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Abstract

The recent measurements of high energy photodisintegration of the 3He nucleus to the pd pair

at 900 center of mass demonstrated an energy scaling consistent with the quark counting rule with

unprecedentedly large exponent of s−17. To understand the underlying mechanism of this process

we extended the theoretical formalism of hard rescattering mechanism (HRM) to calculate the γ

3He→ pd reaction. In HRM the incoming high energy photon strikes a quark from one of the

nucleons in the target which subsequently undergoes hard rescattering with the quarks from the

other nucleons generating hard two-body system in the final state of the reaction. Within the

HRM we derived the parameter free expression for the differential cross section of the reaction,

which is expressed through the 3He→ pd transition spectral function, cross section of hard pd→ pd

scattering and the effective charge of the quarks being interchanged during the hard rescattering

process. The numerical estimates of all these factors resulted in the magnitude of the cross section

which is surprisingly in a good agreement with the data.

PACS numbers: 24.85.+p, 25.10.+s, 25.20.-x
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I. INTRODUCTION

The large momentum transfer photoproduction reactions with two-body breakup of the

nucleus represent one of the testing grounds for nuclear Quantum Chromodynamics (QCD).

The striking characteristics of these processes is the enormous value of invariant energy pro-

duced even at moderate incident beam energy. The invariant energy of the photoproduction

reaction is s = m2
T +2EγmT , which shows that it grows for the nuclear target A times faster

than that of the proton target, where mT is the mass of the target and Eγ is the incident

photon energy. Considering large and fixed center of mass (cm) angles in two-body break-up

reactions allows to provide large momentum transfers t ∼ − s
2
(1 − cosθcm) thus satisfying

condition for hard QCD scattering.

Hard nuclear scattering, in which the energy-momentum transferred to the nucleus is

much larger than the nucleon masses, are one of the best processes where one hopes to probe

quark degrees of freedom in the nucleus. In hard scattering kinematic regime, we expect

that only the minimal Fock components dominate in the wave function of the particles

involved in the scattering. This expectation results in the prediction of the constituent (or

quark) counting rule, according to which the energy dependence of two-body hard reaction

is defined by the number of fundamental constituents participating in the reaction[1, 2].

If we consider a reaction of the type a + b → c + d, according to constituent counting

rule, the energy dependence of the hard process should scale like:

dσ(ab→cd)

dt
∼ 1

sna+nb+nc+nd−2
, (1)

where ni, i = a, b, c, d represent the number of the fundamental fields associated with respec-

tive particles involved in the process. For example, if a is a proton, na will equal three and

if it is a photon, na would be one.

Even though the energy dependences (or scaling relations) of Eq.(1) do not imply the

onset of perturbative QCD regime, they indicate that the resolution of the probe is such that

it allows to identify the constituents of the hadrons that participate in the hard scattering. In

1976 it was suggested[3] to use the concept of quark-counting rule to explore the QCD degrees

of freedom in nuclei. One of the best candidate reactions was hard photodisintegration of

the deuteron γ + d → p + n which, according to Eq.(1), should scale as dσ/dt ∼ s−11.

The first such experiments being carried out at the SLAC[4–6] and Jefferson Lab[7–11]
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revealed s−11 scaling for photon energies already at Eγ ≥ 1 GeV and θcm = 90o. It is worth

mentioning that the calculations based on conventional mesonic picture of strong interaction

failed to explain the observed energy scaling, which can be considered as another indication

that the quark degrees of freedom needs to be included for an adequate description of the

reaction. The deuteron two-body hard photodisintegration reactions have been used also

to measure the polarization observables[12–15] which were in general agreement with the

quark-constituent picture of hard scattering.

To check the universality of the constituent counting rule for other hard break-up reac-

tions, the two-body reactions were extended to 3He target, in which case two fast outgoing

protons and slow neutron were detected in γ+3He→ (pp) + n reactiont[16]. The results of

such experiment[17] was consistent with the s−11 scaling in the two-proton hard beak-up

channel, but at much larger photon energies (Eγ > 2 GeV) than in the case of pn break-up.

Recently the hard two-body break up reaction has been measured for the more complex, γ+

3He→ p+ d, channel[18]. According to Eq.(1) such a reaction in the hard scattering regime

should scale as s−17 and surprisingly the experiment observed a scaling consistent with the

exponent of 17 - an unprecedented large number ever observed in two-body hard processes.

In the present work, we extend the theoretical framework referred as hard rescattering

mechanism(HRM) to calculate the cross section of above mentioned γ3He→ pd reaction.

The HRM model was originally developed for calculation of γd → pn reactions[19]. The

model was successful not only in verifying the s−11 dependence but also reproducing the

absolute magnitude of the γ + d → pn cross sections without free parameters at & 1 GeV

incoming photon energies and large center of mass angles[19–21] . The HRM model allowed

also to calculate polarization observables for the γd → pn reaction[22] and its prediction

for the large magnitude of transferred polarization was confirmed by the experiment of

Ref.[14]. Subsequently the HRM model was applied to the γ+3He → pp + n reactions[23],

in which two protons were produced in the hard break-up process while the neutron was

soft. The model described the scaling properties and the cross section reasonably well and

was able to explain the observed smaller cross section as compared to the deuteron break-up

reaction. In Ref.[24] it was shown also that HRM model can be extended to the hard break-

up of the nucleus to any two baryonic state which can be produced from the NN scattering

through the quark-interchange interaction. In the HRM model, a quark of the one nucleon

knocked out by the incoming photon rescatters with a quark of the other nucleon leading

3



to a production of two nucleons with large relative momentum. We assume in HRM that

the quark interchange is the dominant mechanism for the hard rescattering of two outgoing

energetic nucleons. The latter assumption is essential for factorization of the hard scattering

kernel from the soft incalculable part of the scattering amplitude.

In the present work we apply the similar rescattering scenario for the hard break-up of

the 3He nucleus to the pd pair. Our main goal is to check whether the HRM approach

which explicitly accounts for the quark degrees of freedom, will allow to reproduce the

energy and angular dependencies of the measured cross sections. The article is organized

as follows: Section II describes the kinematics and the reference frame of the two-body

break-up reaction. In Section III, we develop the hard rescattering model for the γ+3He→

p+ d reaction discussing in detail the nuclear amplitude which according to HRM provides

the main contribution to the hard break-up cross section. In Section IV we complete the

derivation by calculating the cross section and considering the methods of estimation of

nuclear and pd→ pd rescattering parts entering in the cross section. The Section IV presents

also the numerical estimates and comparison with the results of the recent experiments at

θcm = 900. It also gives predictions for angular distribution of the cross section as well as

energy dependences for other θcm. The section V summarizes our results. In appendix A, we

present the details of the derivation discussed in the Section III. The discussion of the hard

elastic pd→ pd scattering is presented in Appendix B. Appendix C discusses the relationship

between the light-front and non-relativistic 3He to deuteron transition wave functions.

II. KINEMATICS OF THE PROCESS AND THE REFERENCE FRAME

We are considering the following two-body photodisintegration reaction:

γ +3 He→ p+ d, (2)

where the proton and deuteron are produced at large angles measured in the center of mass

reference frame of the reaction. The invariant energy, s, and momentum transfer, t, of the

reaction are defined as:

s = (q + p3He)
2 = m2

3He + 2q · p3He = m2
3He + 2Eγm3He = (Ecm

γ + Ecm
3He)

2

t = (q − pp)2 = m2
p − 2q · pp = m2

p − 2Ecm
γ (Ecm

p − pcmp cos θcm), (3)
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where mp and m3He are masses of the proton and 3He target respectively and Eγ is the

incoming photon energy in the Lab system. The four-vectors q, p3He and pp define the

four-momenta of photon, 3He and proton respectively. In the right hand side of Eq.(3), we

expressed s and t through the center of mass energies, momenta and scattering angle of

interacting particles defined as:

Ecm
γ =

1

2
√
s

(
s−m2

3He

)
, E3He =

1

2
√
s

(
s+m2

3He

)
Ecm
p =

1

2
√
s

(
s+m2

p −m2
d

)
, Ecm

d =
1

2
√
s

(
s+m2

d −m2
p

)
. (4)

The one interesting property of Eq.(3) observed in Ref.[25], is the possibility to generate

large center of mass energy s with the moderate energy of photon beams. This is due to

the fact that in the expression of s, photon energy is multiplied by the mass of the target.

For the case of reaction (2), for example the photon energy, Eγ = 1 GeV will generate s as

large as it is generated by 6 GeV/c proton beam in pp scattering. This property was one of

the reasons why the quark-counting scaling was observed in γd → pn reaction for photon

energies as low as 1.2 GeV at cm 900 break-up kinematics[10, 11].

Using Eq.(4) in the expression for t in Eq.(3), we obtain:

t = m2
p−

1

2s
(s−m2

He)
[
(s+m2

p−m2
d)−

√
{s− (mp +md)2} {s− (mp −md)2} cos θcm

]
. (5)

It follows from the above relation that in high energy limit t ∼ − s
2
(1−cosθcm) which indicates

that at large and fixed values of θcm one can achieve hard scattering regime, −t(−u)� m2
N ,

providing large values of s. For the latter as it follows from the expression of s in Eq.(3)

the photon energy Eγ is multiplied by 2m3He because of which even for moderate value of

Eγ, the high energy condition, (s� m2
N), is easily achieved. This is seen in Fig.1(a) where

the invariant momentum transfer, −t is presented as a function of incoming photon energy

Eγ at large and fixed values of θcm. As figure shows, even at Eγ ∼ 1 GeV the invariant

momentum transfer −t ∼ 1 (GeV/c)2, which is sufficiently large in order the reaction to be

considered hard.

That the reaction (2) at Eγ & 1 GeV and θcm ∼ 900 can not be considered as conventional

nuclear process with knocked-out nucleon and recoiled residual nuclear system follows from

Fig.1(b), where the lab momenta of outgoing proton and deuteron is given for large θcm.

In this case, one observes that starting at Eγ > 1 GeV/c the momenta of outgoing proton

and deuteron > 1GeV/c. Such a large momentum of the deuteron significantly exceeds the
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FIG. 1: (a) Photon energy dependence of invariant momentum transfer −t. (b)Lab

momenta of outgoing proton and deuteron as a function of photon energy. Solid lines -

proton, dashed - deuteron. Calculations are done for θcm = 90o and 60o.

characteristic Fermi momentum in the 3He nucleus thus the deuteron can not be considered

as residual. The momenta of the deuteron are also out of the kinematic range of eikonal,

small angle rescattering[26–28] further diminishing the possibility of describing reaction (2)

within the framework of conventional nuclear scattering.

Finally, another important feature of the large center of mass break-up kinematics is

the early onset of QCD degrees of freedom due to the large inelasticities (or large masses)

produced in the intermediate state of the reaction. As it was shown in Ref.[29] for pho-

todisinegration of the deuteron, already at photon energies 1 GeV one needs around 15

channels of resonances in the intermediate state to describe the process within hadronic

approach. This situation is similar in the case of the 3He target in which one estimates the

produced mass of the intermediate state as mR ≈
√
s −Md. From the latter relation one

observes that already at Eγ = 1 GeV, mR ≈ 1.8 GeV, which is close to the deep inelastic

threshold of 2 GeV, for which QCD degrees of freedom are more adequate.

Overall, the above kinematical discussion gives as a justification for the theoretical de-

scription based on the QCD degrees of freedom to be increasingly valid starting at photon

energies of ∼ 1 GeV.

At the end of the section, we define the reference frame in which the reaction (2) will be
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considered. It is defined from the condition that the “+” and the transverse components

of incoming photon, q+ = q⊥ = 0, with the photon and target nucleus having the following

light-cone four momenta:

qµ = (q+, q−, q⊥) = (0,
√
s′3He, 0)

pµ3He = (p3He+, p3He−, p3He⊥) = (
√
s′3He,

m2
3He√
s′3He

, 0), (6)

where s′3He = s−m2
3He. In the above expression the ± components are defined as p± = E±pz

where the direction of z axis is opposite to the momentum of the incoming photon in the

Lab frame.

III. HARD RESCATTERING MODEL

In the HRM model, the hard photodisintegration takes place in two stages. First, the

incoming photon knocks out a quark from one of the nucleons. Then in the second step the

outgoing fast quark undergoes a high momentum transfer hard scattering with the quark

of the other nucleon sharing its large momentum among the constituents in the final state

of the reaction. Since HRM utilizes the small momentum part of the target wave function

which has large component of the initial pd state, it is assumed that the energetic photon is

absorbed by any of the quarks belonging to the protons in the nucleus with the subsequent

hard rescattering of struck quark off the quarks in the “initial” d system producing final

pd state. Within such scenario the total scattering amplitude can be expressed as a sum

of the multitude of the diagrams similar to that of Fig.2 with all possibilities of struck

and rescattered quarks combining into a fast outgoing pd system. Instead of summing all

the possible diagrams, the idea of HRM is to factorize the hard γq scattering and sum

the remaining parts to the amplitude of hard elastic pd → pd scattering. In this way

the complexities related to the large number of diagrams and non-perturbative quark wave

function of the nucleons are absorbed into the pd → pd amplitude, which can be taken

from experiment. To demonstrate the above described concept of HRM, we consider the

typical scattering diagram of Fig.2. Here, the incoming photon knocks out a quark from

one of the protons in the nucleus. The struck quark that now carries almost the whole

momentum of the photon will share its momentum with a quark from the other nucleons

through the quark-interchange. The resulting two energetic quarks will recombine with the
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FIG. 2: Typical diagram of hard rescattering mechanism of γ3He→ pd reaction.

residual quark-gluon systems to produce proton and deuteron with large relative momentum.

Note that the assumption, that the nuclear spectator system is represented by intermediate

deuteron state is justified based on our previous studies of HRM[19, 23] in which it was found

that the scattering amplitude is dominated by small initial momenta of interacting nucleons.

For the case of reaction (Eq.(2)), because of the presence of the deuteron in the final state,

the small momentum of initial proton in the 3He nucleus will originate predominantly from

a two-body pd state.

In Fig.2, h, λ3He, λ1f and λdf are the helicities of the incoming photon, 3He nucleus, outgo-

ing proton and deuteron respectively. Similarly, q, p3He, p1, p1f , pd and pdf are the momenta

of the photon, 3He nucleus, initial and outgoing protons, intermediate deuteron and the fi-

nal deuteron respectively. The k’s define the momenta of the spectator quark systems. The

four-momenta defined in Fig.2 satisfy the following relations:

p3He = p1 + p2 + p3; p2 + p3 = pd = p′2 + p′3; p2f + p′3 = pdf ; p3He + q = p1f + pdf ,

where p2, p3, p
′
2 and p′3 are four-momenta of the nucleons in the intermediate state deuteron.

We now write the Feynman amplitude corresponding to the diagram of Fig.2, identifying

terms corresponding to nuclear and nucleonic parts as follows:

Mλdf ,λ1f ;λ3He,h =
∑
λ′d

∫
χ
∗λ′d
d (−iΓ†

DNN
)
i(/p2f +m)

p22f −m2
N + iε

i(/p′3 +m)

p′23 −m2
N + iε

i(/p′2 +m)

p′22 −m2
N + iε

A : i
Γ
DNN

χλdd χ
∗λd
d

p2d −m2
d

+ iε
(−i)Γ†

DNN

i(/p3 +m)

p23 −m2
N + iε

i(/p2 +m)

p22 −m2
N + iε

i(/p1 +m)

p21 −m2
N + iε

iΓ3He
χλ3He

3He

d4p′2
(2π)4

d4p3
(2π)4

d4p′3
(2π)4
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N1 :

∫
χp1f (−i)Γ

†
N1

i(/p1f − /k1 +m)

(p1f − k1)2 −m2
q + iε

[
− igT βc γµ

] iS(k1)

k21 −m2
s + iε

i(/p1 − /k1 +mq)

(p1 − k1)2 −m2
q + iε

iΓn1
d4k1
(2π)4

N2 :

∫
(−i)Γ†N

i(/p2f − /k2 +mq)

(p2f − k2)2 −m2
q + iε

iS(k2)

k22 −m2
s + iε

i(/p′2 − /k2 +mq)

(p′2 − k2)2 −m2
q + iε

iΓn2′
d4k2
(2π)4

γ : −igTαc γν
i(/p1 + /q − /k1 +mq)

(p1 − k1 + q)2 −m2
q + iε

[
− ieγµεµh

]
g :

idµνδαβ
q2q

. (7)

Here the label A: identifies the nuclear part of the scattering amplitude characterized by

the transition vertices Γ3He (for the 3He→ N1, N2, N3 transition) and ΓDNN (for D → N2N3

transitions). The parts N1: and N2: identify the transition of nucleons N1 and N2 to quark-

spectator system (characterized by the vertex ΓN) with recombination to the final N1f and

N2f nucleons. Here S(k1) and S(k2) denote the propagators of the spectator quark-gluons

system. The label γ : identifies the part in which the photon with polarization εµh interacts

with the (p1 − k1) four-momentum quark followed by the struck quark propagation. The

label g : represents the gluon propagator. Everywhere, χ’s denote the spin wave functions

of the nuclei and nucleons with λ’s defining the helicities. The summation over the λ′d

represents the sum over the helicities of the intermediate deuteron. The factor g is the QCD

coupling constant with Tc being color matrices.

The hard rescattering model which allows to calculate the sum of the all diagrams similar

to Fig.2 is based on the three following assumptions:

1. The dominant contribution comes from the soft 3He→ pd transition defined by small

initial momentum of the proton. As a result, this transition can be calculated using

non-relativistic wave functions of the 3He and deuteron.

2. The high energy γq scattering can be factorized from the final state quark interchange

rescattering.

3. All quark-interchange rescatterings can be summed into the elastic pd→ pd amplitude.

We proceed with the calculation of the amplitude of Eq.(7) by introducing light-cone

momenta pµ = (p+, p−, p⊥) and also using differentials d4p = 1
2
dp+dp−d

2p⊥. Furthermore,
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we perform integrations over the minus component of the momenta. First, we integrate

by dp′d−, dp3− and dp′3− through their pole values in the propagators of the intermediate

deuteron, nucleon 3 and nucleon 3′. This allows us to introduce the pd component wave

function of the 3He (Eq.(A-4)) as well as pn component deuteron wave function in the

intermediate and final states (Eq.(A-9)) of the reaction.

In the next step the dk1− and dk2− integrations are performed. The dk1− integration

allows to introduce the quark wave functions for nucleon 1 and 1f , while the dk2− integration

does the same for nucleons 2 and 2f . The light-front quark wave function of the nucleon is

defined according to Eq.(A-18).

After the “minus” component integrations and introduction of nuclear and nucleon wave

functions, Eq.(7) reduces to:

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ
′
2,λ
′
3)(λd)

(λ1,λ2,λ3)
(η1,η′2)(η1f ,η2f )

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd

{
Ψ
†λ2f ;η2f
n2f (xs2, p2f⊥, k2⊥)

1− xs2
×

ūq(p2f − k2, η2f )[−igTαc γν ]
[ i(/p1 + /q − /k1 +mq)

(p1 − k1 + q)2 −m2
q + iε

]
[−ieεµγµ]uq(p1 − k1, η1)×

Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )[−igT βc γµ]uq(p

′
2 − k2, η′2)×

Ψ
λ′2;η

′
2

n2′ (x′2, p
′
2⊥, k2⊥)

1− x′2

}
2

Gµν(r)
Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
Ψ†λd:λ2,λ3
d

(α3, p3⊥, pd⊥)

1− α3

×

Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3)

β1

dβd
βd

d2pd⊥
2(2π)3

dβ3
β3

d2p3⊥
2(2π)3

dα′3
α′3

d2p′3⊥
2(2π)3

dx1
x1

d2k1⊥
2(2π)3

dx′2
x′2

d2k2⊥
2(2π)3

, (8)

where βi = pi+
pA+

, with βd, β1, β2 and β3 represent the fractions of the initial light-cone mo-

mentum of the 3He nucleus carried by the deuteron and nucleons 1,2 and 3 respectively.

Similarly, αi = pi+
pd+

, with α3 and α2 representing the momentum fractions of the interme-

diate deuteron carried by the nucleons 3 and 2. The quantity γd =
pdf+
pd+

is the momentum

fraction of the intermediate deuteron carried by the final deuteron. The quantities x1 and

x2 represent the momentum fractions of the initial nucleons 1 and 2 carried by the spectator

quark system in the corresponding nucleon. The xs1(s2) are the same for the final nucleon

1(2). The quantities pn⊥, p′n⊥ and pnf⊥ with n = 1, 2, 3, d represent the transverse momenta

of nucleons and the deuteron in the initial, intermediate and final states of the scattering.
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The quantities k1⊥ and k2⊥ represent the transverse momenta of the spectator quark system

in the nucleon 1 and 2 respectively. The scattering process in Eq.(8) can be described in

the following blocks:

• In the initial state, the 3He wave function describes the transition of the 3He nucleus

with helicity λ3He to the three nucleon intermediate state with helicities λ1, λ2 and λ3.

The nucleons “2” and “3” combine to form an intermediate deuteron, which is de-

scribed by the deuteron wave function.

• The terms in {...}1 describe the knocking out of a quark with helicity η1 from the

proton “1” by the photon, with helicity h. The struck quark then interchanges with a

quark from one of the nucleons in the intermediate deuteron state recombining into the

nucleon with helicity λ2f . This nucleon then combines with the nucleon with helicity

λ3 and produces the final λdf helicity deuteron.

• The terms in {...}2 describe the emerging of a quark with helicity η′2 from the λ′2 helicity

nucleon, which then interacts with the knocked out quark by exchanging gluon and

producing a quark with helicity η1f . This quark then combines with the spectator

quarks and produces a final nucleon with helicity λ1f .

To proceed with the calculation of the amplitude in Eq.(8), we first identify the pole in the

denominator of the propagator of the knock-out quark, as follows

(p1 − k1 + q)2 −m2
q + iε = s′3He(1− x1)(β1 − βs + iε),

where βs = − 1

s′3He

(
m2
N + p21⊥ −

m2
s + k21⊥
x1

−
m2
q + (p1⊥ − k1⊥)2

1− x1

)
. (9)

From this point onwards, our discussion is based on the fact that the 3He wave function

strongly peaks at β1 = βs = 1
3
. This corresponds to the kinematic situation in which

the nucleon in 3He have small momentum and as a result they share equal amount of

momentum fractions of the nucleus. In the following calculations we will estimate the

integral in Eq.(8) at the pole value of the propagator (9). This justifies the use of the sum

rule
∑
λ

u(p, λ)ū(p, λ) = /p+m for the numerator of struck quark propagator, resulting in:

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ
′
2,λ
′
3)(λd)

(λ1,λ2,λ3)
(η1,ηq1)(η1f ,η2f )(η

′
2)

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd
×

11



{
Ψ
†λ2f ;η2f
n2f (xs2, p2f⊥, k2⊥)

1− xs2
ūq(p2f − k2, η2f )[−igTαc γν ]

[uq(p1 + q − k1, ηq1)ūq(p1 + q − k1, ηq1)
s′(1− x1)(β1 − βs + iε)

]
×

[−ieεµγµ]uq(p1 − k1, η1)
Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )×

[−igT βc γµ]uq(p
′
2 − k2, η′2)

Ψ
λ′2;η

′
2

n2′ (x′2, p
′
2⊥, k2⊥)

1− x′2

}
2

Gµν(r)
Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
×

Ψ†λd:λ2,λ3
d

(α3, p3⊥ , pd⊥)

1− α3

Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3)

β1

dβd
βd

d2pd⊥
2(2π)3

dβ3
β3

d2p3⊥
2(2π)3

×

dα′3
α′3

d2p′3⊥
2(2π)3

dx1
x1

d2k1⊥
2(2π)3

dx′2
x′2

d2k2⊥
2(2π)3

. (10)

In Eq.(10), using the relations β1 + βd = 1 and dβd = dβ1, we perform integration by dβ1

estimating it at the pole, β1 = βs. For this we express:

1

β1 − βs + iε
= −iπδ(β1 − βs) + P.V.

∫
dβ1

β1 − βs
, (11)

and neglect the P.V. part since its contribution is defined by the nuclear wave function at

internal momenta of ∼
√
s and is strongly suppressed (see. e.g Refs.[8,9]). Restricting by

the first term of Eq.(11) allows us to use the on-shell approximation to calculate the matrix

element of the photon-quark interaction. Using the relation, (p1 − k1)+ � k⊥,mq for the

matrix element one obtains (for details see Appendix A):

ūq(p1 − k1 + q, ηq1)[ieε
⊥γ⊥]uq(p1 − k1, η1) = ieQi2

√
2E1E2(−h)δηq1hδη1h, (12)

where E1 =

√
s′3He

2
β1(1− x1) and E2 =

√
s′3He

2
(1− β1(1− x1)) are the energies of the struck

quark before and after the interaction with the photon. The factor Qi is the charge of the

struck quark in e units. The above result indicates that incoming h – helicity photon selects

the quark with the same helicity (h = η1) conserving it during the interaction (h = ηq1).

The above integration sets β1 = βs and βd = 1 − βs. To proceed, using the fact that the

3He wave function peaks at βs = 1
3
, we apply the “peaking” approximation in which the

integrand of Eq.(10) is estimated at β1 = βs = 1
3

and βd = 2
3
. Moreover, as it follows from

Eq.(9) the βs = 1/3 condition restricts x1 ∼ m2
s

s
. The latter condition allows us simplify

further the matrix element in Eq.(12) approximating E1 ≈
√
s′

6
and E2 ≈

√
s′

3
. This results

in:

Mλdf ,λ1f ;λ3He,h =
3

4
(−h)

1√
s′3He

∑
i

eQi

∑
(λ2f )(λ

′
2,λ
′
3)(λd)

(λ1,λ2,λ3)
(η1f ,η2f )(η

′
2)

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd

12



{
Ψ
†λ2f ;η2f
n2f (xs2, p2f⊥, k2⊥)

1− xs2
ūq(p2f − k2, η2f )[−igTαc γν ]

[
uq(p1 + q − k1, h)

]
×

Ψλ1;h
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )[−igT βc γµ]×

uq(p
′
2 − k2, η′2)

Ψ
λ′2;η

′
2

n2′ (x′2, p
′
2⊥, k2⊥)

1− x′2

}
2

Gµν(r)
Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
Ψ†λd:λ2,λ3
d

(α3, p3⊥ , pd⊥)

1− α3

×

Ψ
λ3He

3He
(β1 = 1/3, λ1, p1⊥ , β2, p2⊥λ2, λ3)

d2pd⊥
(2π)2

dβ3
β3

d2p3⊥
2(2π)3

dα′3
α′3

d2p′3⊥
2(2π)3

dx1
x1

d2k1⊥
2(2π)3

dx′2
x′2

d2k2⊥
2(2π)3

.

(13)

The above expression corresponds to the amplitude of Fig.2. To be able to calculate the

total amplitude of γ3He → pd scattering, one needs to sum the multitude of similar di-

agrams representing all possible combinations of photon coupling to quarks in one of the

protons followed by quark interchanges or possible multi-gluon exchanges between outgoing

nucleons producing final pd system with large relative momentum. The latter rescattering

is inherently nonperturbative. The same is true for the quark wave function of the nucleon

which is largely unknown. The main idea of HRM is that, instead of calculating all the

amplitudes explicitly we notice that the hard kernel in Eq.(13), {· · · }1{· · · }2, together with

the gluon propagator is similar to that of the hard pd → pd scattering. To illustrate this,

in Appendix B we calculated the amplitude of hard pd → pd scattering corresponding to

the diagram of Fig.B.1. Using the notations similar to ones used in Fig.2 and the derivation

analogous to the above derivation in which light-front wave functions of the deuteron and

nucleons are introduced, one arrives at Eq.(B-5).

Eq.(B-5) is derived in the pd center of mass reference frame, in which the final momenta

p1f and pdf are chosen to be the same as in reaction (2). Thus the pd → pd amplitude is

defined at the same s = (p1f + pdf )
2 as in Eq.(3) but at the different invariant momentum

transfer defined as: tpd = (pdf − pd)2.

To be able to substitute Eq.(B-5) into Eq.(13), we notice that within the peaking ap-

proximation the momentum transfer tN entering in the rescattering part of the amplitude

in Eq.(13) is approximately equal to tpd:

tN ≈ tpd = (pdf − pd)2, (14)

where pd is the deuteron four-momentum in the intermediate state of the reaction (Fig.2).
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Furthermore, due to q+ = 0, the spinor uq(p1−k1 +q, h) in Eq.(13) is defined at the same

momentum fraction 1− x1 and transverse momentum as the spinor uq(p1− k1) in Eq.(B-5).

The final step that allows us to replace the quark-interchange part of the Eq.(13) by the

pd → pd amplitude is the observation that due to the condition of β1 = βs ≈ 1
3
, it follows

from Eq.(9) that the momentum fraction of the struck quark 1 − x1 ∼ 1 − m2
s

s′3He

∼ 1. This

justifies the additional assumption according to which the helicity of the struck quark is the

same as the nucleon’s from which it originates, i.e. η1 = λ1. With this assumption one can

sum over η1 in Eq.(B-5), which allows us now to substitute it into Eq.(13) yielding:

Mλdf ,λ1f ;λ3He,h =
3

4

1√
s′3He

∑
i

eQi(h)
∑
λd

λ2,λ3

∫
Mλdf ,λ1f ;λd,h

pd (s, tN)
Ψ†λd:λ2,λ3
d

(α3, p3⊥ , βd, pd⊥)

1− α3

×

Ψλ3He:h,λ2,λ3
3He

(β1 = 1/3, p
1⊥ , β2, p2⊥)

d2pd⊥
(2π)2

dβ3
β3

d2p3⊥
2(2π)3

. (15)

We can further simplify this equation using the fact that the momentum transfer in the

pd → pd scattering amplitude significantly exceeds the momenta of bound nucleons in the

nucleus. As a result one can factorize the pd → pd amplitude from the integral in Eq.(15)

at tpd approximated as

tpd ≈ (pdf −md)
2 = (p1f − (mN + q))2, (16)

resulting in:

Mλdf ,λ1f ;λ3He,h =
3

4

1√
s′3He

∑
i

∑
λd

eQi(h)Mλdf ,λ1f ;λd,h

pd (s, tpd)

×
∫

Ψ
λ3He:λ1,λd
3He/d (β1 = 1/3, p1⊥)

d2p1⊥
(2π)2

, (17)

where we introduced the light-front nuclear transition wave function as:

Ψ
λ3He:λ1,λd
3He/d (β1, p1⊥) =

∑
λ2,λ3

∫
Ψ†λd:λ2,λ3
d

(α3, p3⊥, βd, pd⊥)

2(1− α3)
Ψλ3He:λ1,λ2,λ3

3He
(β1, p1⊥, β2, p2⊥)

×dβ3
β3

d2p3⊥
2(2π)3

. (18)

The above function defines the probability amplitude of the 3He nucleus transitioning to a

proton and deuteron with respective momenta p1 and pd and helicities λ1 and λd.

In Eq.(17) one sums over all the valence quarks in the bound proton that interact with

incoming photon. To calculate such a sum one needs an underlying model for hard nucleon
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interaction based on the explicit quark degrees of freedom. Such a model will allow us to

simplify further the amplitude of Eq.(17) representing it through the product of an effective

charge Qeff that incoming photon probes in the reaction and the hard pd → pd amplitude

in the form:

Mλdf ,λ1f ;λ3He,h =
3

4

eQeff (h)√
s′3He

∑
λd

Mλdf ,λ1f ;λd,h

pd (s, tpd)

∫
Ψ
λ3He:λ1,λd
3He/d (β1 = 1/3, p1⊥)

d2p1⊥
(2π)2

.

(19)

IV. THE DIFFERENTIAL CROSS SECTION

The differential cross section of reaction (2) can be presented in the standard form:

dσ

dt
=

1

16π

1

s′23He

|M|2, (20)

where for the case of unpolarized scattering:

|M|2 =
1

2

1

2

∑
λ3He,h

∑
λdf ,λ1f

∣∣Mλdf ,λ1f ;λ3He,h
∣∣2 . (21)

Here squared amplitude is summed by the final helicities and averaged by the helicities of

3He and incoming photon. The factorization approximation of Eq.(19) allows to express

Eq.(21) through the convolution of the averaged square of pd→ pd amplitude, Mpd, in the

form:

|M|2 =
9

16

e2Q2
eff

s′3He

1

2
|Mpd|2S3He/d(β1 = 1/3), (22)

where

|Mpd|2 =
1

3

1

2

∑
λdf ,λ1f ;λd,λ1

∣∣∣Mλdf ,λ1f ;λd,λ1
pd (s, tpd)

∣∣∣2 , (23)

and the nuclear light-front transition spectral function is defined as:

S3He/d(β1) =
1

2

∑
λ3He;λ1,λd

∣∣∣∣∫ Ψ
λ3He:λ1,λd
3He/d (β1, p1⊥)

d2p1⊥
(2π)2

∣∣∣∣2 . (24)

Substituting Eq.(22) into (20), one can express the differential cross section through the

differential cross section of elastic pd→ pd scattering in the form:

dσ

dt
=

9

32

e2Q2
eff

s′3He

( s′N
s′3He

)dσpd
dt

(s, tpd)S3He/d(β1 = 1/3), (25)

where s′N = s−m2
N .
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A. Numerical estimates of the cross section

1. Calculation of the light-front transition spectral function

For calculation of the light-front transition spectral function of Eq.(24) we observe that

within the applied peaking approximation which maximizes the nuclear wave function’s

contribution to the scattering amplitude, β1 = 1
3

and βd ≈ 2
3
. These values of light-cone

momentum fractions correspond to a small internal momenta of the nucleons in the nucleus.

Additionally since the deuteron wave function strongly peaks at small relative momenta

between two spectator (“2” and “3” in Fig.2) nucleons, the integral in Eq.(18) is dominated

at β3 ≈ 1
3

and α3 ≈ 1
2
. This justifies the application of non-relativistic approximation in the

calculation of the transition spectral function of Eq.(24).

In non-relativistic limit, using the boost invariance of the momentum fractions βi (i =

1, 2, 3) one relates them to the three-momenta of the constituent nucleons in the lab frame

of the nucleus as follows:

βi =
pi+
p3He+

≈ 1

3
+

plabi,z
3mN

. (26)

Using above relations one approximates dβ3
β3
≈ dplab3z

mN
and α3 ≈ 1

2
+ p2,z

2mN
in Eq.(18). Intro-

ducing also the relative three-momentum in the 2, 3 nucleon system as:

~prel =
1

2
(~p lab

3 − ~p lab
2 ), (27)

and using the relation between light-front and non-relativisitc nuclear wave functions in the

small momentum limit (see Appendix C):

ΨLC
A (β, p⊥) =

1√
A

(
mN2(2π)3

)A−1
2 ΨNR

A (~p), (28)

one can express the light-cone nuclear transition wave function of Eq.(18) through the non-

relativistic 3He to d transition wave function as follows:

Ψλ3He:λ1,λd
3He/d (β1, p1⊥) =

√
1

6

√
mN2(2π)3 ·Ψλ3He:λ1,λd

3He/d,NR (~p1), (29)

where non-relativistic transition wave function is defined as:

Ψ
λ3He:λ1,λd
3He/d,NR (~p1) =

∑
λ2,λ3

∫
Ψ†λd:λ2,λ3
d,NR

(prel)Ψ
λ3He:λ1,λ2,λ3

3He,NR
(p1, prel)d

3prel. (30)
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Using Eq.(29), we express the light-front spectral function through the non-relativistic coun-

terpart in the form:

S3He/d(β1) =
mN2(2π)3

6
Npd S

NR
3He/d(p

lab
1z ), (31)

where β1 and plab1z are related according to Eq.(26) and Npd = 2 is the number of the effective

pd pairs. The non-relativistic spectral function is defined as:

SNR3He/d(p1z) =
1

2

∑
λ3He;λ1,λd

∣∣∣∣∫ Ψ
λ3He:λ1,λd
3He/d,NR (p1z, p1⊥)

d2p1⊥
(2π)2

∣∣∣∣2 , (32)

where both 3He and d wave functions are renormalized to unity. In the above expressions

all the momenta entering in the non-relativisitic wave functions are considered in the Lab

frame of the 3He nucleus.

2. Hard elastic pd→ pd scattering cross section

The hard pd→ pd elastic scattering cross section entering in Eq.(25) is defined at the same

invariant energy s as the reaction (2) but at different (from Eq.(3)) invariant momentum

transfer, tpd defined in Eq.(16). Comparing Eqs.(16) and (3) one can relate the tpd to t in

the following form:

tpd =
1

3
m2
d −

2

9
m2

3He +
2

3
t. (33)

As it follows from the above equation for large momentum transfer, |tpd| < |t|, therefore

for the same s, the pd → pd scattering will take place at smaller angles in the pd center of

mass reference frame. To evaluate this difference we introduce the θ∗cm which represents the

center of mass scattering angle for pd→ pd reaction in the form:

tpd = (pdf − pdi)2 = 2(m2
d − E2

d,cm)(1− cos θ∗cm), (34)

where Ed,cm =
s+m2

d−m
2
N

2
√
s

. Then comparing this equation with Eq.(5) in the asymptotic limit

of high energies, one finds that for θcm = 90o in reaction (2), the asymptotic limit of the

effective center of mass scattering angle of pd→ pd scattering, θ∗cm = 70.53o. The dependence

of θ∗cm at finite energies of incoming photon is shown in Fig.3. The figure indicates that for

realistic comparison of HRM prediction with the data, one needs the pd→ pd cross section

for the range of center of mass scattering angles.
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FIG. 3: Effective center of mass angle vs the incident photon energy.

To achieve this, we parametrized the existing experimental data on elastic pd → pd

scattering [34–38] which covers the invariant energy range of (s ∼ 9.5 GeV2 - 17.3 GeV2).

The following parametric form is used to fit the pd→ pd cross section data:

dσpd
dt

(s, cos θ∗cm) =
1

(s/10)16
A(s)eB(cos θ∗cm)

(1− cos2 θ∗cm)3
, (35)

where A(s) = Ce(a1s+a2s
2), and B(x) = bx + cx2, with the fit parameters given in Table I.

The samples of fits obtained for the elastic pd→ pd hard scattering are presented in Fig.4.

C (µb GeV30) a1 (GeV−2) a2 (GeV−4) b c

(9.72 ± 1.33)E+04 -0.98 ± 0.05 0.04 ± 0.001 3.45 ± 0.02 -0.83 ± 0.05

TABLE I: Fit Parameters.

The errors quoted in the table for the fitting parameters result in a overall error in the

pd → pd cross section on the level of 22-37%. Note that the form of the ansatz used in

Eq.(35) is in agreement with the energy and angular dependence following from the quark

interchange mechanism of the pd elastic scattering. As a result the ansatz is strictly valid

for large center of mass angles |cos(θ∗cm)| ≤ 0.6. However we extended the fitting procedure

beyond this angular range by introducing an additional function eB(cos θ∗cm).
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FIG. 4: Fits of elastic pd→ pd scattering cross section. The data in (a) are from [37] and

in (b),(c) and (d) are from [38]. The curves are the fits to the data obtained using Eq.(35)

with fit parameters from Table (I).
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3. Estimation of the effective charge Qeff .

To calculate the effective quark charge associated with the hard rescattering amplitude,

we notice that from Eq.(15) it follows that Qeff should satisfy the following relation:∑
i∈p

Qi〈d′p′ |Mpd,i | dp〉 = Qeff〈d′p′|Mpd | dp〉, (36)

where by i we sum by the quarks in the proton that was struck by incoming photon. To

use the above equation one needs a specific model for pd elastic scattering which explicitly

uses underlying quark degrees of the freedom in pd scattering. For such a model we use the

quark-interchange mechanism (QIM). The consideration of a quark-interchange mechanism

is justified if one works in the regime in which the pd elastic scattering exhibits scaling in

agreement with quark counting rule i.e. s−16.

Similar to Refs.[19, 23, 24] within QIM the Qeff can be estimated using the relation:

Qeff =
Nuu(Qu) +Ndd(Qd) +Nud(Qu +Qd)

Nuu +Ndd +Nud

, (37)

where Qi is the charge of the u and d valence quarks in the proton p and Nii represents the

number of quark interchanges for u and d flavors necessary to produce a given helicity pd

amplitude. Note that for the particular case of elastic pd scattering Nud = 0 and one obtains

Qeff = 1
3
.

4. Final Expression for the Differential Cross Section

Substituting Eq.(31) into Eq.(25) and taking into accounts the above estimation of Qeff

we arrive at the final expression for the differential cross section which will be used for the

numerical estimates:

dσ

dt
(s, t) =

2π4α

3s′3He

( s′N
s′3He

)dσpd
dt

(s, tpd) ·mNS
NR
3He/d(p1z = 0), (38)

where α = e2

4π
is the fine structure constant. For the evaluation of the transition spectral

function SNR3He/d, we use the realistic 3He [39] and deuteron [40] wave functions based on the

V18 potential[40] of NN interaction. This yields[41] SNR3He/d(p1z = 0) = 4.1 × 10−4 GeV.

For the differential cross section of the large center of mass elastic pd → pd scattering,
dσpd
dt

(s, tpd), we use Eq.(35) which covers the invariant energy range of up to s = 17.3 GeV2,
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corresponding to Eγ = 1.67 GeV for the reaction (2). In Fig.5 we present the comparison

of our calculation of the energy dependence of the s17 scaled differential cross section at

θcm = 900 with the data of Ref.[18]. The shaded area represents the error due to the above

discussed fitting of the elastic pd→ pd cross sections.
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FIG. 5: Energy dependence of the differential cross section at θcm = 900 scaled by a s17

factor. The solid curve is the calculation according to Eq.(38). The experimental data are

from Refs.[18, 30, 31]. See also discussion in Ref.[18] on disagreement between DAPHNE

and JLAB/CLAS data.

As the comparison shows, Eq.(38) describes surprisingly well the Jefferson Lab data

considering the fact that the cross section between Eγ = 0.4 GeV and Eγ = 1.3 GeV drops

by a factor of ∼ 4000. It is interesting that the HRM model describes data reasonably well

even for the range of Eγ < 1 GeV for which the general conditions for the onset of QCD

degrees of freedom is not satisfied (see discussion in Sec.II). This situation is specific to the

HRM model in which there is another scale tpd, the invariant momentum transfer in the

hard rescattering amplitude. The −tpd > 1 GeV2 condition is necessary for the factorization

of the hard scattering kernels from the soft nuclear parts. As it follows from Eq.(33) such a

threshold for tpd is reached already for incoming photon energies of 0.7 GeV. What concerns

to the photon energies below 0.7 GeV, then the qualitative agreement of the HRM model
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with the data is an indication of the smooth transition from the hard to the soft regime of

the interaction.

The HRM model allows also to calculate the angular distribution of the differential cross

section for fixed values of s. In Fig.6 we present predictions for angular distribution of the

energy scaled differential cross section at largest photon energies for which there are available

data[32].
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The interesting feature of the HRM prediction is that due to the fact that the magnitude

of invariant momentum transfer of the reaction (2), t, is larger than that of the pd → pd

scattering, tpd (Eq.(33)), the effective center of mass angle in the latter case, θ∗cm < θcm

(see Fig.3) as a result HRM predicts angular distributions monotonically decreasing with an

increase of θcm for up to θcm ≈ 1200.

Finally in Fig.7 we present the calculation of s17 scaled differential cross section as a

function of incoming photon energy for different fixed and large center of mass angles, θcm.

Note that in both Fig.6 and Fig.7 the accuracy of the theoretical predictions is similar to

that of the energy dependence at θcm = 900 presented in Fig.5.

The possibility to compare these calculations with the experimental data will allow us to
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ascertain the range of validity of the HRM mechanism. These comparisons will allow us to

identify the minimal momentum transfer in these nuclear reactions for which one observes

the onset of QCD degrees of freedom.

V. SUMMARY AND OUTLOOK

We extended the consideration of hard rescattering mechanism of two-body break-up

reactions to the high energy photodisintegration of the 3He target to the (p, d) pair at large

center of mass angles. The obtained expression for the cross section does not contain free

parameters and is expressed through the effective charge of the constituent quarks being

struck by incoming photon and interchanged in the final state of the process, the 3He→ pd

transition spectral function and hard elastic pd→ pd scattering differential cross section.

For numerical results we estimated the effective quark charge based on the quark-

interchange model of pd → pd scattering. The transition spectral function is calculated

using realistic wave functions of 3He and the deuteron and the pd→ pd cross section is taken
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from the experiment. The calculated differential cross section of reaction (2) at θcm = 900

is compared with the recent experimental data from Jefferson Lab. The comparison shows

a rather good agreement with the data for the range of photon energies Eγ & 0.7 GeV. We

also give predictions for angular distribution of the cross section, which reflects the special

property of HRM in which the magnitude of the invariant momentum transfer entering in

the reaction (2) exceeds one entering in the hard amplitude of pd → pd scattering. Possi-

bility of comparing the energy dependence of the cross section for different θcm of the pd

break-up will allow to establish the kinematic boundaries in which QCD degrees of freedom

are important for the quantitative description of the hard pd break-up reactions.
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Appendix A

A.1. Nuclear and Nucleonic wave functions

In this Appendix, the details on derivation of the wave functions of the 3He nucleus and

deuteron are discussed. We begin with considering the part A : in Eq.(7) related to the

3He→ d nuclear transition:

A1 =

∫
(−i)

χ∗
λd

d Γ†
DNN

p2d −m2
d

+ iε

i(/p3 +m)

p23 −m2
N + iε

i(/p2 +m)

p22 −m2
N + iε

i(/p1 +m)

p21 −m2
N + iε

×

iΓ3He
χλ3He

3He

1

2

dp2+dp2−d
2p

2⊥

(2π)4
1

2

dp3+dp3−d
2p

3⊥

(2π)4
, (A-1)

where the d4p differentials are expressed in terms of the light cone momenta. The denomi-

nators of the propagators in this expression can be expanded as follows:

p2 −m2
N + iε = p+

(
p− −

m2
N + p2

⊥

p+
+ iε′

)
, (A-2)

in which using the relations p1− = p3He− − pd− and pd− =
m2
d+p

2
d⊥

pd+
one obtains:

p21 −m2
N + iε =

1

p3He+

(
m2

3He
−
m2

d
+ p2

d⊥

βd
−
m2
N + p2

1⊥

β1

)
, (A-3)
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where β1 =
p1+
p3He+

, βd =
p
d+

p3He+

and β1 + βd = 1. Using the sum rule relation, (/p + m) =∑
λ u(p, λ)ū(p, λ), one introduces the light-front wave function of 3He (see e.g.[42–44]) as

follows:

Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3) =

ū(p3, λ3)ū(p2, λ2)ū(p1, λ1)(
m2

3He
− m2

d
+p2d⊥
βd

− m2
N+p21⊥
β1

)Γ3He
χλ3He

3He
. (A-4)

This wave function gives the probability amplitude of finding the 3He nucleus with helicity

λ3He consisting of nucleons with momenta pi and helicities λi, i = 1, 2, 3. Using the above

definition of the 3He wave function and Eq.(A-3) in Eq.(A-1) one obtains:

A1 = −i
∑

λd,λ3,λ2,λ1

∫
χ∗

λd

d Γ†
DNN

p2d −m2
d

+ iε
u(p3, λ3)u(p2, λ2)u(p1, λ1)

1

p2+

(
p2− −

m2
N+p2

2⊥
p2+

)
Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3)

β1

1

2

dp2−dp2+d
2p

2⊥

(2π)4
1

2

dβ3
β3

d2p
3⊥

(2π)3
, (A-5)

where β3 = p3+
p3He+

and the integral over p3− is performed at its pole value:∫
dp−

p− −
m2
N+p2⊥
p+

+ iε
= −2πi|

p−=
m2
N

+p2⊥
p+

. (A-6)

Since p2 + p3 = pd, the differentials with respect to p2 can be written as:

dp2−dp2+dp2⊥

(2π)4
=
dp

d−dpd+dpd⊥
(2π)4

. (A-7)

Also, the quantity p2+

(
p2− −

m2
N+p2

2⊥
p2+

)
in Eq.(A-5) can be represented as:

p2+

(
p2− −

p2
2⊥

+m2
N

p2+

)
= (1− α3)

(
m2

d
+ p2

d⊥
−
m2
N + p2

3⊥

α3

−
m2
N + p2

2⊥

1− α3

)
, (A-8)

where we define α3 =
p3+
p
d+
≡ β3

βd
and 1−α3 ≡ α2 =

p2+
p
d+

= β2
βd

with βd = pd+
p3He+

and β2 = p2+
p3He+

.

The quantities α3 and α2 represent the fractions of the momentum of the intermediate

deuteron carried by the nucleons 3 and 2 respectively. Note that α3 + α2 = 1.

Similar to Eq.(A-4), we introduce light-front wave function of the deuteron[42–44]:

Ψλd
d

(α3, p3⊥ , pd⊥) =
ū(p2, λ2)ū(p3, λ3)(

m2
d

+ p2
d⊥
− m2

N+p2
3⊥

α3
− m2

N+p2
2⊥

1−α3

)Γ
DNN

χ
λd

d
, (A-9)

which describes the probability amplitude of finding in the λd helicity deuteron two nucleons

with momenta pi and helicities λi, i = 1, 2. Using Eqs.(A-8) and (A-9) for Eq.(A-5) we
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obtain:

A1 = −i
∑

λd,λ3,λ2,λ1

∫
Ψ†λd:λ2,λ3
d

(α3, p3⊥ , pd⊥)

1− α3

u(p1, λ1)
Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3)

β1
×

1

2

dβ
d
d2p

d⊥

βd(2π)3
1

2

dβ3
β3

d2p
3⊥

(2π)3
, (A-10)

where the p2− integration is performed similar to that of p3− according to Eq.(A-6).

Next, we consider the second part of the expression “A” in Eq.(7) related to the transition

of the deuteron from intermediate to the final state:

A2 = −
∫
χ∗λdd (Γ†

DNN
)
i(/p2f +m)

p22f −m2
N + iε

i(/p′3 +m)

p′23 −m2
N + iε

i(/p′2 +m)

p′22 −m2
N + iε

iΓ
DNN

χλdd
d4p′3
(2π)4

= −
∑
λ2f
λ′2,λ

′
3

∫
χ∗λdd Γ†

DNN

u(p2f , λ2f )ū(p2f , λ2f )

p22f −m2
N + iε

u(p′2, λ
′
2)ū(p′2, λ

′
2)

p′
2+

(
p′
2− −

m2
N+p′22⊥
p′
2+

+ iε
) ×

u(p′3, λ
′
3)ū(p′3, λ

′
3)iΓDNN

χλdd
1

2

dp′
3+

p′
3+

d2p′
3⊥

(2π)3
, (A-11)

(A-12)

where the dp′3− is integrated according to Eq.(A-6). To estimate the denominator, p22f −

m2
N + iε we use the relation p2f = pdf − p′3 which allows us to express:

p22f −m2
N + iε =

p
2f+

p
df+

(
m2
d + p2

df⊥
−
m2
N + p′2

3⊥

p′
3+
/p

df+

−
m2
N + p2

2f⊥

p
2f+
/p

df+

+ iε
)
. (A-13)

Defining
p′
3+

p
df+

=
p′
3+
/p
d+

p
df+

/p
d+

=
α′3
γd

and
p
2f+

p
df+

= 1−
p′
3+

p
df+

= 1− α′3
γd

, the above equation reduces to:

p22f −m2
N + iε = (1− α′3

γd
)
(
m2
d + p2

df⊥
−
m2
N + p′2

3⊥

α′3/γd
−
m2
N + p2

2f⊥

1− α′3/γd
+ iε

)
, (A-14)

where the quantity γd =
p
df+

p
d+

is the fraction of the momentum of the intermediate deuteron

carried by the final deuteron. Using Eqs.(A-9) and (A-14), we rewrite Eq.(A-11) as follows:

A2 =
∑
λdf ,λ2f
λ′2,λ

′
3

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd
ū(p2f , λ2f )u(p′2, λ

′
2)×

Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
1

2

dα′3
α′3

d2p′3⊥
(2π)3

. (A-15)
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Now we consider the “N1” part of the amplitude in Eq.(7) which describes the transition

of nucleon with momentum p1 to the final nucleon with the momentum p1f . Using on-shell

sum-rule relations for the numerators of the quark propagators for the N1 part one has:

N1 =
∑
λ1

η1f ,η1

∫
ū(p1f , λ1f )(−i)Γ†n1f

uq(p1f − k1, η1f )ūq(p1f − k1, η1f )
(p1f − k1)2 −m2

q + iε

[
− igT βc γµ

]
×

Ψs(k1)Ψ̄s(k1)

k21 −m2
s + iε

uq(p1 − k1, η1)ūq(p1 − k1, η1)
(p1 − k1)2 −m2

q + iε
iΓn1u(p1, λ1)

1

2

dk1+dk1−d
2k1⊥

(2π)4
, (A-16)

where we sum over the initial helicity (η1) of the quark before being struck by the incoming

photon and the final helicity (η1f ) of the quark that recombines to form the final state

proton. In Eq.(A-16), we can expand the denominators of the propagators as follows:

(p1f − k1)2 −m2
q + iε = (1− xs1)

(
m2
N + p21f⊥ −

m2
s + k21⊥
xs1

−
m2
q + (p1f − k1)2⊥

1− xs1
+ iε

)
(p1 − k1)2 −m2

q + iε = (1− x1)
(
m2
N + p21⊥ −

m2
s + k21⊥
x1

−
m2
q + (p1 − k1)2⊥

1− x1
+ iε

)
,

(A-17)

where xs1 = k1+
p1f+

and x1 = k1+
p1+

along with k1− =
m2
s+k

2
1⊥

k1+
and p1f− =

m2
N+p21f⊥
p1f+

. Here

x1(xs1) is interpreted as the momentum fraction of the initial (final) nucleon “1” carried by

the spectator quark system. Performing the dk1− integration at the k1− pole value of the

spectator system allows us to introduce a single quark wave function of the nucleon in the

following form:

Ψλ;η
n (X, k⊥, p⊥) =

ūq(p− k, η)Ψ̄s(k)

m2
N + p2⊥ −

m2
s+k

2
⊥

X
− m2

q+(p−k)2⊥
1−X

Γnu(p, λ). (A-18)

which describes the probability amplitude of finding a quark with helicity η and momentum

fraction 1 − x in the λ helicity nucleon with momentum p. With this definition of quark

wave function of the nucleon one obtains for the N1 part:

N1 = i
∑
λ1

η1f ,η1

∫
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )uq(p1 − k1, η1)×

[
− igT βc γµ

]Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1
1

2

dx1
x1

d2k1⊥
(2π)3

. (A-19)

Performing very similar calculations for the N2 part of Eq.(7), one obtains:

N2 = −
∑
λ2f ,λ

′
2

η2f ,η
′
2

∫
Ψ
†λ2f ;η2f
n2f (xs2, k2⊥, p2f⊥)

1− xs2
ūq(p2f − k2, η2f )uq(p′2 − k2, η′2)×
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Ψ
λ′2;η

′
2

n2′ (x′2, k2⊥, p
′
2⊥)

1− x′2
1

2

dx′2
x′2

d2k2⊥
(2π)3

, (A-20)

where xs2 = k2+
p2f+

and x′2 = k2+
p′2+

.

Substituting now Eqs.(A-10), (A-15), (A-19) and (A-20) into Eq.(7) one obtains:

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ
′
2,λ
′
3)(λd)

(λ1,λ2,λ3)
(η1f ,η2f )(η1,η

′
2)

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd

{
Ψ
†λ2f ;η2f
n2f (xs2, k2⊥, p2f⊥)

1− xs2
×

ūq(p2f − k2, η2f )[−igTαc γν ]
[ i(/p1 + /q − /p1 +mq)

(p1 − k1 + q)2 −m2
q + iε

]
[−ieεµγµ]uq(p1 − k1, η1)×

Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )[−igT βc γµ]uq(p

′
2 − k2, η′2)×

Ψ
λ′2;η

′
2

n2′ (x′2, k2⊥, p
′
2⊥)

1− x′2

}
2

Gµν(r)
Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
Ψ†λd:λ2,λ3
d

(α3, p3⊥ , pd⊥)

(1− α3)
×

Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3)

β1

dβd
βd

d2pd⊥
2(2π)3

dβ3
β3

d2p3⊥
2(2π)3

dα′3
α′3

d2p′3⊥
2(2π)3

dx1
x1

d2k1⊥
2(2π)3

dx′2
x′2

d2k2⊥
2(2π)3

. (A-21)

A.2. Hard Scattering Kernel

In Eq.(A-21), the expression in {}1{}2Gµν(r) describes the hard photon-quark interaction

followed by a quark interchange through the gluon exchange.

a. Propagator of Struck Quark

We analyze first the propagator of the struck quark,
i(/p1+/q− /k1+mq)

(p1−k1+q)2−m2
q+iε

.

Using the definition of the reference frame from Eq.(6) and momentum fraction defini-

tions: β1 = p1+
p3He+

= p1+√
s′3He

and x1 = k1+
p1+

one can isolate the pole term in the denominator of

the struck quark propagator as follows:

(p1 − k1 + q)2 −m2
q + iε = (p1+ − p1+x1)(p1− − k1− + q−)− (p1⊥ − k1⊥)2 −m2

q + iε

= s′3He(1− x1)
(m2

N + p21⊥
s′3He

− m2
s + k21⊥
x1s′3He

+ β1 −
m2
q + (p1⊥ − k1⊥)2

s′3He(1− x1)

)
+ iε

= s′3He(1− x1)(β1 − βs + iε), (A-22)

where βs = − 1
s′3He

(m2
N +p21⊥−

m2
s+k

2
1⊥

x1
− m2

q+(p1⊥−k1⊥)2

1−x1 ). Using the sum rule relation (/p+m =∑
λ

u(p, λ)ū(p, λ)) for the numerator of the struck quark propagator together with Eq.(A-22)
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one can rewrite Eq.(A-21) as follows:

Mλdf ,λ1f ;λ3He,h =
∑

(λ2f )(λ
′
2,λ
′
3)(λd)

(λ1,λ2,λ3)
(η1f ,η2f )(η1,η

′
2)(ηq1)

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd
×

{
Ψ
†λ2f ;η2f
n2f (xs2, k2⊥, p2f⊥)

1− xs2
ūq(p2f − k2, η2f )[−igTαc γν ]

[uq(p1 + q − k1, ηq1)ūq(p1 + q − k1, ηq1)
s′3He(1− x1)(β1 − βs + iε)

]
×

[−ieεµγµ]uq(p1 − k1, η1)
Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )×

[−igT βc γµ]uq(p
′
2 − k2, η′2)

Ψ
λ′2;η

′
2

n2′ (x′2, k2⊥, p
′
2⊥)

1− x′2

}
2

Gµν(r)
Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
×

Ψ†λd:λ2,λ3
d

(α3, p3⊥ , pd⊥)

(1− α3)

Ψ
λ3He

3He
(β1, λ1, p1⊥ , β2, p2⊥λ2, λ3)

β1

dβd
βd

d2pd⊥
2(2π)3

dβ3
β3

d2p3⊥
2(2π)3

dα′3
α′3

d2p′3⊥
2(2π)3

×

dx1
x1

d2k1⊥
2(2π)3

dx′2
x′2

d2k2⊥
2(2π)3

. (A-23)

Note that the above used sum rule for the numerator of the struck quark propagator is valid

for on-shell spinors only. Our use of this sum rule is justified based on the fact of using

the peaking approximation in evaluating Eq.(A-23) in which the denominator of the struck

quark is estimated at its pole value.

b. Photon quark interaction

We now consider the term:

ūq(p1 − k1 + q, ηq1)[−ieεµhγ
µ]uq(p1 − k1, η1), (A-24)

where the incoming photon with helicity h is described by polarization vectors: εR/L =

∓
√

1
2
(ε1± iε2) for h = 1/(−1) respectively. Here ε1 ≡ (1, 0, 0) and ε2 ≡ (0, 1, 0). Using these

definitions we express:

−εµhγ
µ = ε⊥γ⊥ = −εRγL + εLγR, (A-25)

where γR/L = γx±iγy√
2

. We also resolve the spinor of the quark with spin α to the ± helicity

states as follows:

u(p, α) = u+(p, α) + u−(p, α) =
1

2
(1 + γ5)u(p, α) +

1

2
(1− γ5)u(p, α). (A-26)

29



Finally, in the reference frame of Eq.(6) the light-cone four-momenta (p+, p−, p⊥) of the

initial and final quarks in Eq.(A-24), in the massless limit, are:

Initial Momentum: p1 − k1 =
(
β1(1− x1)

√
s′3He, 0, 0

)
,

Final Momentum: p1 − k1 + q =
(
β1(1− x1)

√
s′3He,

√
s′3He, 0), (A-27)

where we use the the relations q+ = 0, p1+ = β1p3He+ and k1+ = x1p1+. Because of the finite

β1 ∼ 1
3

and small x1 � 1 entering in the amplitude (see Sec. A.3) one also neglects the “-”

component of the initial quark: (p1 − k1)− ≈
(p1−k1)2⊥+m

2
q

β1(1−x1)
√
s′3He

∼ 0.

Using Eq.(A-27) and above definitions of photon polarization, γ-matrices and quark helic-

ity states one obtains that in the quark massless limit the only nonvanishing matrix elements

of ūγ±u are:

ū−q (p1 − k1 + q,−1

2
)γ+u

−
q (p1 − k1,−

1

2
) = −2

√
2E1E2

ū+q (p1 − k1 + q,
1

2
)γ−u

+
q (p1 − k1,

1

2
) = 2

√
2E1E2, (A-28)

where E1 = β1(1− x1)
√
s′3He

2
and E2 = (1− β1(1− x1))

√
s′3He

2
are the initial and final energy

of the struck quark respectively.

Using the above relations for Eq.(A-24) one obtains:

ūq(p1 − k1 + q, ηq1)[ieε
⊥
h γ
⊥]uq(p1 − k1, η1) = ieQi2

√
2E1E2(−h)δηq1hδη1h, (A-29)

where Qi is the charge of the struck quark in units of e. The above result indicates that

incoming h- helicity photon selects the quark with the same helicity (h = η1) conserving it

during the interaction (h = ηq1).

A.3. Peaking Approximation

We now consider the dβd integration in Eq.(A-23) noticing that, dβd = dβ1 and separating

the pole and principal value parts in the propagator of the struck quark as follows:

1

β1 − βs + iε
= −iπδ(β1 − βs) + P.V.

∫
dβ1

β1 − βs
. (A-30)

Furthermore, we neglect by P.V. part of the propagator since its contribution comes from

the high momentum part of the nuclear wave function, p1 ∼
√
s′3He, which is strongly

30



suppressed[19]. The integration with the pole part of the propagator will fix the value of

β1 = βs and the latter in the massless quark limit and negligible transverse component of

~p1 can be expressed as follows:

βs =
1

s′3He

[m2
s(1− x1) + k21⊥
x1(1− x1)

−m2
N

]
. (A-31)

Now, using the fact that 3He wave function strongly peaks at β1 = 1
3
, one can estimate

the “peaking” value of the amplitude in Eq.(A-23) taking βs = 1
3
. The latter condition

results in x1 →
3(m2

s+k
2
1⊥)

s′3He

∼ 0, since s′3He is very large in comparison with the transverse

momentum k1⊥ of the spectator system. This allows us to approximate (1− x1) ≈ 1. With

these approximations, one finds that:

E1 = β1(1− x1)
√
s′3He

2
=

1

3

√
s′3He

2

E2 =
(

1− β1(1− x1)
)√s′3He

2
=

2

3

√
s′3He

2
. (A-32)

Using Eq.(A-32) in Eq. (A-29) and setting β1 = 1/3 everywhere for Eq.(A-23) one obtains:

Mλdf ,λ1f ;λ3He,h =
3

4
(−h)

1√
s′3He

∑
i

eQi

∑
(λ2f )(λ

′
2,λ
′
3)(λd)

(λ1,λ2,λ3)
(η1f ,η2f )(η

′
2)

∫
Ψ
†λdf :λ′3,λ2f
d (α2f/γd, p2⊥, α

′
3/γd, p

′
3⊥)

1− α′3/γd

{
Ψ
†λ2f ;η2f
n2f (xs2, p2f⊥, k2⊥)

1− xs2
ūq(p2f − k2, η2f )[−igTαc γν ]

[
uq(p1 + q − k1, h)

]
×

Ψλ1;h
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )[−igT βc γµ]uq(p

′
2 − k2, η′2)×

Ψ
λ′2;η

′
2

n2′ (x′2, p
′
2⊥, k2⊥)

1− x′2

}
2

Gµν(r)
Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
Ψ†λd:λ2,λ3
d

(α3, p3⊥ , pd⊥)

1− α3

×

Ψ
λ3He

3He
(β1 = 1/3, λ1, p1⊥ , β2, p2⊥λ2, λ3)

d2pd⊥
(2π)2

dβ3
β3

d2p3⊥
2(2π)3

dα′3
α′3

d2p′3⊥
2(2π)3

×

dx1
x1

d2k1⊥
2(2π)3

dx′2
x′2

d2k2⊥
2(2π)3

. (A-33)

APPENDIX B: High momentum transfer pd → pd scattering

In this section, we study the high momentum transfer elastic proton - deuteron scattering

based on the quark-interchange mechanism. A characteristic diagram of such scattering is
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shown in Fig.B.1. The notations in this figure are chosen to be similar to the pd → pd

rescattering part of the γ3He→ pd amplitude in Eq.(A-33). Here the helicities in the initial

and final states of the proton are h and λ1f and for the deuteron they are λd and λdf . The

momenta defined in Fig.B.1 satisfies the following four-momentum conservation relations:

p1 + pd = p1f + pdf , pd = p′2 + p′3. (B-1)

FIG. B.1: Typical quark-interchange mechanism of hard pd→ pd scattering.

The Feynman amplitude for this pd→ pd scattering can be written as follows:

Mpd =

N1 :

∫
ū(p1f , λ1f )(−i)Γ†n1

i(/p1f − /k1 +mq)

(p1f − k1)2 −m2
q + iε

iS(k1)

k21 −m2
s + iε

[−igT βc γµ]×

i( /p1 − /k1 +mq)

(p1 − k1)2 −m2
q + iε

iΓn1u(p1, λ1)
d4k1
(2π)4

D −N2 :

∫
χ†df (−i)Γ

†
DNN

i(/p2f +m)

p22f −m2
N + iε

ū(p2f , λ2f )(−i)Γ†n2f
i(/p2f − /k2 +mq)

(p2f − k2)2 −m2
q + iε

×

i( /p3
′ +m)

p′23 −m2
N + iε

iS(k2)

k22 −m2
s + iε

[−igTαc γν ]
i( /p2

′ − /k2 +mq)

(p′2 − k2)2 −m2
q + iε

iΓn2′u(p′2, λ
′
2)×

i(/p′2 +m)

p′22 −m2
N + iε

iΓDNNχd
d4k2
(2π)4

d4p′3
(2π)4

g :
idµνδαβ
q2q

. (B-2)

The following derivations are analogous to that of Eq.(7), where we identify the parts asso-

ciated with the deuteron wave function as well as with the quark wave functions of nucleon

and perform integrations corresponding to the on-shell conditions for the spectator nucleon

in the deuteron and spectator quark-gluon states in the nucleons. We first consider the

expression for N1 :, for which performing the similar derivations we did for the N1 term
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in Eq.(7) and using the defnition of the quark wave function of the nucleon according to

Eq.(A-18) one obtains:

N1 :=
∑
λ1

η1,η1f

−i
∫

Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )uq(p1 − k1, η1)

[
− igT βc γµ

]
×

Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1
1

2

dx1
x1

d2k1⊥
(2π)3

. (B-3)

With similar derivations in the D−N2 : part and using, in addition to the quark wave

function of nucleon, the deuteron light-front wave function defined in Eq.(A-9) one obtains:

D −N2 =
∑

λd,λ2f ,λ
′
2,λ
′
3

η′2,η2f

−i
∫

Ψ
†λdf :λ′3,λ2f
df (α′3/γd, pdf⊥, p

′
3⊥)

1− α′3/γd
ūq(p2f − k2, η2f )×

Ψ
†λ2f ;η2f
n2f (xs2, k2⊥, p2f⊥)

1− xs2
[−igTαc γν ]

Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
uq(p

′
2 − k2, η′2)×

Ψ
λ′2;η

′
2

n2′ (x′2, k2⊥, p
′
2⊥)

1− x′2
1

2

dx′2
x′2

d2k2⊥
(2π)3

dα′3
α′3

d2p′3⊥
2(2π)3

. (B-4)

Combining Eqs.(B-3) and (B-4) for the amplitude of pd→ pd scattering one arrives at:

Mλdf ,λ1f ;λd,λ1
pd =

∑
(λ2f )(λ1,λd)(λ

′
2,λ
′
3)

(η1f ,η2f )(η1,η
′
2)

∫
Ψ
†λdf :λ′3,λ2f
df (α′3/γd, pdf⊥, p

′
3⊥)

1− α′3/γd

{
Ψ
†λ2f ;η2f
n2f (xs2, k2⊥, p2f⊥)

1− xs2
×

ūq(p2f − k2, η2f )[−igTαc γν ]uq(p1 − k1, η1)
Ψλ1;η1
n1 (x1, k1⊥, p1⊥)

1− x1

}
1

Gµν(r)×{
Ψ
†λ1f ;η1f
n1f (xs1, k1⊥, p1f⊥)

1− xs1
ūq(p1f − k1, η1f )[−igT βc γµ]uq(p

′
2 − k2, η′2)

Ψ
λ′2;η

′
2

n2′ (x′2, k2⊥, p
′
2⊥)

1− x′2

}
2

×

Ψ
λd:λ

′
2,λ
′
3

d (α′3, pd⊥, p
′
3⊥)

1− α′3
1

2

dx1
x1

d2k1⊥
(2π)3

1

2

dx′2
x′2

d2k2⊥
(2π)3

dα′3
α′3

d2p′3⊥
2(3π)3

. (B-5)

APPENDIX C: Relating the Light-Front and Non-Relativistic Wave Functions

To obtain the relation between light-front and nonrelativistic nuclear wave functions in

the small momentum limit we consider the fact that the light-front nuclear wave function

is normalized based on baryonic number conservation (see e.g. Refs.[45–47]) while non-

relativistic (Schroedinger) wave function normalized as
∫
|ΨA(p)|2d3p = 1.
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FIG. C.1: Hadronic probe to see baryons in a nucleus.

To obtain the normalization condition based on baryonic number conservation, we con-

sider a h + A → h + A scattering in forward direction in which h probes the constituent

baryons in the nucleus A (see Fig.C.1). In the figure we assign pi to be the four-momentum

of the nucleus while p1, p2, · · · , pA are four momenta of constituent nucleons such that

p1 + p2 + · · · + pA = pi. For the diagram of Fig.C.1 applying the Feynman rules one

obtains:

MhA =
∑
N

∫
χ†AΓ†A

/p1 +m

p21 −m2
N + iε

M̂hN
/pA +m

p2A −m2
N + iε

· · · /p2 +m

p22 −m2
N + iε

/p1 +m

p21 −m2
N + iε

ΓAχA ×

d4p2
(2π)4

d4p3
(2π)4

· · · d
4pA

(2π)4
, (C-1)

where we sum over all the possible nucleons that can be probed and M̂hN represents the

effective vertex of the hadron-nucleon interaction. We use the sum rule for the spinors and

also integrate by the minus component of the momenta using the scheme given in Eq.(A-6),

to obtain:

MhA =
∑
N

∑
λ1,λ2,···λA

∫
χ†AΓ†X

u(p1, λ1)ū(p1, λ1)

p1+
(
p1− −

m2
N+p21⊥
p1+

)M̂hNu(pA, λA)ū(pA, λA) · · · ×

u(p3, λ3)ū(p3, λ3)u(p2, λ2)ū(p2, λ2)
u(p1, λ1)ū(p1, λ1)

p1+
(
p1− −

m2
N+p21⊥
p1+

)ΓAχA ×

dp2+
p2+

d2p2⊥
2(2π)3

dp3+
p3+

d2p3⊥
2(2π)3

· · · dpA+
pA+

d2pA⊥
2(2π)3

, (C-2)

where the λj denote the helicities of the nucleon with momentum pj. Considering the

transverse momentum of the nucleus A to be zero we note that:

p1− −
m2
N + p21⊥
p1+

= pi− − p2− − p3− − · · · − pA− −
m2
N + p21⊥
p1+
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=
1

pi+

[
m2
N −

m2
N + p22⊥
β2

− m2
N + p23⊥
β3

− · · · − m2
N + p2A⊥
βA

− m2
N + p21⊥
β1

]
, (C-3)

where βj =
pj+
pi+

are the light-front momentum fractions of the nucleus A carried by the

nucleons j (j = 1, · · ·A). Introducing Feynman amplitude for h + N → hN as MhN =

ū(p1, λ1)M̂hNu(p1, λ1) for Eq.(C-3) one obtains:

MhA =
∑
N

∑
λ1,λ2,···λA

∫
χ†AΓ†A

u(p1, λ1)u(p2, λ2)u(p3, λ3) · · ·u(pA, λA)
p1+
pi+

[
m2
N −

m2
N+p22⊥
β2

− m2
N+p23⊥
β3

− · · · − m2
N+p2A⊥
βA

]MhN ×

ū(p1, λ1)ū(p2, λ2)ū(pA, λA)
p1+
pi+

[
m2
N −

m2
N+p22⊥
β2

− m2
N+p23⊥
β3

− · · · − m2
N+p2A⊥
βA

]ΓAχA

A∏
k=2

dβk
βk

d2pk⊥
2(2π)3

. (C-4)

Using the generalization of Eqs.(A-4) and (A-9) for light-front nuclear wave function of

nucleus A, the above equation reduces to:

MhA =
∑
N

∑
λ1,λ2,...λA

∫
ΨLC†
A (β2, β3, ...βA, p2⊥, p3⊥...pA⊥, λ2, λ3, ...λA)

β1
MhN ×

ΨLC
A (β2, β3, ...βA, p2⊥, p3⊥...pA⊥, λ2, λ3, ...λA)

β1

A∏
k=2

dβk
βk

d2pk⊥
2(2π)3

. (C-5)

We now make use of the Optical Theorem according to which:

Im MhA = shAσhA and Im MhN = shNσhN , (C-6)

where shA = (ph + pi)
2 and σhA is the total cross section of hA scattering. Similarly, shN

and σhN are invariant energy and total cross section for hN scattering. The conservation of

baryon number allows us to relate σhA = AσhN . Using this relation together with Eq.(C-6)

in Eq.(C-5) one obtains:∫ ∣∣ΨLC
A (β2, β3, ...βA, p2⊥, p3⊥...pA⊥, λ2, λ3, ...λA)

∣∣2
β2
1

shN
shA

A∏
k=2

dβk
βk

d2pk⊥
2(2π)3

= 1. (C-7)

To obtain the relation of light-front wave function to the nonrelativistic wave function in

the small momentum limit we note that in such limit βk =
Ek+p

z
k

pi+
≈ 1 +

pzk
mN

thus dβk
βk

=
dpzk
mN

.

Furthermore, in the high energy limit of the hadronic probe in which large momentum of

the hadrons points to −ẑ direction, shA ≈ ph−pA+ and shN ≈ ph−pN+ resulting in:

shN
shA

=
pN+

pA+
=
β1
A
. (C-8)
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Applying all these approximations in Eq.(C-7) one obtains:∫ ∣∣ΨLC
A (β2, β3, ...βA, p2⊥, p3⊥...pA⊥, λ2, λ3, ...λA)

∣∣2
1/A

1

mA−1
N [2(2π)3]A−1

A∏
k=2

d3pk = 1. (C-9)

Next we compare the above expression with the normalization condition for the nonrela-

tivistic Schroedinger wave function:∫ ∣∣ΨNR
A (~p1, ~p2, ...~pA)

∣∣2 A∏
k=2

d3pk = 1, (C-10)

where ~p1 = ~pi − ~p2 − · · · − ~pA. This comparison allows us to relate the light-front nuclear

wave function and the Schroedinger wave function in the following form:

ΨLC
X (β1, β2, ..., p1⊥, p2⊥...) =

1√
A

[
mN2(2π)3

]A−1
2 ΨNR

X (~p1, ~p2, ...). (C-11)
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