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Abstract

The recent measurements of high energy photodisintegration of the *He nucleus to the pd pair
at 90° center of mass demonstrated an energy scaling consistent with the quark counting rule with
unprecedentedly large exponent of s~17. To understand the underlying mechanism of this process
we extended the theoretical formalism of hard rescattering mechanism (HRM) to calculate the ~
3He— pd reaction. In HRM the incoming high energy photon strikes a quark from one of the
nucleons in the target which subsequently undergoes hard rescattering with the quarks from the
other nucleons generating hard two-body system in the final state of the reaction. Within the
HRM we derived the parameter free expression for the differential cross section of the reaction,
which is expressed through the 3He— pd transition spectral function, cross section of hard pd — pd
scattering and the effective charge of the quarks being interchanged during the hard rescattering
process. The numerical estimates of all these factors resulted in the magnitude of the cross section

which is surprisingly in a good agreement with the data.

PACS numbers: 24.85.+p, 25.10.+s, 25.20.-x



I. INTRODUCTION

The large momentum transfer photoproduction reactions with two-body breakup of the
nucleus represent one of the testing grounds for nuclear Quantum Chromodynamics (QCD).
The striking characteristics of these processes is the enormous value of invariant energy pro-
duced even at moderate incident beam energy. The invariant energy of the photoproduction
reaction is s = m%+ 2E,my, which shows that it grows for the nuclear target A times faster
than that of the proton target, where my is the mass of the target and E, is the incident
photon energy. Considering large and fixed center of mass (cm) angles in two-body break-up
reactions allows to provide large momentum transfers ¢ ~ —3(1 — cosf.,,) thus satisfying
condition for hard QCD scattering.

Hard nuclear scattering, in which the energy-momentum transferred to the nucleus is
much larger than the nucleon masses, are one of the best processes where one hopes to probe
quark degrees of freedom in the nucleus. In hard scattering kinematic regime, we expect
that only the minimal Fock components dominate in the wave function of the particles
involved in the scattering. This expectation results in the prediction of the constituent (or
quark) counting rule, according to which the energy dependence of two-body hard reaction
is defined by the number of fundamental constituents participating in the reaction[L [2].

If we consider a reaction of the type a +b — ¢ + d, according to constituent counting

rule, the energy dependence of the hard process should scale like:

do.(abﬁcd) 1
dt ~ gMatnptnctng—2’ (1>

where n;, 1 = a, b, ¢, d represent the number of the fundamental fields associated with respec-
tive particles involved in the process. For example, if a is a proton, n, will equal three and
if it is a photon, n, would be one.

Even though the energy dependences (or scaling relations) of Eq. do not imply the
onset of perturbative QCD regime, they indicate that the resolution of the probe is such that
it allows to identify the constituents of the hadrons that participate in the hard scattering. In
1976 it was suggested[3] to use the concept of quark-counting rule to explore the QCD degrees
of freedom in nuclei. One of the best candidate reactions was hard photodisintegration of
the deuteron v + d — p + n which, according to Eq., should scale as do/dt ~ s™1i.
The first such experiments being carried out at the SLAC[4-6] and Jefferson Lab[7HIT]



revealed s~!! scaling for photon energies already at F, > 1 GeV and 6., = 90°. It is worth
mentioning that the calculations based on conventional mesonic picture of strong interaction
failed to explain the observed energy scaling, which can be considered as another indication
that the quark degrees of freedom needs to be included for an adequate description of the
reaction. The deuteron two-body hard photodisintegration reactions have been used also
to measure the polarization observables[I2HI5] which were in general agreement with the
quark-constituent picture of hard scattering.

To check the universality of the constituent counting rule for other hard break-up reac-
tions, the two-body reactions were extended to 3He target, in which case two fast outgoing
protons and slow neutron were detected in y+*He— (pp) + n reactiont[16]. The results of

such experiment[I7] was consistent with the s~1!

scaling in the two-proton hard beak-up
channel, but at much larger photon energies (E, > 2 GeV) than in the case of pn break-up.
Recently the hard two-body break up reaction has been measured for the more complex, v+
3He— p + d, channel[I8]. According to Eq. such a reaction in the hard scattering regime
should scale as s~!7 and surprisingly the experiment observed a scaling consistent with the
exponent of 17 - an unprecedented large number ever observed in two-body hard processes.

In the present work, we extend the theoretical framework referred as hard rescattering
mechanism(HRM) to calculate the cross section of above mentioned y*He— pd reaction.
The HRM model was originally developed for calculation of vd — pn reactions[I9]. The
model was successful not only in verifying the s7'! dependence but also reproducing the
absolute magnitude of the v + d — pn cross sections without free parameters at = 1 GeV
incoming photon energies and large center of mass angles[I9H21] . The HRM model allowed
also to calculate polarization observables for the yd — pn reaction[22] and its prediction
for the large magnitude of transferred polarization was confirmed by the experiment of
Ref.[14]. Subsequently the HRM model was applied to the v+3He — pp + n reactions[23],
in which two protons were produced in the hard break-up process while the neutron was
soft. The model described the scaling properties and the cross section reasonably well and
was able to explain the observed smaller cross section as compared to the deuteron break-up
reaction. In Ref.[24] it was shown also that HRM model can be extended to the hard break-
up of the nucleus to any two baryonic state which can be produced from the NN scattering
through the quark-interchange interaction. In the HRM model, a quark of the one nucleon

knocked out by the incoming photon rescatters with a quark of the other nucleon leading



to a production of two nucleons with large relative momentum. We assume in HRM that
the quark interchange is the dominant mechanism for the hard rescattering of two outgoing
energetic nucleons. The latter assumption is essential for factorization of the hard scattering
kernel from the soft incalculable part of the scattering amplitude.

In the present work we apply the similar rescattering scenario for the hard break-up of
the 3He nucleus to the pd pair. Our main goal is to check whether the HRM approach
which explicitly accounts for the quark degrees of freedom, will allow to reproduce the
energy and angular dependencies of the measured cross sections. The article is organized
as follows: Section II describes the kinematics and the reference frame of the two-body
break-up reaction. In Section III, we develop the hard rescattering model for the y+3He—
p + d reaction discussing in detail the nuclear amplitude which according to HRM provides
the main contribution to the hard break-up cross section. In Section IV we complete the
derivation by calculating the cross section and considering the methods of estimation of
nuclear and pd — pd rescattering parts entering in the cross section. The Section IV presents
also the numerical estimates and comparison with the results of the recent experiments at
0. = 90°. Tt also gives predictions for angular distribution of the cross section as well as
energy dependences for other 6.,,. The section V summarizes our results. In appendix A, we
present the details of the derivation discussed in the Section III. The discussion of the hard
elastic pd — pd scattering is presented in Appendix B. Appendix C discusses the relationship

between the light-front and non-relativistic 3He to deuteron transition wave functions.

II. KINEMATICS OF THE PROCESS AND THE REFERENCE FRAME

We are considering the following two-body photodisintegration reaction:
v+ He = p+d, (2)

where the proton and deuteron are produced at large angles measured in the center of mass
reference frame of the reaction. The invariant energy, s, and momentum transfer, ¢, of the

reaction are defined as:

s = (q+ peme)” = Miy, + 2q - pspe = Mig, + 2B maye = (BS™ + EfL, )

t=(q—py)’= mf, —2q-p, = mf, — 2B (B — py" €08 Oem), (3)



where m,, and msg, are masses of the proton and *He target respectively and E, is the
incoming photon energy in the Lab system. The four-vectors ¢, psye and p, define the
four-momenta of photon, *He and proton respectively. In the right hand side of Eq., we
expressed s and t through the center of mass energies, momenta and scattering angle of

interacting particles defined as:

om 1 1
E’y = 2—\/5 (S - mgHe) s E3He = 2—\/5 (S + mgHe)
cm 1 cm 1
E; :2—\/§<s+m§—m§>, < :2—\/§<8+mfl—m§>. (4)

The one interesting property of Eq. observed in Ref.[25], is the possibility to generate
large center of mass energy s with the moderate energy of photon beams. This is due to
the fact that in the expression of s, photon energy is multiplied by the mass of the target.
For the case of reaction , for example the photon energy, £, = 1 GeV will generate s as
large as it is generated by 6 GeV/c proton beam in pp scattering. This property was one of
the reasons why the quark-counting scaling was observed in vd — pn reaction for photon
energies as low as 1.2 GeV at cm 90" break-up kinematics[10} [11].

Using Eq. in the expression for ¢ in Eq., we obtain:

== (s =g [(s 4 —md) — [l — (my + ma)?} {5 — (mp — ma)?} cos6n] - (5)

It follows from the above relation that in high energy limit ¢ ~ —3(1—cos0,,,,) which indicates
that at large and fixed values of 0., one can achieve hard scattering regime, —t(—u) > m%,,
providing large values of s. For the latter as it follows from the expression of s in Eq.
the photon energy FE. is multiplied by 2msy, because of which even for moderate value of
E.,, the high energy condition, (s > m3), is easily achieved. This is seen in Fig.1(a) where
the invariant momentum transfer, —¢ is presented as a function of incoming photon energy
E, at large and fixed values of 0.,. As figure shows, even at F, ~ 1 GeV the invariant
momentum transfer —t ~ 1 (GeV/c)?, which is sufficiently large in order the reaction to be
considered hard.

That the reaction at £, 2 1 GeV and 6., ~ 90" can not be considered as conventional
nuclear process with knocked-out nucleon and recoiled residual nuclear system follows from
Fig.1(b), where the lab momenta of outgoing proton and deuteron is given for large 0.,.
In this case, one observes that starting at £, > 1 GeV/c the momenta of outgoing proton

and deuteron > 1GeV/c. Such a large momentum of the deuteron significantly exceeds the
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FIG. 1: (a) Photon energy dependence of invariant momentum transfer —¢. (b)Lab
momenta of outgoing proton and deuteron as a function of photon energy. Solid lines -

proton, dashed - deuteron. Calculations are done for 6,.,, = 90° and 60°.

characteristic Fermi momentum in the 3He nucleus thus the deuteron can not be considered
as residual. The momenta of the deuteron are also out of the kinematic range of eikonal,
small angle rescattering[26-28] further diminishing the possibility of describing reaction (2]
within the framework of conventional nuclear scattering.

Finally, another important feature of the large center of mass break-up kinematics is
the early onset of QCD degrees of freedom due to the large inelasticities (or large masses)
produced in the intermediate state of the reaction. As it was shown in Ref.[29] for pho-
todisinegration of the deuteron, already at photon energies 1 GeV one needs around 15
channels of resonances in the intermediate state to describe the process within hadronic
approach. This situation is similar in the case of the *He target in which one estimates the
produced mass of the intermediate state as mgr ~ /s — My. From the latter relation one
observes that already at E, = 1 GeV, mp ~ 1.8 GeV, which is close to the deep inelastic
threshold of 2 GeV, for which QCD degrees of freedom are more adequate.

Overall, the above kinematical discussion gives as a justification for the theoretical de-
scription based on the QCD degrees of freedom to be increasingly valid starting at photon

energies of ~ 1 GeV.

At the end of the section, we define the reference frame in which the reaction will be



considered. It is defined from the condition that the “+” and the transverse components
of incoming photon, ¢ = ¢, = 0, with the photon and target nucleus having the following

light-cone four momenta:

qﬂ = (Q—HQ—J]J_) = (Oa \/ SgHea())
o o m3He
Pige = (P3Het, P3He—, P3HeL) = (1) Shyer — 5= (6)
\% 3He

where 53, = s—m%He. In the above expression the £ components are defined as p; = E+£p,
where the direction of z axis is opposite to the momentum of the incoming photon in the

Lab frame.

III. HARD RESCATTERING MODEL

In the HRM model, the hard photodisintegration takes place in two stages. First, the
incoming photon knocks out a quark from one of the nucleons. Then in the second step the
outgoing fast quark undergoes a high momentum transfer hard scattering with the quark
of the other nucleon sharing its large momentum among the constituents in the final state
of the reaction. Since HRM utilizes the small momentum part of the target wave function
which has large component of the initial pd state, it is assumed that the energetic photon is
absorbed by any of the quarks belonging to the protons in the nucleus with the subsequent
hard rescattering of struck quark off the quarks in the “initial” d system producing final
pd state. Within such scenario the total scattering amplitude can be expressed as a sum
of the multitude of the diagrams similar to that of Figf2] with all possibilities of struck
and rescattered quarks combining into a fast outgoing pd system. Instead of summing all
the possible diagrams, the idea of HRM is to factorize the hard ~q scattering and sum
the remaining parts to the amplitude of hard elastic pd — pd scattering. In this way
the complexities related to the large number of diagrams and non-perturbative quark wave
function of the nucleons are absorbed into the pd — pd amplitude, which can be taken
from experiment. To demonstrate the above described concept of HRM, we consider the
typical scattering diagram of Figf2l Here, the incoming photon knocks out a quark from
one of the protons in the nucleus. The struck quark that now carries almost the whole
momentum of the photon will share its momentum with a quark from the other nucleons

through the quark-interchange. The resulting two energetic quarks will recombine with the
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FIG. 2: Typical diagram of hard rescattering mechanism of y*He — pd reaction.

residual quark-gluon systems to produce proton and deuteron with large relative momentum.
Note that the assumption, that the nuclear spectator system is represented by intermediate
deuteron state is justified based on our previous studies of HRM[19] 23] in which it was found
that the scattering amplitude is dominated by small initial momenta of interacting nucleons.
For the case of reaction (Eq.(2))), because of the presence of the deuteron in the final state,
the small momentum of initial proton in the 3He nucleus will originate predominantly from
a two-body pd state.

In Fig, h, Asge, A1y and Ay are the helicities of the incoming photon, *He nucleus, outgo-
ing proton and deuteron respectively. Similarly, ¢, psye, P1, P1f, Pa and pge are the momenta
of the photon, 3He nucleus, initial and outgoing protons, intermediate deuteron and the fi-
nal deuteron respectively. The k’s define the momenta of the spectator quark systems. The

four-momenta defined in Fig[2] satisfy the following relations:

Pste = P1 + D2+ D3 Do+ D3 =Ppa=Ds+Ps; Do+ D5 =Da;  Dsme + ¢ = Pif + Dy

where po, ps, p, and pj are four-momenta of the nucleons in the intermediate state deuteron.
We now write the Feynman amplitude corresponding to the diagram of Fig[2] identifying

terms corresponding to nuclear and nucleonic parts as follows:

/ WPy, +m 10 (!
MAar A Aageh — Z/X?d(_irlm) i (?gf ) 1(3253 +m) i(p, + m)
A

2 i eom/2 2 o2 2 ;
Doy — My +1€P3 — My + 1€ Py — My + 1€

A . Z-FDNNXil\dX:l)\d (—Z)FT Z<p3 + m) Z(pQ + m) Z(pl + m)

pz—mg—kie DNN pZ — m3 + ie p3 — m%, + ie p? — m3, + i€
d'py, d'ps d'ply
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i(p,, — k1 +m) iS(ky)
N1 : —i)I'} Y —igT Y, | 5
/Xplf( Z) Nl(plf—k’l)Q—mg—f‘Z'E[ ‘9 C/y“] k%—mg—kle
Z(pl — ki +my) ; d*k
(p1 — k1)2 —m2 +ie " (2m)
e /(—@')w i(Pyy — Ko +my) iS (ks) iy =Ko tmg) . dhy
’ N(paf — ko)? — m2 +ie k3 —m? + ie (ph — kp)? —m2 + ic "2 (27)*
) Z(I) +g_'1§/1+mq) )
s —igT ™y, L — jeyMel
fy g 07 (pl—k1+q)2—mg—|—zg[ Zef}/ 6h:|
idy0ap

(7)

%
Here the label A: identifies the nuclear part of the scattering amplitude characterized by
the transition vertices sy, (for the *He — Ny, Ny, N3 transition) and T'pyy (for D — Ny N3
transitions). The parts N1: and N2: identify the transition of nucleons N; and Nj to quark-
spectator system (characterized by the vertex I'y) with recombination to the final N;; and
Ny nucleons. Here S(k;) and S(k2) denote the propagators of the spectator quark-gluons
system. The label v : identifies the part in which the photon with polarization €}, interacts
with the (p; — k1) four-momentum quark followed by the struck quark propagation. The
label ¢ : represents the gluon propagator. Everywhere, x’s denote the spin wave functions
of the nuclei and nucleons with A’s defining the helicities. The summation over the X
represents the sum over the helicities of the intermediate deuteron. The factor g is the QCD
coupling constant with 7. being color matrices.
The hard rescattering model which allows to calculate the sum of the all diagrams similar

to Figf2]is based on the three following assumptions:

1. The dominant contribution comes from the soft 3He — pd transition defined by small
initial momentum of the proton. As a result, this transition can be calculated using

non-relativistic wave functions of the *He and deuteron.

2. The high energy g scattering can be factorized from the final state quark interchange

rescattering.
3. All quark-interchange rescatterings can be summed into the elastic pd — pd amplitude.

We proceed with the calculation of the amplitude of Eq. by introducing light-cone

momenta p* = (p,,p_,p1) and also using differentials d*p = %derdp_dzp 1. Furthermore,



we perform integrations over the minus component of the momenta. First, we integrate
by dp!,_, dps— and dpj_ through their pole values in the propagators of the intermediate
deuteron, nucleon 3 and nucleon 3'. This allows us to introduce the pd component wave
function of the 3He (Eq) as well as pn component deuteron wave function in the
intermediate and final states (Eq.(A-9)) of the reaction.

In the next step the dk;_ and dky_ integrations are performed. The dk;_ integration
allows to introduce the quark wave functions for nucleon 1 and 1f, while the dk,_ integration
does the same for nucleons 2 and 2f. The light-front quark wave function of the nucleon is
defined according to Eq..

After the “minus” component integrations and introduction of nuclear and nucleon wave

functions, Eq. reduces to:

1_045/%1 1_-7732

IDVTIYAY TA2finaf
MAd AL A3l — Z Yy v Qf(azf/vd,pu,aé/%,péﬁ{‘I’nﬁc ’ <x527p2fLak2L) v

(A25)(A,A5)(Aa)
(A1,22,A3)

(mmy) (g m2s)
i(p, +d =k +myg)

p1— k1 +q)? —m2 +ie
‘I’;\ﬁ’m (x1, k11, p11) } { ‘I/ju;f " (za, kil pisl)
1

(P = o, o) L9 T2 0] | (et yulug(p — ki mi) %

Uy (prs — kv, mp)[—igT Py, ug(phy — ko, my) %

1— T1 1— Ts1
Ag3m3 AdiAG, A Agidz,A
\Ijn%’UQ(Ié’pIZJ_JkQL> GHV(T) \Ildd 2 3<O/37de7pgj_) \I]Z @ 3(a3ap3l7de) %
1 -1 , 1—af 1 —as

A
\Ij;:llje(ﬁla)\lvplLaﬁ%pgl)\Qa)\i‘l)% d2de % d2p3L d()/3 degJ_ % deIL d_l'IQ d2k2L
b1 Ba 2(2m)3 B3 2(2m)3 of 2(27)3 xp 2(2m)3 2l 2(2m)3’

where 3; = 5;1, with 84, 81, B2 and (3 represent the fractions of the initial light-cone mo-
mentum of the 3He nucleus carried by the deuteron and nucleons 1,2 and 3 respectively.

Similarly, a; = ﬁ di, with a3 and as representing the momentum fractions of the interme-

Pdf+
Pd+

fraction of the intermediate deuteron carried by the final deuteron. The quantities x; and

diate deuteron carried by the nucleons 3 and 2. The quantity v4 = is the momentum
To represent the momentum fractions of the initial nucleons 1 and 2 carried by the spectator
quark system in the corresponding nucleon. The x4 (s2) are the same for the final nucleon
1(2). The quantities p, 1, p},| and p,r, with n = 1,2, 3, d represent the transverse momenta

of nucleons and the deuteron in the initial, intermediate and final states of the scattering.
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The quantities k1, and ko represent the transverse momenta of the spectator quark system
in the nucleon 1 and 2 respectively. The scattering process in Eq. can be described in
the following blocks:

e In the initial state, the >He wave function describes the transition of the *He nucleus
with helicity Asye to the three nucleon intermediate state with helicities A\j, Ay and As.
The nucleons “2” and “3” combine to form an intermediate deuteron, which is de-

scribed by the deuteron wave function.

e The terms in {...}; describe the knocking out of a quark with helicity 7, from the
proton “1” by the photon, with helicity h. The struck quark then interchanges with a
quark from one of the nucleons in the intermediate deuteron state recombining into the
nucleon with helicity Aof. This nucleon then combines with the nucleon with helicity

Az and produces the final Ay helicity deuteron.

e The termsin {...}5 describe the emerging of a quark with helicity n}, from the A} helicity
nucleon, which then interacts with the knocked out quark by exchanging gluon and
producing a quark with helicity 7;¢. This quark then combines with the spectator

quarks and produces a final nucleon with helicity A; .

To proceed with the calculation of the amplitude in Eq., we first identify the pole in the

denominator of the propagator of the knock-out quark, as follows

(p1 — k1 +q)* — m] +ie = shy (1 — 1) (b1 — Bs + ie),
m? + k¥, B mg + (p1L — ku)2>
T 1-— T .

(9)

1
s (m?\/ + p%J_ -
3He

where [, = —

From this point onwards, our discussion is based on the fact that the *He wave function

strongly peaks at 8, = [, = % This corresponds to the kinematic situation in which
the nucleon in *He have small momentum and as a result they share equal amount of
momentum fractions of the nucleus. In the following calculations we will estimate the
integral in Eq. at the pole value of the propagator @D This justifies the use of the sum

rule ) u(p, \)u(p, A) = p + m for the numerator of struck quark propagator, resulting in:
)

X

FAap\s A
MAdr AL A3l — Z /\de VI (g [ Va5 P2L, Oy Va D))
| 1—ag/va

(A27) (Ao A5)(Aa

(A1,22,A3)
(msnq1) (M1 ma2r) (M)
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In Eq.7 using the relations 8, + 84 = 1 and dB; = df;, we perform integration by df;

estimating it at the pole, f; = §,. For this we express:

1 d
m = —7,7r(5(51 - 53) + P.V. 61 flﬁs, (11)

and neglect the P.V. part since its contribution is defined by the nuclear wave function at

internal momenta of ~ /s and is strongly suppressed (see. e.g Refs.[8,9]). Restricting by
the first term of Eq. allows us to use the on-shell approximation to calculate the matrix
element of the photon-quark interaction. Using the relation, (p; — k1)+ > ki, m, for the

matrix element one obtains (for details see Appendix A):

Ug(p1 — k1 + g, nql)[ieel'ﬁ]uq( — ky,m1) = ieQ;2 2E1E2(—h)(577q1h(5"1h, (12)

where B} = Y 3Heﬂl(l—ajl) and Fy =Y 3He(

— B1(1 — 1)) are the energies of the struck
quark before and after the interaction with the photon. The factor @); is the charge of the
struck quark in e units. The above result indicates that incoming A — helicity photon selects
the quark with the same helicity (h = 1) conserving it during the interaction (h = 7,,).
The above integration sets 5, = 35 and B3 = 1 — 5. To proceed, using the fact that the
%, we apply the “peaking” approximation in which the
integrand of Eq. is estimated at 81 = 5, = % and [y = % Moreover, as it follows from
>

Eq.@ the s = 1/3 condition restricts z; ~

3He wave function peaks at 3, =

==, The latter condition allows us simplify

further the matrix element in Eq. approximating Iy ~ \/T;/ and Fy =~ \/T;/ This results

n:

MAd AL AR —

Aap N A
ZGQ Z /\IfT VI (g g [Yas paLs ) Va, D))

/_33H ’ 1 —a3/7a
e (A2p) (A% X5)(Aa)
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(my 7772f)(77§)

12

(10)



A2f;
{ qjlziff e (Ts2, P21, kor)

T (pag — o) [T g1 = )]

: TALrmLy
‘P?Ll’h i, k1,11 v (3751; ku,phu) _ )
i ) ! Uq(pry — kv, mup) [—igT ) X
I —x 1—2q

AdiAg Ay 0y / FAdiA2,A3
(a37deap3J_> \de (a?npgupau) %

1—af 1 —as

!
\I]T'L;/’rh (x/27 pIQJ_, kQL) } Guy(r) \Ild
2

uq(phy — k2, 1) T
2
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(13)

A
@311:6(51 = 1/3’)\17pu_752>p2l)\27)\3)

The above expression corresponds to the amplitude of Figf2l To be able to calculate the
total amplitude of v*He — pd scattering, one needs to sum the multitude of similar di-
agrams representing all possible combinations of photon coupling to quarks in one of the
protons followed by quark interchanges or possible multi-gluon exchanges between outgoing
nucleons producing final pd system with large relative momentum. The latter rescattering
is inherently nonperturbative. The same is true for the quark wave function of the nucleon
which is largely unknown. The main idea of HRM is that, instead of calculating all the
amplitudes explicitly we notice that the hard kernel in Eq.(13)), {--- }1{- - }2, together with
the gluon propagator is similar to that of the hard pd — pd scattering. To illustrate this,
in Appendix B we calculated the amplitude of hard pd — pd scattering corresponding to
the diagram of Fig[B.1] Using the notations similar to ones used in Fig[2 and the derivation
analogous to the above derivation in which light-front wave functions of the deuteron and
nucleons are introduced, one arrives at Eq..

Eq. is derived in the pd center of mass reference frame, in which the final momenta
pif and pgr are chosen to be the same as in reaction . Thus the pd — pd amplitude is
defined at the same s = (p1; + pgr)? as in Eq. but at the different invariant momentum
transfer defined as: t,q = (par — pa)*-

To be able to substitute Eq. into Eq., we notice that within the peaking ap-

proximation the momentum transfer ¢y entering in the rescattering part of the amplitude

in Eq.(13) is approximately equal to t,q:
ty & tya = (par — pa)*, (14)
where py is the deuteron four-momentum in the intermediate state of the reaction (Fig)2)).
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Furthermore, due to ¢ = 0, the spinor u,(p; — k1 +¢, h) in Eq. is defined at the same
momentum fraction 1 — z; and transverse momentum as the spinor u,(p; — k1) in Eq..
The final step that allows us to replace the quark-interchange part of the Eq.@ 13) by the
pd — pd amplitude is the observation that due to the condition of 8 = (3, = 3, it follows

from Eq. @) that the momentum fraction of the struck quark 1 —z; ~ 1 — 7 mi ~ 1. This
3He

justifies the additional assumption according to which the helicity of the struck quark is the

same as the nucleon’s from which it originates, i.e. 71 = A;. With this assumption one can

sum over 7; in Eq.(B-F), which allows us now to substitute it into Eq.(13) yielding:

FAgidz, A
Mot = %S Qi) Y / Ay B0 o PaoPa)

/ —
4‘/33He - » 1 —a3

d2de_ d_ﬁg dQP:u
(2m)? Bs 2(2m)%

We can further simplify this equation using the fact that the momentum transfer in the

\I[?;I;Ie:h)\%)@(/@l - 1/37p1L’62’p2L) (15)

pd — pd scattering amplitude significantly exceeds the momenta of bound nucleons in the
nucleus. As a result one can factorize the pd — pd amplitude from the integral in Eq.

at t,q approximated as

tpa = (par — ma)” = (pry — (my + q))?, (16)

resulting in:

. 3 )\ M Ak
MAd Al — 0 = ZZGQZ df 1f5Ad (S,tpd)
V “3He

M, d?
< [ e = 173, G (17)

where we introduced the light-front nuclear transition wave function as:

) \I/TAdiz\z,)\s(a B )
Aspro AL 3, P31, Pd;PdL
Yo (B, pry) = E 4 ‘If/\BH AA2A () Dy, Bay Pat)

3He/d = 2(1 _ 043) 3He
dﬁ:s d? P3L
18
5, 2o (18)

The above function defines the probability amplitude of the *He nucleus transitioning to a
proton and deuteron with respective momenta p; and p,; and helicities A; and \,.
In Eq. one sums over all the valence quarks in the bound proton that interact with

incoming photon. To calculate such a sum one needs an underlying model for hard nucleon

14



interaction based on the explicit quark degrees of freedom. Such a model will allow us to
simplify further the amplitude of Eq. representing it through the product of an effective
charge Q.s¢ that incoming photon probes in the reaction and the hard pd — pd amplitude

in the form:

‘ 3 eQe Byt d?
MAdr AL A — Q ff ZM’\df g /\d’ pd)/Wgﬁijjl’Ad(ﬁl =1/3,p11) P

S3He (27T)
(19)
IV. THE DIFFERENTIAL CROSS SECTION
The differential cross section of reaction (2)) can be presented in the standard form:
do 1 1 —
%, (20)

dt 16_71'8/32H
where for the case of unpolarized scattering:
M2 = 11 A A fiXspeh |2
M =23 g{;h A#ZAU M . (21)
Here squared amplitude is summed by the final helicities and averaged by the helicities of
3He and incoming photon. The factorization approximation of Eq. allows to express

Eq. through the convolution of the averaged square of pd — pd amplitude, M4, in the

form:
2 9@ 1
M = 15— Mol SsneralBr = 1/3), (22)
3He
where
A 12 11 Adf s AL f3AdAL 2
Mo =55 D M (s )] (23)
Adf A LfiAdAL
and the nuclear light-front transition spectral function is defined as:
AsHe ALAG d2p1J_ ?
S3He/d 51 Z 3He/d 51,pu) (QW)Q (24>
)\3He7>\17/\d

Substituting Eq. into , one can express the differential cross section through the

differential cross section of elastic pd — pd scattering in the form:

do 9 62@5 sy ) do
e 107 <S N ) 25, tpa) Somesal B = 1/3), (25)
SH

dt 32 shy, dt

A 2
where sy = s — my.
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A. Numerical estimates of the cross section
1. Calculation of the light-front transition spectral function

For calculation of the light-front transition spectral function of Eq. we observe that
within the applied peaking approximation which maximizes the nuclear wave function’s
contribution to the scattering amplitude, §; = % and [y =~ % These values of light-cone
momentum fractions correspond to a small internal momenta of the nucleons in the nucleus.
Additionally since the deuteron wave function strongly peaks at small relative momenta
between two spectator (“2” and “3” in Fig nucleons, the integral in Eq. is dominated
at O3 ~ % and a3 ~ % This justifies the application of non-relativistic approximation in the
calculation of the transition spectral function of Eq..

In non-relativistic limit, using the boost invariance of the momentum fractions g3; (i =

1,2, 3) one relates them to the three-momenta of the constituent nucleons in the lab frame

of the nucleus as follows:

1 lab

Di+ pz z
2 D3He+ 3 T 3my (26)

i i i By o, G2 ~ L P2
Using above relations one approximates i eve and az ~ 5 + s N Eq.(18). Intro-

ducing also the relative three-momentum in the 2,3 nucleon system as:

— L a — la
Pret = §(p3l b p2l b)7 (27>

and using the relation between light-front and non-relativisitc nuclear wave functions in the

small momentum limit (see Appendix C):

WEC(B,p1) = ——(mn2(27)?) 7 WYR(p), (28)

1
VA
one can express the light-cone nuclear transition wave function of Eq. through the non-

relativistic *He to d transition wave function as follows:

\I/:?%i,lfdhv\d(ﬁb p1L) \/7\/mN2727r \P?%H;d/\}\;;\%d D, (29)

where non-relativistic transition wave function is defined as:

A3he! >\17>\d tAa: )\2,)\3 A3peiA1,A2,A3 3
\IJ3He/d NR E /\I]d NR prez)quHyNR (plaprel)d DPrel- (30)
A2,A3
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Using Eq., we express the light-front spectral function through the non-relativistic coun-
terpart in the form:

my2(2m)? a
Ssnesa(S1) = NT)di Sotiea(PY), (31)

where 3; and pl? are related according to Eq. and Npq = 2 is the number of the effective

pd pairs. The non-relativistic spectral function is defined as:

1 Aspg ALA &*py |
S?f\{{]z/d<plz) = 5 E : ‘/ \I]313{I;;d,11\f;(p12’p1l> (271')2 ’ (32)
A31eiAAd

where both *He and d wave functions are renormalized to unity. In the above expressions
all the momenta entering in the non-relativisitic wave functions are considered in the Lab

frame of the 3He nucleus.

2. Hard elastic pd — pd scattering cross section

The hard pd — pd elastic scattering cross section entering in Eq. is defined at the same
invariant energy s as the reaction but at different (from Eq.(3)) invariant momentum
transfer, t,4 defined in Eq.. Comparing Eqs. and one can relate the ¢, to ¢ in
the following form:

1 2 2

tpd = §m3 — §m§He + gt (33)

As it follows from the above equation for large momentum transfer, |t,q| < |¢|, therefore
for the same s, the pd — pd scattering will take place at smaller angles in the pd center of
mass reference frame. To evaluate this difference we introduce the 6 which represents the

center of mass scattering angle for pd — pd reaction in the form:

tpd = (pdf - pdi)2 = 2<m(21 - Ec%,cm)(]' — CO8 QZm)v (34>
where Fg e = %. Then comparing this equation with Eq. in the asymptotic limit

of high energies, one finds that for 6., = 90° in reaction , the asymptotic limit of the
effective center of mass scattering angle of pd — pd scattering, 8%, = 70.53°. The dependence
of 0%, at finite energies of incoming photon is shown in Fig[3] The figure indicates that for
realistic comparison of HRM prediction with the data, one needs the pd — pd cross section

for the range of center of mass scattering angles.
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FIG. 3: Effective center of mass angle vs the incident photon energy.

To achieve this, we parametrized the existing experimental data on elastic pd — pd
scattering [34-38] which covers the invariant energy range of (s ~ 9.5 GeV? - 17.3 GeV?).

The following parametric form is used to fit the pd — pd cross section data:

dopg 1 A(s)eBleostem)

0 ) =
g (5608 o) = TR (T = cos g2 )8 (35)

where A(s) = Cel®s+925") and B(z) = bz + ca?, with the fit parameters given in Table
The samples of fits obtained for the elastic pd — pd hard scattering are presented in Figf]

C (ub GeV3)  |a; (GeV~2) | ay (GeV™?) b c

(9.72 + 1.33)E+04|-0.98 £+ 0.05/0.04 £+ 0.001|3.45 + 0.02(-0.83 + 0.05

TABLE I: Fit Parameters.

The errors quoted in the table for the fitting parameters result in a overall error in the
pd — pd cross section on the level of 22-37%. Note that the form of the ansatz used in
Eq.(35)) is in agreement with the energy and angular dependence following from the quark
interchange mechanism of the pd elastic scattering. As a result the ansatz is strictly valid
for large center of mass angles |cos(0?, )| < 0.6. However we extended the fitting procedure

beyond this angular range by introducing an additional function eZ(©sfm).
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with fit parameters from Table H
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3. Estimation of the effective charge Q.yy.

To calculate the effective quark charge associated with the hard rescattering amplitude,

we notice that from Eq. it follows that Q.s; should satisfy the following relation:

> Qudp | Mya; | dp) = Qeps(d'p/|Mya | dp), (36)

icp

where by ¢ we sum by the quarks in the proton that was struck by incoming photon. To
use the above equation one needs a specific model for pd elastic scattering which explicitly
uses underlying quark degrees of the freedom in pd scattering. For such a model we use the
quark-interchange mechanism (QIM). The consideration of a quark-interchange mechanism
is justified if one works in the regime in which the pd elastic scattering exhibits scaling in
agreement with quark counting rule i.e. s,

Similar to Refs.[19] 23] 24] within QIM the Q).s can be estimated using the relation:

Nouw(Qu) + Naa(Qa) + Nua(Qu + Qa)

QEff - Nuu+Ndd+Nud ’

(37)

where @); is the charge of the u and d valence quarks in the proton p and N;; represents the
number of quark interchanges for v and d flavors necessary to produce a given helicity pd

amplitude. Note that for the particular case of elastic pd scattering N,4 = 0 and one obtains

_ 1
Qefr = 3-

4.  Final Ezxpression for the Differential Cross Section

Substituting Eq. into Eq. and taking into accounts the above estimation of Q¢
we arrive at the final expression for the differential cross section which will be used for the

numerical estimates:

do 2t 1 sl \ dopg

—(s,t) = <N> PL (s, tpq) - maSNE =0), 38

a0 = 5 (F5) 3 o) oSt = 0) (39)
where a = % is the fine structure constant. For the evaluation of the transition spectral

function Sii ;. we use the realistic *He [39] and deuteron [40] wave functions based on the
V18 potential[40] of NN interaction. This yields[4I] Sﬁﬁ/d(pu =0) = 4.1 x 107* GeV.
For the differential cross section of the large center of mass elastic pd — pd scattering,

dopq

~2%(8,tpa), We use Eq. which covers the invariant energy range of up to s = 17.3 GeV?,
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corresponding to E, = 1.67 GeV for the reaction . In Fig. we present the comparison

17 gcaled differential cross section at

of our calculation of the energy dependence of the s
Ocr = 90° with the data of Ref.[I8]. The shaded area represents the error due to the above

discussed fitting of the elastic pd — pd cross sections.
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FIG. 5: Energy dependence of the differential cross section at 6., = 90" scaled by a s'7
factor. The solid curve is the calculation according to Eq.. The experimental data are
from Refs.[I8] 30} B1]. See also discussion in Ref.[18] on disagreement between DAPHNE
and JLAB/CLAS data.

As the comparison shows, Eq. describes surprisingly well the Jefferson Lab data
considering the fact that the cross section between E, = 0.4 GeV and E, = 1.3 GeV drops
by a factor of ~ 4000. It is interesting that the HRM model describes data reasonably well
even for the range of E, < 1 GeV for which the general conditions for the onset of QCD
degrees of freedom is not satisfied (see discussion in Sec[Il)). This situation is specific to the
HRM model in which there is another scale ?,4, the invariant momentum transfer in the
hard rescattering amplitude. The —¢,; > 1 GeV? condition is necessary for the factorization
of the hard scattering kernels from the soft nuclear parts. As it follows from Eq. such a
threshold for ¢, is reached already for incoming photon energies of 0.7 GeV. What concerns

to the photon energies below 0.7 GeV, then the qualitative agreement of the HRM model
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with the data is an indication of the smooth transition from the hard to the soft regime of

the interaction.

The HRM model allows also to calculate the angular distribution of the differential cross
section for fixed values of s. In Figl6| we present predictions for angular distribution of the
energy scaled differential cross section at largest photon energies for which there are available

data[32].

2
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FIG. 6: The angular dependence of s'7 scaled differential cross section for incoming photon

energies of 1.3 GeV, 1.4 GeV and 1.5 GeV.

The interesting feature of the HRM prediction is that due to the fact that the magnitude
of invariant momentum transfer of the reaction ({2)), ¢, is larger than that of the pd — pd
scattering, tpq (Eq.(33)), the effective center of mass angle in the latter case, 0%, < O,
(see Fig as a result HRM predicts angular distributions monotonically decreasing with an
increase of 0., for up to 8, ~ 120°.

Finally in Fig[7] we present the calculation of s!7 scaled differential cross section as a
function of incoming photon energy for different fixed and large center of mass angles, 6.,,.
Note that in both Figlf and Fig[7] the accuracy of the theoretical predictions is similar to
that of the energy dependence at 0., = 90° presented in FigJ5]

The possibility to compare these calculations with the experimental data will allow us to
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FIG. 7: Energy dependence of s!7 scaled differential cross section for different values of
O.m. The upper curve corresponds to 6., = 60°, with the following curves corresponding to

the increment of the center of mass angle by 10°.

ascertain the range of validity of the HRM mechanism. These comparisons will allow us to
identify the minimal momentum transfer in these nuclear reactions for which one observes

the onset of QCD degrees of freedom.

V. SUMMARY AND OUTLOOK

We extended the consideration of hard rescattering mechanism of two-body break-up
reactions to the high energy photodisintegration of the *He target to the (p,d) pair at large
center of mass angles. The obtained expression for the cross section does not contain free
parameters and is expressed through the effective charge of the constituent quarks being
struck by incoming photon and interchanged in the final state of the process, the 3He — pd
transition spectral function and hard elastic pd — pd scattering differential cross section.

For numerical results we estimated the effective quark charge based on the quark-
interchange model of pd — pd scattering. The transition spectral function is calculated

using realistic wave functions of *He and the deuteron and the pd — pd cross section is taken
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from the experiment. The calculated differential cross section of reaction at 0., = 90°
is compared with the recent experimental data from Jefferson Lab. The comparison shows
a rather good agreement with the data for the range of photon energies E, 2 0.7 GeV. We
also give predictions for angular distribution of the cross section, which reflects the special
property of HRM in which the magnitude of the invariant momentum transfer entering in
the reaction exceeds one entering in the hard amplitude of pd — pd scattering. Possi-
bility of comparing the energy dependence of the cross section for different 6., of the pd
break-up will allow to establish the kinematic boundaries in which QCD degrees of freedom

are important for the quantitative description of the hard pd break-up reactions.
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Appendix A
A.1l. Nuclear and Nucleonic wave functions

In this Appendix, the details on derivation of the wave functions of the *He nucleus and
deuteron are discussed. We begin with considering the part A : in Eq. related to the

3He — d nuclear transition:

[ XaThy i) iy 4m) i +m)
A= [

2 2 o m2 2 o m2 2 e m2 2 ;
g — M Hieps —my +1ep; — my +epy — my + 1€

A L P Ap,_p,, 1dp,, dp, d&p,,
SHe 2 (2m)4 2 (2m)4 ’

iFSHeX (A'l)

where the d*p differentials are expressed in terms of the light cone momenta. The denomi-

nators of the propagators in this expression can be expanded as follows:

m2, + p
pQ—m?V+ie:p+<p_—Np—+pL+ie’>, (A-2)
2 2
in which using the relations p;_ = psge_ — pg— and pg_ = %ﬁ‘“ one obtains:

2 2 .
P —miy +ie =

2 2 2 2
L (m2 _md—i_de_mN_'—pu)
p3He+ e /Bd /Bl
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where 8) = 2+ B, = de+ and f; + B4 = 1. Using the sum rule relation, (p +m) =

p3 He+ 3Hc+

>y ulp, N)a(p, A), one introduces the light-front wave function of *He (see e.g.[42-44]) as
follows:
U(p3, As)u(pa, A2)u(pi, A1) I Mo

2 X .
2  MatPar | mipd) ) PHeOHe
3He Ba b1

A
‘1’3: (517)\1>P1U527pu)\2,)\3) = (A-4)

This wave function gives the probability amplitude of finding the He nucleus with helicity
Asye consisting of nucleons with momenta p; and helicities \;, ¢ = 1,2,3. Using the above

definition of the *He wave function and Eq.(A-3) in Eq.(A-1)) one obtains:

>k Ad T 1
Z / DNN (]93,)\3)U(p2,>\2)u(p1,)\1)

2 m2,+p?2
—m; + t€ NPy
s P Pay (pz_ i

3He (B AL Py B2 Py A2y A3) 1dp, dp,, d2p,, 1dps dp,,

A-5
2 2 ent 24 o A
where (3 = f 2 and the integral over p3_ is performed at its pole value:
He+
dp_ .
/ =il (A-6)
p_ — o + 1€ Py
Since ps + p3 = pg, the differentials with respect to po can be written as:
dp, dp,,dp,, _ AP, dp., dp., (A-T)
(2m)* (2m)*
m2 2
Also, the quantity p,, (in — %) in Eq.(A-5) can be represented as:
2+
2 2 2 2 2 2
p2L+mN> < 2 2 mN+p3L mN_}—sz)
— =) =(1- + — — A-8
yom (pzf Dy ( 063) md de_ s 1— s ( )
where we define a3 = ps+ = gz and 1 —a3 = ay = Z—i = % with By = p—fi; and [y = p—fj;.

The quantities ag and a represent the fractions of the momentum of the intermediate
deuteron carried by the nucleons 3 and 2 respectively. Note that as + as = 1.

Similar to Eq.(A-4]), we introduce light-front wave function of the deuteron[42-44]:

u(p2, A2)u(ps, A3) r Xkd
2 2 2 DNN )
m2 4+ p? — mN+p§L _ Mty d
d p,u a3 1—as3

\de)\d <a37p3j_’pdl) = (A'9>

which describes the probability amplitude of finding in the A4 helicity deuteron two nucleons

with momenta p; and helicities \;, i = 1,2. Using Eqgs.(A-8) and - ) for Eq.(A-5 - we
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A3
\IJT)\d:)Q’)\S as, ) v N (617)\1729 7527]) )\27)\3)
Al - —4 Z d ( 3y P3, de)U(phAl) 3He 1L 21 y

A

1-— (%]
AdsA3,A2,A1

ld/deQPdL 1% d2p3L
2 Ba(2m)3 2 B3 (2m)3’

where the p,_ integration is performed similar to that of ps_ according to Eq.(A-6]).

(A-10)

Next, we consider the second part of the expression “A” in Eq. related to the transition
of the deuteron from intermediate to the final state:

A == [ ) Wy ) i) i m) L d

CON NN PR —mR e pf —m}, +iepf —mF +ie PV (2m)!

— -y [ ulpzgs Aag)ulpag, dog) b, Ag)ulpy, )
= Xd DNN p2 _ m2 + de , , m?v‘*‘p/za ]
Mg A *
1 dp d2 /
N, M)il L A-11
(p3: ) (p37 ) pnnXd o 2 p3+ (271')3’ ( )

(A-12)

where the dp}_ is integrated according to Eq. 1) To estimate the denominator, p3 ;e

m3 + ie we use the relation poy = pg — py which allows us to express:

2 12 2 2
my + my +p
pgf —myy +ie = %<m§+pzﬂ - /N LT BT —|—ie>. (A-13)
Py Py /Pus Pagi/Dags
Defining Pap _ PoylPar _ of and 228 =1 - P 1 a—é, the above equation reduces to:
pdf+ pdf+/pd+ Yd pdf+ pdf+ Yd
/ 2 2 2 2
2 2 o3 2 2 my+p;, MNP )
—my +1e= ——(m—l— — - + 1€ A-14
p2f N ( fyd) d pde_ O{é/'yd 1 o Oélg/f}/d ( )

where the quantity 74 = -“* is the fraction of the momentum of the intermediate deuteron
Pay

carried by the final deuteron. Using Egs.(A-9) and - we rewrite Eq.(A-11)) as follows:

AQZZ/

PYSVASY
WAL () po ol Ve, D))

U(pag, Aag)u(ph, Ay) %

/
A hes 1= a4/7a
PYYA
PUBVVA
Wy (0 pas, Py ) 1dag dPply, (A-15)
1—af 2 af (2m)3
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Now we consider the “N1” part of the amplitude in Eq. which describes the transition
of nucleon with momentum p; to the final nucleon with the momentum p;;. Using on-shell

sum-rule relations for the numerators of the quark propagators for the N1 part one has:

_ , ug(pry — ki, miyp)ug(pry — ki, my) 4
Ni=S M) (=)Dt 2 : [— T’ }
/u(p1f7 1f)( Z) nlf (plf _ k,l)g _mg + e gLe Y| X

1
mfm

W (k)W (k) ug(pr — Ky m)ag(pr — ki,m)
k$ —m?2 + ie (p1 — k1)? —m2 +ie

1 dkydki_d?ky |

ilpu(pr, M) = 5 (2 ;

(A-16)

where we sum over the initial helicity (1;) of the quark before being struck by the incoming
photon and the final helicity (n;7) of the quark that recombines to form the final state
proton. In Eq.(A-16]), we can expand the denominators of the propagators as follows:

—k 2 2 e — (1 — i ( 2 2 o
(g = Ia)? = e = (1= ) (i + 2, — T e

2 2 2 2
' Stk m-+ (p1 — k .
(pl_k1)2_m§+l€:(1—x1)(m?v +p%l_ m 1L q (pl 1)L —|—Z€),
1 1— 2

(A-17)

m2 +p2
and pip- = J;T:”. Here

m2+k2 |
Fis

iy
P1f+

and 71 = M+ along with ki_ =

where x4 = oo

x1(zg1) is interpreted as the momentum fraction of the initial (final) nucleon “1” carried by
the spectator quark system. Performing the dk;_ integration at the k;_ pole value of the
spectator system allows us to introduce a single quark wave function of the nucleon in the

following form:

EQ(p - k>77)@s(k)
m24k2 m2 4 (p—Fk)2
m3 +p? — é;kl - ﬁl(,pxkh

ng(Xa kvaL) = Fnu(pa )\) (A_18>

which describes the probability amplitude of finding a quark with helicity 7 and momentum
fraction 1 — x in the A helicity nucleon with momentum p. With this definition of quark

wave function of the nucleon one obtains for the N1 part:

TA1fs 771f
v (o1, k1o, prpL)
N1 =1 E / L/ Uq(p1f - /ﬁ,Thf)Uq(Pl - /ﬁﬂh) X

1_1:51

771f 771

[ B ing%] ‘If;\ﬁ;m (x1,k1,p11)1 day d?ky )

1—m 2z (2m)3

(A-19)

Performing very similar calculations for the N2 part of Eq., one obtains:

TA2fimar
v 2 ($ 27k2L;p2fL) :
N2 = - Z el 1 _Sx ) Ug(p2y — k27772f)uq(p/2 — ko, 1) X
A2 g\ A, 8
772f777§
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W5 (ks ) Ly dhyy
1— 2z (2m)3’

(A-20)

k k
where x4 = p;fi and xy = 7=
2+

Substituting now Eqgs.(A-10), (A-15), (A-19) and (A-20) into Eq.(7) one obtains:

PYTI VDY TA2ginzf
Mot = 3 /‘1’2 U onr /v, par, Oy ) | g (e kar paps)
) 1-— Oég/’)/d 1-— T2

(A27)(A2,A5) (A

(A1,A2,A3)
(g smap)(m1,m5)

z'(pl +q—p+my)

p1— k1 +q)? —m2 +ie
‘Ifii”“ (x1, k11, p11) } { ‘I/ju;f M (za, kil pisl)
1

tig(pay — ko, mag)[—igT ] [( ] [—iee’yulug(pr — ki,mi) X

Uq(pry — K, mig) [—igT yulug(ph — ko, mh) X

1-— T 1— Ts1
WS (ko ply ) Uy (o 5u) TN (g, p,,p,, )
n2’ 2, V21, Poy G (r) d 3:Pd1,P31) * 4 33 P31 Pa1
1 — ) 1 —af (1—a3)

g
\113:9(51,Al,pwﬁz,pmz,Ag) dBa d*pay dfBs d’psy dofy d*ply) dwy d*hyy daly dhoy
b1 Ba 2(2m)3 B3 2(2m)% of 2(27)3 xp 2(2m)3 xfy 2(2m)3

(A-21)

A.2. Hard Scattering Kernel

In Eq.(A-21)), the expression in { }1{}2G""(r) describes the hard photon-quark interaction
followed by a quark interchange through the gluon exchange.

a. Propagator of Struck Quark

'L(]ﬁl +¢*]‘7/1 +m«;{)
p1—k14q)2—m2+ie”

We analyze first the propagator of the struck quark, (

Using the definition of the reference frame from Eq.@ and momentum fraction defini-

tions: 3; = 24— = Lt and x; = ~* one can isolate the pole term in the denominator of
P3geyt A /83He pP1+

the struck quark propagator as follows:

(pr — k1 +q)° — m§ +ie = (p1s — prex1)(p1i- — ke +q-) — (p1L — k1) — m§ + i€

2 2 2 | 1.2 2 2
+ +k m2+ (pry — k |
_ SgHe(l _xl)(mN/ Py My : 1L 18— q / (pu u) ) 1e
S3He L1553, S3He(1 - $1)
= shy (1 — 21)(B1 — Bs + i), (A-22)
m2 _ 2 . .
where 3, = —Szng (m3 +p3 — mg;rlkh — q+(1;1fxlku) ). Using the sum rule relation (p+m =

> u(p, N)u(p, \)) for the numerator of the struck quark propagator together with Eq.(A-22
)
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one can rewrite Eq.(A-21) as follows:

FAarAl A
MAdr A Aspeh — Z /\Dd v Qf(azf/vd,pu,&é/%pél) %
1 —ay/va
(A2r)(A3,A5)(Aa)
(A1,22,A3)
(mgsma2p) (m1,m5) (Ng1)
TA2fim _
\:[anicf (22, kQLaPQfL)a (par — koo 1) [—ig T2 [uq(pl +q — k1,n)ue(p1 + ¢ — k1, np1)
1 . xSQ q 2f 2 2f c v SgHe(]_ _ xl)(/ﬁl . /BS —I'— ZE)

; TA1r;
[—ieety,Ju,(p1 — k1 m)\ljzi’m (21, kllule.)} {\Ijmlff (2, ki, pisa)
ni="q )
1

—k X
1— 2 1— 2., Ug(p1y 1,71f)

A Ag: NS A
‘Ijn%’% (1]’2, k2i7p/21_)} G,uu(r> \ded ’ S(Oééapdiupgj_) %
2

/ /

[_ing’Yu]uq(plz — ko, 77&)

As
Wirar2As (g o o, ) ‘I’;,,::e(ﬁl,)\1;Pu752,pu)\2,/\3)% d*pas dBs d’psy dojy d*ply, y
(1—a3) b1 Ba 2(2m)3 B3 2(2m)3 of 2(2m)3
dl‘l dzku_ d.Q?/Q dszJ_
ry 2(27)3 2f 2(27w)3

(A-23)

Note that the above used sum rule for the numerator of the struck quark propagator is valid
for on-shell spinors only. Our use of this sum rule is justified based on the fact of using
the peaking approximation in evaluating Eq.(A-23) in which the denominator of the struck

quark is estimated at its pole value.

b.  Photon quark interaction

We now consider the term:

Ug(p1 — k1 + q.ng1) [—teehy"Jug(p1 — k1, m), (A-24)

where the incoming photon with helicity A is described by polarization vectors: eg/; =
:F\/g(ﬁ +iey) for h = 1/(—1) respectively. Here e; = (1,0,0) and e; = (0,1,0). Using these
definitions we express:

—epyt = eyt = —eryL + €LR, (A-25)

ot

where yg/;, = % We also resolve the spinor of the quark with spin o to the £ helicity

states as follows:

u(p. @) =t (p,) 0 (p,0) = S (142 ulp, ) + 5 (L= ulpa). (A26)
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Finally, in the reference frame of Eq.(0)) the light-cone four-momenta (p4,p_,p1) of the
initial and final quarks in Eq.(A-24)), in the massless limit, are:

Initial Momentum: p; — k; = (ﬁl(l — 1)1/ Shye» 0, O),
Final Momentum: p; — k; +¢q = (51(1 — 1)1/ 85500 \/ S51100 0), (A-27)

where we use the the relations ¢, = 0, p1+ = Bipspey and ki1y = x1p1. Because of the finite

B ~ % and small x; < 1 entering in the amplitude (see Sec D one also neglects the “-”
C . —k1)% +m?2

component of the initial quark: (p; — ky)_ ~ W ~ 0.

Using Eq.(A-27)) and above definitions of photon polarization, y-matrices and quark helic-
ity states one obtains that in the quark massless limit the only nonvanishing matrix elements
of uvyiu are:

__ 1 _ 1
uq (pl - kl +q, _5)7+uq (pl - kla _5) =2 V 2E1E2

1 1
iy (1 =k + 4, 5)v-ug (P — ki 5) = 20/ 2E1 By, (A-28)

where E; = 31(1 — xl)—VS;’H and Fy = (1 — (1 — xl))—VSg’H are the initial and final energy

2

of the struck quark respectively.
Using the above relations for Eq.(A-24]) one obtains:

ﬂq(pl - kl + q, nql)[ieeﬁvﬂuq(pl — ]{31, 7’]1) = Z@QZ2 2E1E2(_h)577q1h5771h7 (A—29>

where (); is the charge of the struck quark in units of e. The above result indicates that
incoming h- helicity photon selects the quark with the same helicity (h = 7;) conserving it

during the interaction (h = n,,).

A.3. Peaking Approximation

We now consider the df, integration in Eq.(A-23)) noticing that, d8; = df; and separating

the pole and principal value parts in the propagator of the struck quark as follows:

1 . _ dp,
m = ZW(S(ﬁl 55) + P.V. 61 — Bs.

Furthermore, we neglect by P.V. part of the propagator since its contribution comes from

(A-30)

the high momentum part of the nuclear wave function, p; ~ /3., which is strongly
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suppressed[19]. The integration with the pole part of the propagator will fix the value of
[ = Bs and the latter in the massless quark limit and negligible transverse component of

p1 can be expressed as follows:

1 mQ(l—xl)—l—kﬁ 2
B, = [ s —m } A-31
5o x1(1 —29) N ( )
Now, using the fact that *He wave function strongly peaks at (5, = %, one can estimate
the “peaking” value of the amplitude in Eq. 1) taking [y = % The latter condition

3(m2+kZ))
!

3He

results in xy — ~ 0, since s3y, is very large in comparison with the transverse
momentum ki, of the spectator system. This allows us to approximate (1 — z;) ~ 1. With

these approximations, one finds that:

/ /
V S3He 1 S3He

B L s S
By = (1= ul1 = a) ) Y1 — ; Y e (A-32)

Using Eq.(A-32)) in Eq. (A-29) and setting 8; = 1/3 everywhere for Eq.(A-23) one obtains:

AafiAm, A
ZeQ Z / \DT s 2f Ole/Fyd:pQJ_a aé/ryd:pgﬂ_)
/_33H ' 1 — a4/
e (Azf) (A5 A5) (Aa)

(A1,A2,)3)
(771f ,772f)(77§)

M)\df)\lﬂ)\BHe,h —

Ug(pas — ko, mag)[—igT. ] [Uq(m +q— ki, h)

A2f;
‘IJL;ff Pl (s, pagis kol)
1 — T2

Ug(pry — ki, mip) [—igT v, uq (P — ko, 1) X

. A ;
U0 (21, kit pry) ‘I’L}f M (@1, kr, plfJ_)
I —x 1—z4

Al Ad:\y,Ag :
an%’% (xé?p/QLa kQJ—) G’W(T) ‘Ij o (&37de7p3L) ‘I’?d Ao (O‘3ﬂp3upcu_> v
1 —a , 1 —of 1 — o

d2de d_ﬁs d2p3j_ dO/g d2p§, 1
(2n)? Bs 2(2n)° o 2(21)°

A
\IJJ;H (B1=1/3,A1,p,,, B2, D,, Aa; A3)

dl’l dzk’lL dZEIQ koQL
xy 2(2m)% xf 2(27m)3

(A-33)

APPENDIX B: High momentum transfer pd — pd scattering

In this section, we study the high momentum transfer elastic proton - deuteron scattering

based on the quark-interchange mechanism. A characteristic diagram of such scattering is
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shown in Fig[B.I] The notations in this figure are chosen to be similar to the pd — pd
rescattering part of the v*He — pd amplitude in Eq.(A-33). Here the helicities in the initial
and final states of the proton are h and A1y and for the deuteron they are Ay and Ag. The

momenta defined in Fig[B.I] satisfies the following four-momentum conservation relations:
P+ pa=Dpif+pay,  Pa= Dyt s (B-1)

k;

17 "af

pdf /\df

FIG. B.1: Typical quark-interchange mechanism of hard pd — pd scattering.

The Feynman amplitude for this pd — pd scattering can be written as follows:

N1: /ﬂ(pu,)\lf)(—i)rjzl(
i(h — ki +my)

(p1 — Fk1)? —m2 + ie
i(py, +m)
) t . T 2f
D—N2: /de(_Z)FDNNpgf — 2, + e
iy’ +m)  iS(ks)

P —m3 +ieki —m?2+ie

iy, — Ko+ mg) iS(ky)
prf — k1) — m2 i kf —m?2 + e
dk;
(2m)*

[—igT ] x

ilpu(pr, A1)

1 Z(pr _%2+mq) %
n2f (pgf — k2)2 — mg + 1€

ik — Mo+ my)

_ZgT(?/YV
| | §2

U(pag, Aoy)(—2)T

il nou(ph, Ny) x
o) —m2tie (P2, A2)

i(p, +m) T dky d'pl
—
P —m?3 + e DNNXd (2m)4 (2m)4
i, 00
g: —5. (B-2)
q

The following derivations are analogous to that of Eq.@, where we identify the parts asso-
ciated with the deuteron wave function as well as with the quark wave functions of nucleon
and perform integrations corresponding to the on-shell conditions for the spectator nucleon
in the deuteron and spectator quark-gluon states in the nucleons. We first consider the

expression for N1 :, for which performing the similar derivations we did for the N1 term
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in Eq. and using the defnition of the quark wave function of the nucleon according to

Eq.(A-18]) one obtains:

IRSNEUY
Z v T1, k1L,
N oo _Z/ nlf (51, k11 plfJ_)

Ug(prf — K1, myg)ug(pr — k1, m) [ - ing%} X

N 1 — Ts1
mnf
‘I/Ai;m (21, k11, p11) 1dzy dPky )
n L - ) (B-3)
1—mz 2 (2m)3

With similar derivations in the D — N2 : part and using, in addition to the quark wave

function of nucleon, the deuteron light-front wave function defined in Eq.(A-9)) one obtains:

Jf)‘df /\3«\2f /
v, «Q /’Yd;pde,p 1)
D—N2= Z / 1_2/ 2 Uq(pay — ko, mag) ¥
Naday N X 3/
7727772f
TAzfinaf DY YAPIA
Voo (T2, ka1, p2ri) 2T (o )
n2f s29 y P2 1L . @ Svpdlnp?,L / /
—igT%, — ko, X
T [—igTey, )= - Uq(py — ka2, 75)
s
VB (00 ey ply,) 1 dahy ks doly Ipl, (B-4)
1 —a 2 2, (27)% of 2(2m)3

Combining Egs.(B-3) and (B-4)) for the amplitude of pd — pd scattering one arrives at:

NN T)\df )\5:)\2]‘
M df sALf3Ad AL — /
pd § :

11—«
(A2 ) (A Aa) (g N5) 3/

Aaf;
(a3 /Yas Pag L5 P31 ) \IjL;ff " (g2, koL, pagy) y
1-— T2
(mgm25)(n1,m5)

) \IJ;\L”” 1, ki1, .
Tg(Dag — ks op) [—igTE Y uq (1 — ki, i) —2 (@1, b1y pu)} G (r) x
1

1-— T
TALpsms Agimy
an (xslaklijlfL) v 2;7]2 Jf/,k L)p,
24 tg(pry — kry ) (=19 T v ug (P — ko, 1) —2 Gz 2/ o) X
I—xq 1- Lo 9
W (0 par, py) ) 1 dey Pl 1daty dhyy doly dpl, (B:5)
1—af 2z (2m)32 h (27)3 of 2(3m)3

APPENDIX C: Relating the Light-Front and Non-Relativistic Wave Functions

To obtain the relation between light-front and nonrelativistic nuclear wave functions in
the small momentum limit we consider the fact that the light-front nuclear wave function
is normalized based on baryonic number conservation (see e.g. Refs.[45-47]) while non-

relativistic (Schroedinger) wave function normalized as [ |U4(p)|?d®p = 1.
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WN=
WN=

R P

FIG. C.1: Hadronic probe to see baryons in a nucleus.

To obtain the normalization condition based on baryonic number conservation, we con-
sider a h + A — h + A scattering in forward direction in which h probes the constituent
baryons in the nucleus A (see Fig. In the figure we assign p; to be the four-momentum
of the nucleus while py,ps, -+ ,pa are four momenta of constituent nucleons such that
p1+ p2+ -+ pa = p;i. For the diagram of Fig/C.1I] applying the Feynman rules one
obtains:

—l—m N +m +m +m
Mpa Z/XA hN 5 L 2 2 e 2 | .2 b 2 .

Faxa x

d'py d'ps d'pa
2m)i2em)t @2n)t (C-1)

where we sum over all the possible nucleons that can be probed and My represents the
effective vertex of the hadron-nucleon interaction. We use the sum rule for the spinors and

also integrate by the minus component of the momenta using the scheme given in Eq.(A-6)),

to obtain:
JA J A N _
Mpa =) Z / ATk K WP Ef21i+p213 Mynu(pa, Aa)u(pa, Aa) - - X
N Ao, D1+ pl— le
AU A
u(ps, A3)U(ps, Az)u(p2, A2)U(p2, A2) up, 1)U(]921, 21) Faxa X
P1+ (pl— - mjz,l—tfh)
dpay d2pu dpsy d2p3J_ dpay d2PAL (C-2)

par 2270 pay 2007 pay 2027
where the A; denote the helicities of the nucleon with momentum p;. Considering the

transverse momentum of the nucleus A to be zero we note that:

2 2 2 2
my +p my +p

p = NPy, TP
P1+ D1+
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_ 1 [mz _m%v“‘pi_m?\/"‘P?u_____m?v‘f‘pZu_m?v‘Fpi (C-3)
Pi+

N B Bs Ba s I

where §8; = % are the light-front momentum fractions of the nucleus A carried by the

nucleons j (j = 1,---A). Introducing Feynman amplitude for h + N — AN as M,y =
@(pr, A1) Mpyu(pi, \p) for Eq.(C-3) one obtains:

Mpa = Z Z XAFJr u(pr, A)u(pz, A2)ups, As) - - u(pas Aa) Mpn X

Pit 2 my+p5 _ m3 +p3, .. M
N A2, A4 Pit [mN B2 B3 Ba
w(p1, M )U(p2, A2)u(pa, Aa) N H dﬁk d*pr. (C-4)
pi |00 midps,  mRepd, o mRAph Faxa (27)3
Pit N B2 B3 Ba

Using the generalization of Eqs.(A-4) and (A-9) for light-front nuclear wave function of

nucleus A, the above equation reduces to:

My =3 Z /\PL (B2, By, --Bas PossPosePas, Ao gy o Da) o

N At B

\IILC(ﬁz,Bsw Ba; P21, P3L-PAL, A2, A3, - Aa) H By d*pry (C-5)
b By 2(2m)3
We now make use of the Optical Theorem according to which:
Im MhA = ShAOhA and Im MhN = SANORN, (C-6)

where sp4 = (pn, + pi)? and oy,4 is the total cross section of hA scattering. Similarly, sy
and oy are invariant energy and total cross section for h/V scattering. The conservation of

baryon number allows us to relate 0,4 = Aopy. Using this relation together with Eq.(C-6))
in Eq.(C-5) one obtains:

/|\IIL /62a637' /6A7p2J_7p3L pAL?)‘27>\3" )\A ‘ ShNHdﬁk dpkL =1 (0—7)

e5

To obtain the relation of light-front wave function to the nonrelativistic wave function in
the small momentum limit we note that in such limit gy = E;tp bl Zi thus dg@’“ = %.
Furthermore, in the high energy limit of the hadronic probe in which large momentum of
the hadrons points to —2 direction, s,4 =~ pp_par and s,y =~ pp_pn. resulting in:

s

SN _ PN+ Py (C-8)

ShA PA+ A
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Applying all these approximations in Eq.(C-7)) one obtains:

}\I[ﬁc(ﬁ%ﬁ?n '.ﬂA,Pu,pu---pAh/\27/\37~~)‘A)’2 1 - 3
[T =1

1/A may '[2(2m)3]A-1 (©9)

=2
Next we compare the above expression with the normalization condition for the nonrela-

tivistic Schroedinger wave function:

A
N .
/|\IJIXR<2917P2, ---pA)‘ Hd‘;pk =1, (C-10)
k=2
where py, = p; — pa — - -+ — pa. This comparison allows us to relate the light-front nuclear

wave function and the Schroedinger wave function in the following form:

1 A1 L.
UEE(Br, Bay ooy P11, D21 ) = —= [mn2(21)*] 2 OB (P, P, ...). (C-11)
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