all possible

degrees of one dimensional deformation of an isotropic momentum distribution [19]. The

important points are summarized below.

In an oblate system the propagator is expanded in a four component basis constructed

from the momentum vector and the vector which specifies the direction of the deformation.

The calculation of q̂ in an oblate system is considerably more difficult than in equilibrium,

in part because of the more complex structure of the propagator. There are two components

of the propagator, which we call ∆A(ω,~k) and ∆G(ω,~k), that can be obtained analytically

and have a relatively simple structure. However, the dispersion relations are much more

complicated and can only be obtained numerically. A crucial difference from the equilibrium

system is that the collective excitations of the oblate plasma include unstable modes (modes

with positive imaginary parts). The dispersion equation ∆−1A (ω,~k) = 0 has two real solutions

for all values of ~k which we call ±ωα. For k < kA there are two imaginary solutions denoted

±iγαi. The threshold wavevector kA is given in equation (52) below. The dispersion equation

∆−1G (ω,~k) = 0 has four real solutions for all values of ~k which we call ±ω+ and ±ω−. There

are also two imaginary solutions, called ±ω−i, for k < kG. The threshold values kA and kG

are

kA =
m√

2

|x|√
1− x2

, (52)

kG =
m

2
Re

√√
x2 + 4 |x|+ x2 − 2

1− x2
, (53)

where x ≡ cos θ and θ is the angle between the plasmon’s wave vector ~k and the direction

of the anisotropy. The spectrum of plasmons in the oblate system is summarized in Table I.
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dispersion equation region modes

∆−1A (ω,~k) = 0 k > kA ±ωα

k < kA ±ωα, ± i γαi

∆−1G (ω,~k) = 0 k > kG ±ω+, ± ω−

k < kG ±ω+, ± ω−, ±i γ−i

TABLE I. Plasmons in the oblate system.

VII. CALCULATION OF THE MOMENTUM BROADENING INTEGRAL

As mentioned in Sec. VI, the direction of anisotropy is taken to define the z-axis of our

coordinate system. The momentum ~p and velocity ~v ≡ ~p/p of a constituent of extremely

oblate plasma lies in the x-y plane. The momentum of the collective modes ~k is chosen to

lie without loss of generality in the x-z plane. We need also to define the vector which gives

the velocity of the test parton, which we call ~u. The three vectors ~k, ~v and ~u are written

~v = (cosϕ, sinϕ, 0) , (54a)

~k = k (sin θ, 0, cos θ) , (54b)

~u = (sin Θ cosφ, sin Θ sinφ, cos Θ) . (54c)

We use the symbols x ≡ cos θ, ω̂ ≡ ω/k and k̂ ≡ ~k/k in some equations.

We now discuss how to calculate the integrals in equation (46). The first step is to do the

~p integral, which means calculating the integral over the angle ϕ. Most terms contain factors

(ω̂1 − ~v · k̂) and (ω̂2 + ~v · k̂) (see Eq. (49)) which have poles that must be handled carefully.

Our method is to rearrange the integrand using partial fractioning to remove factors with

zeros in the denominators. The result is a large set of terms that do not have poles and

can be easily integrated, and three remaining integrals that have relatively simple analytic

forms. The method is described in more detail in Appendix E. The result is that after

performing the ϕ integrals, we obtain an expression of the form

q̂ = e2dscale

∫ ∞+iσ

−∞+iσ

dω1

2π

∫ ∞+iσ

−∞+iσ

dω2

2π

∫
d3k

(2π)3

∑
i

[
Ii(t) fi[∆A,∆G] gi(ω1, ω2, ~u,~k)

]
.

(55)

There are many terms in the sum over the index i in Eq. (55). For each term in the sum,

Ii(t) represents one of the four functions (42 - 45) which carries all of the time dependence
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and fi is either: 1, ∆A(ω1, ~k), ∆A(ω2,−~k), ∆A(ω1, ~k) · ∆A(ω2,−~k), ∆G(ω1, ~k), ∆G(ω2,−~k)

or ∆G(ω1, ~k) ·∆G(ω2,−~k). All other factors are grouped together and denoted gi.

The expression represented in Eq. (55) is extremely lengthy. There are contributions from

both A and G modes. Since the unstable A-modes are stronger than the unstable G-modes

[19], we expect they will give the dominant contribution to q̂. In our calculation of collisional

energy loss [7], which is similar in structure to the q̂ calculation, we found that A-modes

dominate over G-modes. In addition, the A-mode terms are much easier to calculate because

the corresponding part of the propagator has a simpler tensor structure (see Appendix D).

We have therefore done most of our calculations including only A-modes. We have calculated

the contribution from the G-modes for one choice of the external parameter Θ and verfied

that their contribution is much smaller than the A-mode piece.

There is one tricky point that arises when the integral over azimuthal angle ϕ is done

which we discuss below. Using our coordinate system (54), the factor 1 − (~v · k̂)2, which

appears in the denominator of many terms (see Eq. (49)), has the form

C(ϕ) =
1

1− (1− x2) cos2 ϕ
. (56)

Many of the integrals we need contain this factor and diverge when x = 0. It is easy

to see that the factor C(ϕ) is produced when the free correlation functions (37) are used

in the bare propagators (24), which are part of the initial fields given in Eqs. (39, 40).

The divergence is caused by the approximation that the plasma particles are massless, or

equivalently the approximation |~v| = 1. Physically it is regulated by the small but non-zero

mass of the plasma particles, which do not have the dispersion relations of massless particles

in a physical plasma (for example, in equilibrium their masses can be identified with their

energies at zero momentum and are of order gT , see e.g. [16]). We introduce a parameter

mmin in the denominator of Eq. (56) (see equation (E2)), and in Sec. IX we show that

the dependence of the momentum broadening coefficient on this parameter is logarithmic.

The parameter mmin is not determined by our formalism and must be introduced by hand,

which is clearly a weakness of our approach. However, it is also clear that this divergence

is not directly related to the effect we are looking for. Firstly, it enters with the initial

conditions and does not depend on the properties of the distribution function. Secondly, the

region of the momentum space which is affected is x → 0, and from the formulae (52, 53)

and the discussion in Sec. VI we see that the unstable modes disappear when x = 0. We
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conclude therefore that although the result for q̂ does depend weakly on the value of mmin,

the exponential increase in q̂ as a function of time is a physical effect that is not related to

the introduction of the mmin regulator.

The last part of the calculation that can be done analytically is the frequency integrals.

We include only the contributions from the poles of the propagators. The pole structure of

the oblate system is briefly discussed in Sec. VI. The functions ∆A and ∆G are known ana-

lytically, but we have only numerical expressions for the dispersion relations. The functions

∆A and ∆G have simple poles at the solutions listed in Table I, and therefore we calculate

the frequency integrals by writing

∆(ω,~k) =
∑
i

Z(ωi, ~k)

ω − ωi
, (57)

where

Z−1(ωi, ~k) =
d

dω
∆−1(ω,~k)

∣∣∣∣
ω=ωi

. (58)

After performing the frequency integrals we obtain an expression which depends on the

external variables t, Θ and the integration variables k, x and φ. The integrals over k, x and φ

are done numerically. The integrand is even in x and therefore we only need to calculate the

x integral from 0 to 1. It grows rapidly when x→ 1 because of the influence of the unstable

mode which dominates at x close to unity (see Eqs. (52, 53)). The calculation is therefore

done most efficiently using a logarithmic variable xL which is defined as xL ≡ log(1− x).

The momentum broadening coefficient increases logarithmically with the upper limit of

the k integral, which we call kmax. The parameter kmax is a separation scale which divides

the momentum range into two pieces which are relevant to the soft and hard contributions,

and should cancel when they are combined. In case of the equilibrium plasma the problem

was studied in detail in [20]. An investigation of this cancellation in unstable plasma is

beyond the scope of this work.

VIII. QUARK-GLUON PLASMA

Our formalism applies to ultrarelativistic QED and QCD plasmas, which is a strength of

the method that should be emphasized. In the body of this paper we have used language

that is applicable to an electromagnetic plasma. In this section we discuss how to modify

19



our expressions so that they apply to QCD plasma. The basic idea is that one must specify

which quantities carry color indices, and how to calculate the corresponding group factors.

The starting point of our approach applied to QGP are the Wong equations [21] which

describe a classical test parton interacting with the chromodynamic field present in the

plasma. The Wong equations are usually written in the Lorentz covariant form

dpµ(τ)

dτ
= gQa(τ)F µν

a

(
x(τ)

)
uν(τ) , (59)

dQa(τ)

dτ
= −gfabcuµ(τ)Aµb

(
x(τ)

)
Qc(τ) , (60)

where τ , xµ(τ), uµ(τ) and pµ(τ) are, respectively, the parton’s proper time, trajectory, four-

velocity and four-momentum; F µν
a and Aµa denote, respectively, the chromodynamic field

strength tensor and four-potential in the adjoint representation of the SU(Nc) gauge group

with the color index a = 1, 2, . . . N2
c − 1; g is the coupling constant, which is assumed to

be small, fabc is the structure constant of the SU(Nc) group, and finally gQa is the classical

color charge of the parton.

In order to solve the Wong equations, we adopt two simplifying assumptions. In Sec. II we

have already discussed the requirement that the parton’s velocity is a unit constant vector.

Now we choose in addition the gauge condition

uµ(τ)Aµa
(
x(τ)

)
= 0 , (61)

which makes the potential vanish along the parton’s trajectory. Applying the condition

(61), the second Wong equation (60) simply states that the parton’s charge is a constant of

motion, or that Qa is independent of τ .

The first Wong equation (59) can be solved to obtain an expression of the form (2) and,

repeating the rest of the steps described in Sec. II, we obtain a formula for the momentum

broadening parameter of the form

q̂color = QaQb
d

dt

∫ t

0

dt1

∫ t

0

dt2〈~Fa(t1, ~r1) · ~Fb(t2, ~r2)− ~u · ~Fa(t1, ~r1) ~u · ~Fb(t2, ~r2)〉 , (62)

where ~Fa(t, ~r) ≡ g
(
~Ea(t, ~r) + ~u × ~Ba(t, ~r)

)
and, as previously, ~ri ≡ ~r(ti) = ~ri(0) + ~uti with

i = 1, 2. The subscript ‘color’ indicates that the parameter depends on the color charge

of the test parton. Color is not an observable quantity however, and q̂color is not gauge

invariant. In order to obtain a gauge invariant observable, the quantity q̂color is averaged
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over the parton’s colors using the relation [22]∫
dQQaQb = C2δ

ab, (63)

where C2 = 1/2 for a quark in the fundamental representation of the SU(Nc) gauge group and

C2 = Nc for a gluon in the adjoint representation. The momentum broadening parameter

averaged over colors is

q̂ ≡


1
Nc

∫
dQ q̂color for a quark

1
N2

c−1

∫
dQ q̂color for a gluon

(64)

and using Eq. (63) we obtain

q̂ =
CR

N2
c − 1

d

dt

∫ t

0

dt1

∫ t

0

dt2〈~Fa(t1, ~r1) · ~Fa(t2, ~r2)− ~u · ~Fa(t1, ~r1) ~u · ~Fa(t2, ~r2)〉, (65)

with the color factor CR given by

CR ≡


N2

c−1
2Nc

for a quark

Nc for a gluon .

The field correlators 〈Ei
a(t1, ~r1)E

j
b (t2, ~r2)〉, 〈Ei

a(t1, ~r1)B
j
b(t2, ~r2)〉 etc. are found from the

linearized Yang-Mills equations which, in a non-covariant three-vector notation, have the

familiar form of Maxwell equations (10, 11). However, in the QCD calculation the fields ~Ea

and ~Ba and the sources ρa and ~ja carry color indices and are chosen to belong to the adjoint

representation of the SU(Nc) gauge group. If one considers a plasma which on average is

locally color neutral, the correlators are of the form

〈Ei
a(t1, ~r1)E

j
b (t2, ~r2)〉 = δab〈Ei(t1, ~r1)E

j(t2, ~r2)〉EM (66)

where 〈Ei(t1, ~r1)E
j(t2, ~r2)〉EM denotes a correlator of two electric fields which has the same

form as the QED correlator, but with the distribution function defined differently (this

point is explained in Appendix A). Substituting the field correlators of the form (66) into

the formula (65), the momentum broadening parameter is rewritten as

q̂ = CR
d

dt

∫ t

0

dt1

∫ t

0

dt2〈~F (t1, ~r1) · ~F (t2, ~r2)− ~u · ~F (t1, ~r1) ~u · ~F (t2, ~r2)〉EM , (67)

where the trace δaa = N2
c − 1 is taken into account.

It is not obvious that the QCD momentum broadening parameter (67) is gauge invari-

ant. In electromagnetism the fields themselves are gauge invariant and therefore so are
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their correlation functions. The entire calculation of the momentum broadening parameter

is therefore manifestly gauge invariant. In QCD however, the fields are gauge dependent

and in general their correlators, which are non-local in space-time, change in a complicated

way under gauge transformations. The classical color charges also vary under gauge trans-

formations. However, our result for the momentum broadening parameter is in fact gauge

invariant. This is explained below.

To prove that the formula for q̂ given by Eq. (67) is gauge invariant, it is sufficient to

prove the invariance of the expression

W ≡
∫
dQQa(x)Qb(x

′)〈Ha(x)Hb(x
′)〉 , (68)

where Qa(x) is a classical color charge and Ha(x) is a component of chromoelectric or

chromomagnetic field. The dependence on x is assigned not only to the fields but to the

color charge as well, because Qa(x) and Ha(x) are subjects of gauge transformations, which

are local in space-time. We consider what happens to the quantity W when Qa(x) and

Ha(x) are transformed as

Qa(x)→ Qa(x) + fabcQb(x)λc(x) , Ha(x)→ Ha(x) + fabcHb(x)λc(x) , (69)

where λc(x) is an infinitesimal transformation parameter. As the integration measure dQ is

gauge invariant [22], the quantity W is changed by

δW=

∫
dQ
[
facdQd(x)λd(x)Qb(x

′)〈Ha(x)Hb(x
′)〉+Qa(x)f bcdQc(x

′)λd(x
′)〈Ha(x)Hb(x

′)〉

+Qa(x)Qb(x
′)facdλd(x)〈Hc(x)Hb(x

′)〉+Qa(x)Qb(x
′)facdλd(x

′)〈Ha(x)Hd(x
′)〉
]
,

(70)

where only terms linear in λ are kept. All field correlators are unit matrices in color space

(see Eq. (66)). This result is basically a consequence of the linear response approximation in

which the fields are assumed to be small fluctuations around a color neutral state. Performing

the integration over color charge according to Eq. (63) and using 〈Ha(x)Hb(x
′)〉 ∼ δab, one

finds that in every term in Eq. (70) the structure constant appears in the form faab and

therefore gives zero because of the anti-symmetric character of these constants. The result

is that δW vanishes identically, and therefore the momentum broadening parameter (67) is

gauge independent.
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The conclusion is that the integrand that gives q̂ in a QCD plasma has exactly the same

form as our result for a QED plasma in Eq. (55), with the factor e2 replaced by g2CR, and

a different definition of the dimensional parameter dscale (see Appendix A).

IX. RESULTS

Hard jets are produced in relativistic heavy-ion collisions at the instant of collision, to-

gether with numerous softer partons which constitute a plasma medium that the jets travel

through. The momentum distribution of the plasma constituents is initially prolate – elon-

gated along the beam – but due to longitudinal expansion [18] it becomes oblate after a

short period of time, and further evolves towards isotropy. The plasma is unstable both

in the prolate and oblate phase. However, we have found that the effect of the imaginary

modes on q̂ is not clearly seen in the extremely prolate plasma. This happens because of

the oscillatory behavior of the integrand, which comes from the contributions from the real

modes. Our calculations show that the magnitude of q̂ is similar to the equilibrium value,

and therefore the short prolate phase cannot much influence the total momentum broaden-

ing of the test parton. For this reason, we have focused on the extremely oblate plasma. In

this section we present our numerical results.

Figure 1 shows the momentum broadening parameter q̂ as a function of time for five

different angles Θ between the test parton velocity and the z-axis, along which the plasma

momentum distribution is infinitely squeezed. We use mmin = 5 × 10−4m and kmax = 2m,

and the value of q̂ is scaled by g2CRdscale.

The parameter q̂ in oblate plasma should be compared to the momentum broadening

q̂eq in the equilibrium isotropic system of the same mass parameter m. For kmax = 2m,

we have q̂eq = 0.11 g2CRdscale (see Appendix C). The momentum broadening is close to its

equilibrium value for short times t . 10/m. At later times we observe the exponential growth

of q̂ to values that much exceed q̂eq. The delay in the onset of exponential growth is caused

by the fact that in our approach the test parton enters the plasma at the moment when the

unstable modes are initiated. The effect of the exponentially growing gauge fields becomes

important when their amplitudes start to exceed their typical equilibrium value (∼ gT ). At

this point, the broadening of the momentum of the test parton becomes dominated by its

interaction with the unstable modes.
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FIG. 1. (color online) Momentum broadening q̂ as a function of time for five angles Θ between the

test parton velocity and the direction of the anisotropy. The values of Θ for each line are π/2 (red,

solid); π/3 (orange, dot-dashed); π/4 (green, dashed); π/6 (blue, dotted); π/12 (purple, spaced

dots). For comparison, the equilibrium result is q̂ = 0.11 g2CRdscale.

The curves in Fig. 1 are extended to long times, and thus to rather unrealistically large

values of q̂. One should remember that our approach is based on the hard loop approxima-

tion which requires a separation of soft and hard scales, and therefore breaks down when

the amplitude of the exponentially growing mode becomes comparable to that of the hard

modes. Consequently, our results are reliable for times which are not too long. This point

is addressed in more detail in the concluding section X.

We also observe in Fig. 1 that for all times q̂ is maximal for Θ = π/2 and decreases when

the angle Θ tends to zero. This behavior can be understood from the fact that the wave

vector ~k of the fastest mode of the filamentation instability is along the z-axis. To see this

we note that using our coordinate system (54) the plasmon wave vector is aligned with the

direction of the anisotropy when θ = 0 or x ≡ cos θ = 1, and Eqs. (52, 53) show that the

thresholds for unstable modes diverge as x→ 1. The strongest ~E and ~B fields therefore lie

in the x-y plane. In the extremely oblate system, when the unstable mode develops, the
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currents form filaments of charge moving in opposite directions. This is indicated by the

alternating strips of pink and blue in Fig. 2. (An elementary physics explanation of the

mechanism of the instability can be found in [23].) If the test parton enters the plasma along

the z-axis, it moves through oscillating fields and the overall effect of its interactions with

these fields is somewhat weakened. In contrast, if the parton enters perpendicular to ẑ, or

completely within the x-y plane, it interacts with ~E and ~B fields of fixed orientation and

the change in its momentum is maximal. We also note that the results presented in Fig. 1

assume that the plasma system under consideration is infinite and that the current filaments

extend to infinity. In reality one expects that the unstable system is split into domains of a

finite size where the filaments are oriented somewhat differently.

It is interesting to try to quantify the growth of the parameter q̂. The behavior of

an unstable system is usually driven by the fastest mode, which in case of an extremely

oblate plasma is the pure imaginary mode γαi. For kmax = 2m its maximal value is found

numerically to be γmax = 0.47m. The naive expectation is that q̂ should grow like e2γmaxt,

since this is the growth rate given by the factor IEE(t) in Eq. (42). However, the fit of q̂

as a function of time for Θ = π/4 gives the exponent 0.44m, or approximately the value of

γmax and not 2γmax.

FIG. 2. (color online) The orientation of the wave vector ~k, current ~j, electric ~E and magnetic

~B fields of the fastest unstable filamentation mode in the oblate plasma. The beam axis z and

three orientations of the test parton velocity ~u are also shown. Momentum broadening is smallest

when the parton moves along the z-axis (Θ = 0), and greatest when it moves perpendicular to ẑ

(Θ = π/2).
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FIG. 3. (color online) The dependence of q̂ on the scale parameter kmax. The upper (green) lines

are for t = 10/m and Θ = π/6, and the lower (blue) lines are for t = 6/m and Θ = π/6. For both

times, the dotted line represents a fit of q̂ as a function of kmax with ln(kmax/m).

In order to understand this behavior better, we have divided the integrand in Eq. (46)

into three pieces which correspond to contributions with two, one and zero powers of N0

(which is related to the fluctuation of the distribution function for plasma particles - see

Eq. (33)). We find that terms with two powers of N0 give a positive contribution growing

as e0.79mt, but terms with one power provide a negative contribution with approximately

the same exponent. There are therefore large cancellations between these two contributions.

The terms with no factors of N0, which depend on the squares of the initial fields, do

not grow as rapidly, but they play a role that is larger than expected because of the large

cancellations between the terms that depend on N0. The conclusion is that there are pieces of

the integrand that grow at double the growth rate of the fastest unstable mode, as expected,

but because of large cancellations the net growth is much smaller.

Our results depend on two regulators kmax and mmin which signal the incompleteness of

our approach. We start with a discussion of kmax. This scale divides the range of momenta

transfered to the test parton into two pieces which correspond to the soft and hard contribu-

tions. The parameter kmax survives in our final results because we have taken into account

only the soft piece. In the equilibrium computation the parameter kmax disappears when

the soft contribution to q̂eq is combined with the hard one, which describes elastic collisions
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FIG. 4. (color online) The dependence of q̂ on the scale mmin, with t = 6/m and Θ = π/6. The

solid (orange) line is a fit of q̂ as a function of mmin with ln(m/mmin).

between the test parton and plasma constituents with momentum transfer much exceeding

the Debye mass. Some details of this cancellation are discussed in [20]. It is beyond a scope

of the present study to compute the contribution to q̂ from hard scattering in unstable

plasma, using a formalism which correctly treats the evolution of the system from its initial

conditions. We have checked that q̂ depends on kmax logarithmically. In Fig. 3 we show

q̂ as a function of kmax for two different times. One observes a mild oscillatory behavior

(oscillations are stronger at earlier times), but the general trend is logarithmic.

As discussed in Sec. VII, the parameter mmin is introduced as a regulator and corresponds

physically to the small but non-zero mass of the plasma particles, which was neglected in

our formalism. In Fig. 4 we show the dependence of the momentum broadening parameter

on the scale mmin and a fit of q̂ as a function of mmin with ln(m/mmin). One sees from the

graph that the dependence is logarithmic.

As argued at the end of Sec. VII, the dominant contribution to q̂ comes from the A-

modes and for this reason only A-modes have been taken into account to obtain the results

presented in Fig. 1-4. In Fig. 5 we show the contributions to q̂ from A-modes and G-modes

with Θ = π/4. The figure indeed shows the dominance of the A-modes.
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FIG. 5. (color online) The relative contribution of the A-modes (blue, dotted line) and G-modes

(red, solid line) for Θ = π/4.

X. DISCUSSION AND CONCLUSIONS

We start with a discussion of the validity of our results, which are obtained under rather

restrictive conditions. We use the hard loop approach which assumes a clear separation of

the hard and soft scales. Plasma constituents carry hard momenta and fields are soft which

justifies a classical treatment of the fields. The scale separation requires the smallness of the

coupling constant which is a crucial limitation of our analysis.

The equilibrium QGP becomes weakly coupled if its temperature T is much bigger than

the QCD scale parameter ΛQCD ∼ 200 MeV, but the temperature of QGP from relativistic

heavy-ion collisions is comparable to ΛQCD even at the LHC. However, we deal with the

earliest non-equilibrium phase of matter produced in relativistic heavy-ion collisions. In

this phase the energy density ε is much larger than in equilibrium, and the weak coupling

condition ε1/4 � ΛQCD can be satisfied. In central collisions of nuclei of mass number A

at the center of mass energy
√
s per nucleon-nucleon pair, we estimate the initial energy

density in the center of mass frame as

ε =
cinelA

√
s

πR2l
, (71)

where cinel is the inelasticity coefficient – the fraction of initial energy which goes to particle

production, R is the radius of colliding nuclei and l is the length of the cylinder where the

energy is released. Assuming that cinel = 0.5 [24] and taking A = 200, R = 7 fm and
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l = 1 fm, one obtains ε ≈ 3.25 TeV/fm3 for
√
s = 5 TeV. This corresponds to ε1/4 ≈ 2.2

GeV, which is indeed bigger than ΛQCD. We note that the initial energy density, which

is estimated above, decreases fast due to the rapid expansion of the system. The energy

density splits into a thermal contribution, which is characterized by a temperature, and one

that is related to collective motion. In the local rest frame the thermal energy density is

small and its characteristic temperature is comparable to ΛQCD.

One can also argue using the Color Glass Condensate approach [25] that the regime of

asymptotic freedom is achieved at the earliest stage of relativistic heavy-ion collisions. In

this model, the hard scale of saturation Qs is generated dynamically, and since Qs ≈ 1/3

GeV [25], the weak coupling condition Qs � ΛQCD is weakly satisfied.

We conclude therefore that although the smallness of the coupling constant is far from

guaranteed, there are good reasons to believe this assumption is justified.

Our analysis is performed only with an extremely oblate distribution for which the calcula-

tions can be done analytically to some extent. In real experiments the anisotropy parameter

ξ is certainly finite. However, as shown in Fig. 16 of the review article [6], when ξ is large

the growth rate of the unstable modes is rather insensitive to its value. We therefore expect

that the magnitudes of q̂ obtained using a realistic momentum distribution are not much

different from those presented here.

Another important limitation of our approach is that we computed only the soft contribu-

tion to q̂ corresponding to momentum transfers smaller than kmax. However, as demonstrated

in Fig. 3, q̂ depends logarithmically on the upper cut-off kmax. Therefore, the hard contribu-

tion can be approximately included by shifting kmax to the kinematic limit which is roughly

the energy of the test parton.

In this study we have decided to stay away from phenomenology, deferring an analysis of

how to obtain quantitative experimental predictions to a future publication. Nevertheless

we give here rough estimates of the parameters which are involved in our calculations, to

make our results more useful.

To express the time from Fig. 1 in physical units, one needs a value of the parameter m

defined in Eq. (A3). To get a crude estimate of m, we assume that the energy density (71)

corresponds to an ideal gas of gluons in thermal equilibrium

ε =
π2(N2

c − 1)

15
T 4 . (72)
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Using ε1/4 = 2.2 GeV and Nc = 3 we have T = 1.5 GeV, and substituting this temperature

into the Debye mass formula we obtain

m =

√
4παsNc

3
T = 0.74 ε1/4 = 1.7 GeV , (73)

where we have used αs ≡ g2/4π = 0.1. The time unit is therefore m−1 = 0.12 fm/c.

From Fig. 1 one can read off the ratio of q̂ in extremely oblate and in equilibrium QGP

at the same value of m. To get a rough estimate of q̂eq we use the approximate formula [4]

q̂eq = 2CRαsm
2 log

(E
m

)
, (74)

where the maximal momentum transfer kmax is identified with the energy of the test parton

E. When the test parton is a gluon (CR = 3) with energy E = 50 GeV and, as previously,

αs = 0.1, m = 1.7 GeV and T = 1.5 GeV, we have q̂eq = 3.8 GeV3 = 19 GeV2/fm. From

Fig. 1 we find for t = 10/m = 1.2 fm/c, for example, q̂ = 5 q̂eq = 95 GeV2/fm, if the test

parton moves perpendicularly to the beam axis.

The value of q̂ that is required to reproduce the experimentally observed pattern of jet

quenching is much smaller, that is q̂ ∼ 1/3 GeV2/fm [4]. Since the oblate plasma exists only

for a short time interval however, the total momentum broadening produced by the effect we

have calculated could be rather moderate. In any case, our analysis strongly suggests that

a significant contribution to the total momentum broadening comes from the brief phase

during which the plasma is unstable.

Let us now recapitulate and conclude our study. We have developed a formalism to

compute the momentum broadening parameter q̂ in an unstable plasma. Our calculation is

formulated as an initial value problem, and we produce a time dependent result which gives

the dynamical evolution of q̂. We have calculated the momentum broadening parameter for

the case of extremely oblate plasma, which is relevant to the study of heavy ion collisions.

We find that q̂ grows exponentially with time, as a result of the interaction of the test parton

with the unstable collective modes in the system. At times which are large compared with

the fundamental mass scale, the magnitude of q̂ can be much bigger than in equilibrated

plasmas.

We comment that the mere presence of unstable modes is not enough to guarantee this

result. The plasma is a complicated system with many constituents interacting in differ-

ent ways. This is (in part) reflected in the complicated structure of the integrand of the
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momentum broadening parameter obtained in this paper. The exponentially growing terms

contain oscillating factors, and the integrand has both positive and negative contributions

which produce large cancellations. The exponentially growing result which is obtained when

all integrals are performed is therefore far from trivial. In the extremely prolate system, for

example, the oscillatory behavior of the integrand overwhelms the influence of the unstable

modes, and the exponential growth that is found in the oblate system is not seen.

The key point is that the very large value of q̂ which is produced in our calculation,

indicates that the test parton could loose a sizable fraction of its energy in a transient

pre-equilibrium phase of the plasma. The relevance of our result to the phenomenon of jet

quenching in relativistic heavy-ion collisions is an issue that must be studied further. Jet

quenching is observed at both RHIC and LHC at almost vanishing rapidity in the center of

mass of the colliding nuclei. This configuration is shown in Fig. 2 with the jet momentum

transverse to the z-axis. Our results indicate that the momentum broadening q̂ is maximal

in this configuration. It would be interesting to see if the jet quenching pattern would be

changed if the jet axis is tilted in such a way that the near-side jet has a positive (negative)

rapidity while the away-side jet has a negative (positive) rapidity. The effect of the unstable

modes would then be reduced and the radiative energy loss should be smaller.
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Appendix A: Definition of dimensionful scales

The mass scale defined in Eq. (29) is used to define our system of units. We scale all

dimensional quantities by this parameter, or equivalently we set m = 1. In this appendix, we

explain the physical meaning of this mass scale. We start by discussing equilibrium plasmas,

and we furthermore drop the assumption that all particles obey Boltzmann statistics. This

is done for the purposes of discussion only. We will obtain an expression for the mass which

is familiar from thermal field theory, in order to illustrate its general interpretation. In a
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QED plasma composed of (massless) electrons and positrons we have (see Eq. (29))

m2 = 2
∑
σ

q2σ

∫
d3p

(2π)3
nσ(~p)

p
= 2e2

∫
d3p

(2π)3
ne(~p) + n̄e(~p))

p
, (A1)

with

ne(~p) =
2

eβ(p−µ) + 1
, ne(~p) =

2

eβ(p+µ) + 1
, (A2)

where β is the inverse temperature, µ is the quark chemical potential, p ≡ |~p| and the factor

2 in the numerator of the Fermi-Dirac distributions is needed to take into account the 2

possible spin states. Direct calculation with µ = 0 gives m2 = e2T 2

3
= m2

D where mD is the

Debye mass. In a QCD plasma composed of quarks, anti-quarks and gluons we have

m2 = g2
∫

d3p

(2π)3
nq(~p) + n̄q(~p) + ng(~p)

p
(A3)

with

nq(~p) =
2Nf

eβ(p−µ) + 1
, n̄q(~p) =

2Nf

eβ(p+µ) + 1
, ng(~p) =

4Nc

eβp − 1
. (A4)

The factors in Eqs. (A3, A4) can be verified by calculating the QCD Debye mass: with

µ = 0 the result is m2 = g2T 2
(
Nc

3
+

Nf

6

)
= m2

D.

The factor dscale defined in Eq. (47) has dimension mass cubed and contains all of the

dimensions in the result for q̂ (the expression in the right side of Eq. (55) divided by dscale is

dimensionless). The parameter dscale is related to the mass parameter (29) that we have used

to define our units and a scale that characterizes the width of the distribution of transverse

momenta. We assume that all species of plasma particles have an oblate distribution as in

Eq. (51) and therefore the formula (47) can be rewritten

dscale =
1

(2π)2

∑
σ

q2σ

∫ ∞
0

dp⊥ p⊥hσ(p⊥) , (A5)

and the equation that defines the mass parameter (29) has the form

m2 =
2

(2π)2

∑
σ

q2σ

∫ ∞
0

dp⊥hσ(p⊥) . (A6)

Defining the mean transverse momentum as

〈p⊥〉 ≡
∑

σ

∫∞
0
dp⊥ p⊥ hσ(p⊥)∑

σ

∫∞
0
dp⊥ hσ(p⊥)

, (A7)

we obtain

dscale =
1

2
m2〈p⊥〉, (A8)

which shows the physical meaning of the parameter dscale. For example, taking the Boltz-

mann limit of the distributions in Eq. (A2) or (A4) would produce dscale = T m2
D.
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Appendix B: Removing zero poles

The method used in Sec. III to solve self-consistently the set of Vlasov and Maxwell

equations can be summarized as follows: we perform a one sided Fourier transform to

rewrite our equations in momentum space, solve the resulting set of equations algebraically,

and then perform the inverse transform to rewrite the results in position space. In this

appendix we discuss a subtle point associated with this procedure.

We consider the homogeneous Maxwell equation which relates the electric and magnetic

fields. This equation is the second part of Eq. (10), which becomes in momentum space

Eq. (17). The Fourier transform on the spatial coordinates is not involved in this issue and

can be removed from this discussion. We define the functions

b(t) ≡ Bi(t,~k) , e(t) ≡ −iεijlkjEl(t,~k) (B1)

and rewrite Faraday’s law in the simple form

db(t)

dt
= e(t) . (B2)

The equation is supplemented with the initial condition b(t = 0) = b0.

We can find the solution of Eq. (B2) using the procedure outlined in the first paragraph

of this section. Taking the one-sided Fourier transform of Eq. (B2) gives

−b0 − iω b(ω) = e(ω) . (B3)

The l.h.s. of Eq. (B3) has been found performing the integration by parts as∫ ∞
0

dt eiωt
db(t)

dt
= eiωtb(t)

∣∣∣∣∞
0

− iω
∫ ∞
0

dt eiωtb(t) = −b0 − iω b(ω) , (B4)

where the function b(t) is assumed to vanish when t→∞.

The solution of the algebraic equation (B3) is

b(ω) = −b0 + e(ω)

iω
(B5)

and taking the inverse transform we obtain

b(t) = −
∫ ∞+iσ

−∞+iσ

dω

2πi
e−iωt

b0
ω
−
∫ ∞+iσ

−∞+iσ

dω

2πi
e−iωt

e(ω)

ω

= b0 −
∫ ∞+iσ

−∞+iσ

dω

2πi
e−iωt

e(ω)

ω
, (B6)
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where the result for the first integral is obtained by noticing that the only contribution comes

from the pole at ω = 0. Equation (B5) is exactly the same as Eq. (17), merely rewritten

using the simplified notation defined in Eq. (B1).

Notice that the integral on the right side of Eq. (B6) must be zero at t = 0, in order to

produce b(0) = b0. This means that physical solutions for the electric field must satisfy∫ ∞+iσ

−∞+iσ

dω

2πi

e(ω)

ω
= 0 , (B7)

and if this is not true then the initial condition b(0) = b0 is incompatible with Eq. (B2). It

is not difficult to invent such a situation. For example, if e(t) diverges as t−1 when t → 0,

the initial value b(0) cannot be finite. Using the condition (B7), the solution (B6) could be

rewritten in an equivalent form

b(t) = b0 −
∫ ∞+iσ

−∞+iσ

dω

2πi

[
e−iωt − 1

] e(ω)

ω
. (B8)

The result (B8) can be obtained in a different way by solving the trivial differential

equation (B2) as

b(t) = b0 +

∫ t

0

dt′ e(t′) , (B9)

and expressing the function e(t) through its Fourier transform which gives

b(t) = b0 +

∫ t

0

dt′
[ ∫ ∞+iσ

−∞+iσ

dω

2π
e−iωt

′
e(ω)

]
. (B10)

Switching the order of integrations over t′ and ω and performing the time integral explicitly,

we again obtain the formula (B8).

Let us compare the two forms (B6) and (B8) of the solution of the differential equation

(B1). One observes that if the function e(ω) is regular at ω = 0, the integrand in the formula

(B6) has a pole ω = 0, but the integrand in the formula (B8) is regular. In general, when

e−iωt is replaced by (e−iωt − 1), the order of the pole of the integrand at ω = 0 is reduced

by one.

We have found that the terms in the integrand in Eq. (46) which come from the correlators

involving the magnetic field diverge at ω = 0. We treat this as a signal that our initial

conditions are incompatible with Faraday’s law and we use the freedom to choose the solution

in the form (B6) or (B8) to obtain a finite expression. Therefore, the exponential factors

e−iωt which enter the functions IXX(t) and IXY (t) with {X, Y } ∈ {E,B} in Eqs. (42, 43,

44, 45), are changed to (e−iωt − 1) when magnetic fields are present in the correlators.
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Appendix C: Equilibrium limit

In this Appendix we derive the momentum broadening parameter q̂ for equilibrium plas-

mas. The result predicted by the classical Langevin approach was obtained previously in [13]

directly using the equilibrium field correlators derived in [14]. The aim of this Appendix is

to verify that our formula (46), which is used to compute q̂ for anisotropic plasmas, reduces

to the correct expression in the equilibrium limit.

The factors CEE, CEB, CBE and CBB, which enter the formula (46), are calculated using

the procedure described in Sec. V. When calculating the integrand, the difference between

the equilibrium and oblate integrands is that the propagator ∆ij(ω,~k), which enters through

equations (32, 34), is given by equation (D4) in equilibrium and (D10) in anisotropic plasma.

The integral in Eq. (42) can be calculated analytically (the results for the integrals in

Eqs. (43 - 45) will not be needed - this is explained below). Direct integration produces

IEE(t) = − i
k

[
e−ikt(ω̂2+~u·k̂)

ω̂1 − ~u · k̂
+
e−ikt(ω̂1−~u·k̂)

ω̂2 + ~u · k̂
+

e−ikt(ω̂1+ω̂2)(ω̂1 + ω̂2)

(ω̂1 − ~u · k̂)(ω̂2 + ~u · k̂)

]
. (C1)

The next step is to perform the frequency integrals. All collective modes are damped

in equilibrium and therefore give contributions to q̂ which exponentially decay in time.

Consequently we include only the contributions from the Landau poles at ω1 = ~k · ~v and

ω2 = −~k · ~v. After substituting the expressions for the Landau poles, the factor in Eq. (C1)

takes the simple form

IEE(t)

∣∣∣∣
ω̂1=k̂·~v
ω̂2=−k̂·~v

=
2 sin

(
t ~k · (~v − ~u)

)
~k · (~v − ~u)

. (C2)

In the equilibrium calculation we are dealing with a static medium and therefore we take

the long time limit to eliminate short time switching-on effects. It is easy to show that

lim
t→∞
IEE(t) = 2πδ

(
~k · (~u− ~v)

)
. (C3)

In fact, we can immediately see how this delta function arises. The integral in Eq. (42)

gives zero in the long time limit unless the phase of the exponentials is zero, and when the

frequencies take the values ω̂1 = k̂ · ~v and ω̂2 = −k̂ · ~v this means we require ~k · ~u = ~k · ~v. In

the same way we see that the extra terms that are introduced by the −1 factors in Eqs. (43

- 45) give zero in the long time limit, and likewise any potential contribution from a zero
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pole would give zero at long times. The conclusion is that in the equilibrium calculation the

square bracket in (46) becomes

lim
t→∞
IEE(t)

[
CEE + CEB + CBE + CBB

]
= 2πδ

(
~k · (~u− ~v)

)
Ceq (C4)

where we have defined

Ceq ≡ CEE + CEB + CBE + CBB . (C5)

The factor Ceq is calculated using our Mathematica program.

We use the definitions (47) and (C4) to rewrite the formula (46). We also introduce unity

in the form
∫
dω δ(ω−~v ·~k) and replace all factors ~v ·~k with ω. This produces the expression

q̂eq = (2π)2 e2
∫
dω

2π

∫
d3k

(2π)3
δ(ω − ~u · ~k) J , (C6)

with

J ≡
∑
σ

q2σ

∫
d3p

(2π)3
δ(ω − ~k · ~v) k2 Ceq nσ(p) . (C7)

In order to do the integral over ~p in Eq. (C7) we will make use of the fact that the

equilibrium distribution depends only on the magnitude of ~p. The first step is to rewrite the

result for Ceq as

Ceq = T ij(M ij
EE +M ij

BB) + Sij(−M ij
EB +M ij

BE) , (C8)

where we have defined

T ij ≡ δij − uiuj and Sij ≡ εijmum . (C9)

The tensors MEE, MBB, MEB and MBE, which are produced by our program, are

M ij
EE = ω̂4k̂ik̂j∆L(ω)∆L(−ω) + ω̂3(vi − ω̂k̂i)k̂j∆T (ω)∆L(−ω) (C10a)

+ ω̂3(vj − ω̂k̂j)k̂i∆L(ω)∆T (−ω) + ω̂2(ω̂k̂i − vi)(ω̂k̂j − vj)∆T (ω)∆T (−ω) ,

M ij
BB = ∆T (ω)∆T (−ω)

[
δij
(
1− (~v · k̂)2

)
− k̂ik̂j − ~vi~vj + ~v · k̂(vik̂j + k̂ivj)

]
, (C10b)

M ij
EB = (~v · k̂)2k̂i(k̂ × ~v)j ∆L(ω)∆T (−ω) (C10c)

+ ~v · k̂(vi − ~v · k̂k̂i)(k̂ × ~v)j ∆T (ω)∆T (−ω) ,

M ij
BE = (~v · k̂)2k̂j(k̂ × ~v)i ∆T (ω)∆L(−ω) , (C10d)

+ ~v · k̂(vj − ~v · k̂k̂j)(k̂ × ~v)i ∆T (ω)∆T (−ω) .
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The argument ~k of the propagators is suppressed in Eqs. (C10) and ω̂ ≡ ω/k with k ≡ |~k|

and k̂i ≡ ki/k. Using an obvious notation we divide the integral J into four pieces which

we call JEE, JBB, JEB and JBE. These four contributions to J can be written

JXX = T ij I ijXX , I ijXX = k2
∑
σ

q2σ

∫
d3p

(2π)3
δ(ω − ~k · ~v)nσ(p)M ij

XX , (C11a)

JXY = Cij I ijXY , I ijXY = k2
∑
σ

q2σ

∫
d3p

(2π)3
δ(ω − ~k · ~v)nσ(p)M ij

XY , (C11b)

where JXX means JEE or JBB and JXY means JEB or JBE. We define

Ithermal ≡
∑
σ

q2σ

∫
d3p

(2π)3
δ(ω − ~k · ~v)nσ(p) . (C12)

We want to factor the pieces M ij
XX and M ij

XY from the integrals in Eq. (C11) and extract

Ithermal. The problem is that they contain factors that depend explicitly on the velocity ~v

and therefore cannot be pulled out of the integral over ~p. We can show however that, due

to plasma isotropy, these factors disappear when the ~p integral is done. The proof is as

follows. In an isotropic plasma, a symmetric correlator of the form I ijXX must be a linear

combination of the two projectors Aij and Bij in equation (D2). Thus we have

I ijXX =
1

2
Aij(AlmI lmXX) +Bij(BlmI lmXX) . (C13)

Similarly, the antisymmetric combination I ijXY − I
ij
Y X must be proportional to the tensor

F ij = εijl
kl

k
, (C14)

and therefore we write

I ijXY − I
ij
Y X =

1

2
F ij
[
F lm(I lmXY − I lmY X)

]
. (C15)

The integral Ithermal can be factored from the contacted expressions AlmI lmXX , BlmI lmXX and

F lm(I lmXY − I lmY X). The results are

AlmI lmEE =
1

2
Ithermal(~u · k̂)2

(
1− (~u · k̂)2

)
∆T (ω,~k)∆T (−ω,~k) , (C16a)

BlmI lmEE = Ithermal(~u · k̂)4∆L(ω,~k)∆L(−ω,~k) , (C16b)

AlmI lmBB =
1

2
Ithermal

(
1− (~u · k̂)2

)
∆T (ω,~k)∆T (−ω,~k) , (C16c)

BlmI lmBB = 0 , (C16d)

F lm(I lmEB − I lmBE) = Ithermal(~u · k̂)
(
1− (~u · k̂)2

)
∆T (ω,~k)∆T (−ω,~k) . (C16e)
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Combining equations (C9, C11, C13, C15, C16), it is straightforward to show that the

expression (C8) can be written as

J = k2 Ithermal Ceq (C17)

with

Ceq ≡
1

2

(
1− (~u · k̂)2

)3
∆T (ω,~k)∆T (−ω,~k) + (~u · k̂)4

(
1− (~u · k̂)2

)
∆L(ω,~k)∆L(−ω,~k) .

Using the delta function to do the frequency integral and defining kz = ~u · ~k (the axis z

is chosen along the velocity of the test parton), the result for q̂ in Eq. (C6) takes the form

q̂eq = 2π e2
∫

d3k

(2π)3
k2 Ithermal

∣∣∣
ω=kz

(C18)

×
[
k̂4z
(
1− k̂2z

)
∆L(kz, ~k)∆L(−kz, ~k) +

1

2

(
1− k̂3z

)
∆T (kz, ~k)∆T (−kz, ~k)

]
.

Introducing the scale parameter (47) and refering to the definition (C12), this result can be

rewritten as

q̂eq = 2π e2ddscale

∫
d3k

(2π)3
k

2
(C19)

×
[
k̂4z
(
1− k̂2z

)
∆L(kz, ~k)∆L(−kz, ~k) +

1

2

(
1− k̂3z

)
∆T (kz, ~k)∆T (−kz, ~k)

]
.

The integral can be calculated numerically and for kmax = 2m gives q̂ = 0.11 e2dscale which

is a reference point for our time dependent results on oblate plasma which are discussed in

Sec. IX.

In order to compare with the result derived in [14], we rewrite Eq. (C18). First we note

that equations (26, D1) can be used to rewrite the quantity (C12) as

Ithermal = −2T Imβ(ω,~k)

πω̂3k
=

4T Imα(ω,~k)

πω̂(ω̂2 − 1)k
. (C20)

Using the formulas (D5, C20) and the symmetry relations

Reα(kz, ~k) = Reα(−kz, ~k) , Imα(kz, ~k) = − Imα(−kz, ~k) , (C21a)

Reβ(kz, ~k) = Reβ(−kz, ~k) , Imβ(kz, ~k) = − Imβ(−kz, ~k) , (C21b)

Eq. (C20) gives

Ithermal ∆T (ω,~k)∆T (−ω,~k) =
2T

πkω̂(ω̂2 − 1)
Im∆T (ω,~k) , (C22a)

Ithermal ∆L(ω,~k)∆L(−ω,~k) = − T

πkω̂3
Im∆L(ω,~k) , (C22b)

38



and substituting (C22) into (C18) we obtain:

q̂eq = −2Te2
∫

d3k

(2π)3

(
k2 − k2z

)
kz

[(
1− k̂2z

)
Im∆T (kz, ~k) + k̂2z∆L(kz, ~k)

]
. (C23)

The final step is to rewrite the result (C23) in terms of the dielectric tensor εij(ω,~k)

which is related to the polarization tensor as

εij(ω,~k) = δij − Πij(ω,~k)

ω2
. (C24)

Transverse and longitudinal components of the dielectric tensor are defined as usual with

the projection operators in equation (D2)

εT (ω,~k) =
1

2
Aijεji(ω,~k) , εL(ω,~k) = Bijεji(ω,~k) . (C25)

Equations (D3, D4, C24, C25) give

∆−1T (ω,~k) = ω2εT (ω,~k)− k2 , ∆−1L (ω,~k) = ω2εL(ω,~k) , (C26)

and Eq. (C23) takes the form

q̂eq = 2Te2
∫

d3k

(2π)3
(k2 − k2z)
kzk2

[
ImεL(kz, ~k)

|εL(kz, ~k)|2
+
k2z(k

2 − k2z) ImεT (kz, ~k)

|k2zεT (kz, ~k)− k2|2

]
. (C27)

As explained in Sec. VIII, the result is converted to the corresponding QCD expression by

multiplying by the color factor CR and replacing the QED coupling constant e with the

QCD coupling g. After making these replacements, Eq. (C27) agrees with equation (27)

given in [14].

Appendix D: Propagator and polarization tensor

In this Appendix we discuss the gauge boson propagator and polarization tensor in

anisotropic plasma. We start with a brief discussion of isotropic plasma where the po-

larization tensor (and any symmetric tensor that depends on the wave vector ~k), can be

decomposed as

Πij(ω,~k) = α(ω,~k)Aij + β(ω,~k)Bij , (D1)

where the two projection operators are defined as

Aij ≡ δij − kikj

k2
, Bij ≡ kikj

k2
. (D2)
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The inverse propagator in temporal axial gauge (which we use in Eq. (31)) equals

(∆−1)ij(ω,~k)= (∆−1bare)
ij(ω,~k)− Πij(ω,~k) (D3)

=
(
ω2 − k2 − α(ω,~k)

)
Aij +

(
ω2 − β(ω,~k)

)
Bij ,

where the inverse bare propagator is given by Eq. (23). Inverting the tensor (D3) gives the

well known result

∆ij(ω,~k) = ∆T (ω,~k)Aij + ∆L(ω,~k)Bij , (D4)

with

∆−1T (ω,~k) ≡ ω2 − k2 − α(ω,~k) , ∆−1L (ω,~k) ≡ ω2 − β(ω,~k) . (D5)

The dispersion equations of transverse longitudinal plasmons are

∆−1T (ω,~k) = 0 , ∆−1L (ω,~k) = 0 . (D6)

In a plasma with a momentum distribution obtained from the isotropic one by stretching

or squeezing along the (unit) vector ~n, we need to introduce two additional operators which

are defined as

Cij =
niTn

j
T

n2
T

, Dij = kinjT + kjniT , (D7)

where niT ≡ Aij nj. The four operators (D2, D7) form a complete basis (but D does not

satisfy D2 = D and therefore should not be called a projection operator).

The polarization tensor is decomposed as

Πij(ω,~k) = α(ω,~k)Aij + β(ω,~k)Bij + γ(ω,~k)Cij + δ(ω,~k)Dij , (D8)

and the inverse propagator and its inversion are

(∆−1)ij = (ω2 − k2 − α)Aij + (ω2 − β)Bij − γCij − δDij , (D9)

∆ij = ∆A (Aij − Cij) + ∆G

[
(ω2 − k2 − α− γ)Bij +

(
ω2 − β

)
Cij + δDij

]
, (D10)

where the arguments ω,~k are suppressed and

∆−1A (ω,~k) ≡ ω2 − k2 − α(ω,~k) , (D11)

∆−1G (ω,~k) ≡
(
ω2 − β(ω,~k)

)[
ω2 − k2 − α(ω,~k)− γ(ω,~k)

]
− kn2

T δ
2(ω,~k) . (D12)
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The plasmon dispersion equations are

∆−1A (ω,~k) = 0 , ∆−1G (ω,~k) = 0 . (D13)

The complete plasmon spectrum given by Eqs. (D13) is analyzed in detail for all possi-

ble degrees of one dimensional deformation of an isotropic momentum distribution in our

extensive study [19].

Appendix E: Integrals over the momenta of plasma particles

We explain here how to do the integral over ~p in equation (46). The method is the same

for every term in CXY with {X, Y } ∈ {E,B}. Since the plasma constituents are assumed

massless, the angular integrals factor from the integral over p ≡ |~p|. The integrand depends

only on the the azimuthal angle ϕ, and all ϕ dependence comes from factors ~u · ~v and k̂ · ~v.

We define a generic ϕ integral

Ik lmn1 n2
(ω̂1, ω̂2, ~k) ≡

∫ 2π

0

dϕ
[sinϕ]k [cosϕ]l [C(ϕ)]m

[D−(ω̂1, ϕ)]n1D+(ω̂2, ϕ)]n2
, (E1)

where the numbers k, l,m, n1, n2 are integer and

C(ϕ) ≡ 1

1 +m2
min − (~v · k̂)2

=
1

1 +m2
min − (1− x2) cos2 ϕ

, (E2)

D±(ω̂, ϕ) ≡ (ω̂ + iε± ~v · k̂) = (ω̂ + iε±
√

1− x2 cosϕ) , (E3)

ε is an infinitesimally small real positive number and x ≡ cos θ with θ being the angle

between the vector ~k and axis z. As discussed in Sec. VII, the parameter mmin is introduced

in the definition of C(ϕ) to regulate the divergence in the ϕ integral when x = 0.

All of the integrals of the form (E1) can be done analytically, but it is more efficient to

rearrange them into a simpler form. Difficulties are caused by the factors D−(ω̂1, ϕ) and

D+(ω̂2, ϕ) which contain zeros. In many terms these denominators can be removed using a

simple trick. First we rewrite

1

D−(ω̂1, ϕ)D+(ω̂2, ϕ)
=

1

ω̂1 + ω̂2

[
1

D−(ω̂1, ϕ)
+

1

D+(ω̂2, ϕ)

]
. (E4)
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Second we remove a factor cosϕ in the numerator using

cosϕ

D+(ω̂2, ϕ)
=

1√
1− x2

[
1− ω̂2

D+(ω̂2, ϕ))

]
, (E5a)

cosϕ

D−(ω̂1, ϕ)
=

1√
1− x2

[
ω̂1

D−(ω̂1, ϕ)
− 1

]
. (E5b)

We proceed by systematically partial fractioning and removing cosϕ factors in the numerator

using the formulas (E4, E5). Most of the remaining terms have no poles and can be easily

evaluated.

Notice however that the expression produced by partial fractioning (E4) will cause prob-

lems at the next step, which will be to perform the ω1 and ω2 integrals using contour

integration. Each integral will get contributions from each of the poles listed in Table I.

However, when we take the contribution from (for example) the pole in the ω1 integral at

ωα and the pole in the ω2 integral at −ωα, the factor (ω1 + ω2)
−1 in the expression (E4)

diverges. To resolve this problem we construct two different forms of the integrand. One will

be used when calculating residues of pairs of poles that do not sum to zero. This expression

is calculated as described above. When we calculate the residue of a pair of poles which add

to zero, we use a different expression which is obtained without the partial fractioning step.

We set ω2 = −ω1 immediately, and then rewrite factors cosϕ in the numerator using the

second expression in Eq. (E5).

The non trivial integrals that we need can be written

I00010(ω̂1, ω̂2, ~k) =

∫ 2π

0

dϕ
1

D−(ω̂1)
≡ I(ω̂1, ~k) , (E6)

I00020(ω̂1, ω̂2, ~k) =

∫ 2π

0

dϕ
1[

D−(ω̂1)
]2 ≡ J(ω̂1, ~k) , (E7)

I00110(ω̂1, ω̂2, ~k) =

∫ 2π

0

dϕ
C(ϕ)

D−(ω̂1)
≡ K(ω̂1, ~k) . (E8)

We also need I00001(ω̂1, ω̂2, ~k) = I(ω̂2,−~k) and I00101(ω̂1, ω̂2, ~k) = K(ω̂2,−~k). The three integrals

(E6, E7, E8) can be calculated analytically. The results are

I(ω̂,~k) =
2π√

ω̂ + iε−
√

1− x2
√
ω̂ + iε+

√
1− x2

, (E9)

J(ω̂,~k) =
2π ω̂(

ω̂ + iε−
√

1− x2
)
3/2
(
ω̂ + iε+

√
1− x2

)
3/2

, (E10)

K(ω̂,~k) =
2π

ω̂2 − 1

[
ω̂√

x2 +m2
min

− 1√
ω̂ + iε−

√
1− x2

√
ω̂ + iε+

√
1− x2

]
. (E11)
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