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Studies of the γ-ray strength functions can reveal useful information concerning underlying nuclear
structure. Accumulated experimental data on the strength functions show an enhancement in the
low γ energy region. We have calculated the M1 strength functions for the 49,50Cr and 48V nuclei
in the f7/2 shell-model basis. We find a low-energy enhancement for gamma decay similar to that
obtained for other nuclei in previous studies, but for the first time we are also able to study the
complete distribution related to M1 emission and absorption. We find that M1 strength distribution
peaks at zero transition energy and falls off exponentially. The height of the peak and the slope of
the exponential are approximately independent of the nuclei studied in this model space and the
range of initial angular momenta. We show that the slope of the exponential fall off is proportional
to the energy of the T = 1 pairing gap.

I. INTRODUCTION

In order to understand the nuclear properties in the quasicontinuum, statistical quantities are used, such as the
nuclear level density and the γ-ray strength function (γSF) [1] for a particular multipolarity. The strength function is
the average reduced radiation or absorption probability of photons of given energy Eγ . It is commonly adopted that

the E1 strength function is dominated by the giant electric dipole resonance (GDR) around Eγ ≈ 78 · A−1/3 MeV,
which can be reproduced, not too far from the maximum, by a classical Lorentz line [2, 3]. It was earlier assumed that
the E1 strength function for lower energy γ-rays corresponds to the tail of this Lorentzian. Current experimental data
[4, 5] show that the Lorentzian description fails for these energies. In order to account for the lower γ energies, the

Kadmenskĭi- Markushev-Furman (KMF) model [6] was suggested. Empirical modifications of this model [7] have also
been used to describe the behavior of the E1 strength function at low Eγ with the use of the temperature-dependent
GDR width.
Experimentally, resonances in the low Eγ region have long been observed, commonly termed as pygmy dipole

resonances and attributed to the enhancement of the E1 strength function [8], partly due to the presence of a neutron
skin. Recent studies in rare earth nuclei have shown [9, 10] that bumps in the Eγ ≈ 3 MeV region are of M1 character.
Actually, the M1 transitions seem to play an active role in the γSF being described also by a Lorentz line [11] based
on the existence of a resonance that originates from spin-flip excitations in the nucleus [12, 13].
In the last decade things have become more complicated, since measurements of the γSF [10, 14–26] have revealed

a newly observed minimum around Eγ ≃ 2 − 4 MeV, so besides the high Eγ enhancement, there is also a low Eγ

enhancement. The first attempts to understand the low-Eγ enhancement [14, 15, 17] used the KMF model to describe
the GDR; the contribution of the giant magnetic dipole resonance to the total γSF is fitted by a Lorentzian, similarly
to the E2 resonance, while the low-Eγ region is described by a separate term that has a power-law parametrization. In
[19] the authors used a functional form of the γSF with contributions from E1 and M1 resonances plus an exponential
low-energy enhancement function to simulate two-step γ-cascade spectra. They found that all M1 strength functions
show a low-Eγ increase compared to the uncertain behavior of the low-energy E1 strength functions.
In [23, 25] it was found that the E2 transitions are of minor importance whereas the dipole transitions dominate

in the low-Eγ enhancement region. The first theoretical evidence of the strong enhancement at low Eγ came from
the shell model calculations of B(M1) values for 90Zr, 94−96Mo [22] and 56,57Fe [27] where the calculated B(M1) and
the γSF showed large values for low Eγ . The influence of this low energy enhancement of the γSF is not of minor
importance, as it has been found that the neutron capture reaction rates can grow due to this effect by 1-2 orders of
magnitude [28].
In this study, we calculate B(M1) for 49Cr, 50Cr, and 48V in the model space of f7/2 using the OXBASH shell model

code [29]. Although the model space is small, the results lead to new insights. In addition, we are able to consider the
M1 strength for transitions to excited states (γ absorption). From this we show for the first time that the low-energy
part of the M1 distribution is peaked at zero energy, and falls off exponentially below and above that point. For these
nuclei we consider the states with T = Tz obtained with the F742 Hamiltonian from [30] that reproduces the known
low-lying energies in the nuclei of interest. The results are largely independent of the nucleus, the range of initial
spins and the excitation energy. We show that the slope of the exponential fall off is determined mainly from the
T = 1 (pairing) part of the Hamiltonian.
In the discussion we compare the M1 strength results for the f7/2 model space with those obtained from the full pf

model space for 48V, again for states with T = Tz. By allowing the successive occupance of all the orbitals of the pf
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FIG. 1: Summed B(M1) strength for a range of initial states in 50Cr.
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FIG. 2: The average M1 strength distribution for states between 6 and 8 MeV in 50Cr.

shell, starting with the f7/2 orbital alone, we explore how the addition of orbitals affects the low-energy enhancement
and the overall M1 strength disrtibution. We also compare our results to the available experimental M1 strength
function of 50V.

II. RESULTS

We start by considering the states in 50Cr from 6 to 8 MeV. The sum of B(M1)s stemming from each initial state is
shown in Fig. 1. This has a Porter-Thomas type scatter around an average value of 12.5 µ2

N . The average M1 strength
distribution S(M1) is shown in Fig. 2. This is obtained by first sorting the B(M1)s according to the increasing energy
differences, Eγ = Ei − Ef and summing them over bins of ∆Eγ = 0.2 MeV, for a certain initial energy range (here
Ei = 6-8 MeV). These are then averaged over the number of initial states,

Si =

∑

bins
B(M1){Ei=6−8MeV}

Number of initial states
. (1)

The area of the S(M1) in Fig. 2 is 12.5 µ2
N .

Experimentally, the quantity of interest is the γ decay strength function γSF defined by [1]

f i
ML(Eγ) = ρi

〈Γγi(Eγ)〉

E2L+1
γ

, (2)

where L characterizes the multipolarity of the transition and ρi is the level density of the initial states. The partial
radiative width Γγ is given, for M1 transitions, by

Γγi,M1(Eγ) =
16π

9

(

Eγ

~c

)3

B(M1)(Eγ)i, (3)

where the index i specifies selected initial spin values and the initial energy region Ei. By combining the two
expressions we find the γSF,

fM1(Eγ) = a 〈B(M1)(Eγ)〉iρi(Ei), (4)
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FIG. 3: Average B(M1) values as a function of γ-ray energy Eγ for 50Cr and initial energies, Ei, in various 2 MeV ranges. The
lowest panel is for 0-2 MeV, the highest for 10-12 MeV. Each M1 distribution is compared to the same exponential, red line,
with parameters B0 = 0.75 µ2

N and TB = 1.33 MeV.

where

a =
16π

9(~c)3
= 11.5473 · 10−9µ−2

N ·MeV−2. (5)

We will show the results in terms of the 〈B(M1)(Eγ)〉 of Eq. (4). At the end we will consider the γSF. The
calculated B(M1) values are sorted according to increasing transition energy, Eγ , and grouped in energy bins of 0.2
MeV width. For each bin the average B(M1) value, 〈B(M1)(Eγ)〉, was found by dividing the sum of the B(M1) values
in this bin by their number. This leads to a plot whose average value at a given Eγ does not depend on the bin size.
The results for 50Cr are shown in Fig. 3 for several ranges of initial energies. The straight lines shown in all

panels are for the exponents, B0 e
−|Eγ |/TB , with B0 = 0.75 µ2

N and TB = 1.33 MeV (the notation of reference [22]
is used). A similar exponential behavior is seen in all regions of excitation energy, even for the lowest region of 0 to
2 MeV, where only γ absorption can take place. This result is very different from the Brink-Axel model where the
strength function on excited states is related to the absorption strength function in the ground state. In contrast,
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FIG. 6: Average B(M1) values as a function of γ-ray energy Eγ (black line) for 50Cr for initial energy, Ei, in the interval 6-8
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the low-energy distribution is a generic feature for excited states, that cannot be obtained from information on the
ground state since it peaks at zero energy.
Comparative B(M1) diagrams for all three nuclei at Ei = 6-8 MeV can be seen in Fig. 4. They all have essentially

the same functional form. The results for 50Cr divided into different ranges for the initial spin are shown in Fig. 5.
The exponential shape is independent of spin.
In our orbital space, the two-body interaction Hamiltonian has only eight non-zero matrix elements, four for the

isospin T = 0 pairs and four for T = 1. By following the procedure of [31], we divide the Hamiltonian into two parts
and, keeping the symmetry, let them vary through the numerical coefficients, k0 and k1,

H = h+ k0V (T = 0) + k1V (T = 1), (6)

where the part h contains the single-particle energies, V (T = 0) includes the matrix elements with T = 0 while
V (T = 1) includes the matrix elements with T = 1. The absence of the T = 1 matrix elements, (mainly pairing,
JπT =0+1 and JπT =2+1), makes the spectrum collapse to low energies. We find that the shape of the M1 distribution
depends very little on the T = 0 interaction, as shown in Fig. 6, but there is a strong dependence on the strength of
the T = 1 interaction.

III. DISCUSSION

For the case of the nuclei studied, it is found that the slope, TB, of the exponential functions fitted on the
〈B(M1)(Eγ)〉, is almost constant for all nuclei, while the height seems to vary more, depending on the nucleus.
A closer look in Fig. 4 shows that the selected B0 value of the preexponent for 49Cr slightly overestimates the
〈B(M1)(Eγ)〉 function; however, the choice of a common B0 value for these nuclei gives a good description of the
〈B(M1)(Eγ)〉.
The approximation of the M1 strength by an exponential function has already been proposed in [22]. There, the

〈B(M1)(Eγ)〉 was calculated using the shell model for 94,95,96Mo and 90Zr, in a model space which permits both
positive and negative parity states. The slope of the exponential for the positive parity states ranges from TB=(0.33-
0.41) MeV, the lowest value corresponding to 90Zr. The slope of the negative parity states ranges from TB=(0.50-0.58)
MeV for the Mo isotopes, while TB=0.29 MeV for 90Zr [22]. The slope for both parities is much more steep than the
one found in this study.
The difference in the exponential slopes in the two studies can be attributed to the different orbitals used for

the studied nuclei. In our calculations we know that it is only the f7/2 orbital that contributes to the low−energy
enhancement, but we don’t know which are the important orbitals for [22]. From the text it seems that these are the
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g9/2 and d5/2, but no further conclusions can be drawn. However, we can say that the use of different orbitals will
give rise to different slopes. Another thing that could be affecting the slope of the low-energy enhancement, is the
masses of the studied nuclei. As has already been shown, the pairing interaction is the main factor that affects the
M1 distribution. The pairing changes the slope of the 〈B(M1)(Eγ)〉, in a way that, less pairing, gives a steeper slope.

Pairing depends on A by a factor of αp/A
1/2 [32], so in the A=90-96 region, pairing is 25% smaller than the A=48-50,

thus the slope of the M1 distribution will be steeper.
In order to explore the point that the consideration of different orbitals will give rise to different slopes, we present

in Figs. 7-8 the calculated γSF of 48V from Eq. (4), using the f7/2 model space (black dashed stair line) and the
GX1A interaction [33, 34] in the pf model space, allowing successively different orbitals to be added to the model
space. In Fig. 7 we first allow only the f7/2 orbital to be occupied (red dot stair line), then the f7/2, f5/2 (blue
heavy stair line) and f7/2, p3/2, f5/2 (green double dot - dash stair line) orbitals; finally we compare with the full pf
calculation (orange stair line). In Fig. 8 we give a different sequence of occupied orbitals in the pf model space,
starting again with the f7/2 orbital (red dot stair line), but then allowing the f7/2, p3/2 (violet heavy stair line) and

f7/2, p3/2, p1/2 (purple double dot - dash stair line) orbitals to be occupied. We chose to study the γSF on 48V because

it is the closer nucleus to the available experimental γSF measurements for 50V.
We notice that the full pf shell calculation is more flat compared to the f7/2 model space or the pf shell calculation,

when only the f7/2 orbital is occupied. In both Figs. 7 and 8, the successive allowance of occupancy of a new orbital
makes the γSF distribution to drop, up until Eγ ∼ 2 MeV. For 2 < Eγ < 4 MeV, the distributions from different
occupancies (except the full pf calculation) are almost identical. In Fig. 7 we see that the presence of the f5/2 orbital
affects the spectrum for Eγ > 4 MeV, as it gives a spin-flip term which is observed as a peak in the γ emission strength,
around Eγ = 6-8 MeV. This energy comes from the spin-orbit f7/2 − f5/2 splitting. The addition of more orbitals in
the pf model space doesn’t change the γSF for Eγ > 4 MeV. The effects of the f5/2 orbital can be easily observed
in Fig. 7 as well. There, the successive addition of the p3/2 and p1/2 occupancies doesn’t change the γSF for Eγ >
2 MeV. However, the addition of the last orbital, f5/2, is immediately understood, as the γSF distribution increases
for Eγ > 4 MeV. The small differences observed for the f7/2 model space and the pf shell calculation, truncated to
the f7/2 orbital, are attributed to the differences in the interactions, as well as the mass dependence present in the
GX1A interaction.
The mixing of the different orbitals with the diagonal f7/2 will quench the low−energy strengths discussed in this

study. However, it is mainly the diagonal f7/2 part which gives the low−energy enhancement of the strength function.
This can also be confirmed by the single-particle occupation numbers of the full pf shell calculation. We see that
protons and neutrons mainly occupy the f7/2 single-particle level, the rest of the orbitals having considerably smaller
occupation numbers.
A different example of how the mixing of orbitals can affect the M1 strength function can be seen in Fig. 9.

There, besides the 48V calculations using the full pf and f7/2 model spaces, we also show the M1 strength function

of 56Fe, using a truncated pf space, (0f7/2)
6−t(0f7/2, 1p3/2, 1p1/2)

t for protons and (0f7/2)
8−t(0f7/2, 1p3/2, 1p1/2)

t+n

for neutrons, where n = 2 and t = 0, 1 and 2 [27]. We see that the slope of the exponential for Eγ ≤ 2 MeV is steeper
than the full pf space calculation for 48V, but similar to the 48V f7/2 model space calculation. Further investigation
needs to be done on how a truncated model space affects the M1 strength function distribution in order to fully
understand the difference in the slopes of the pf calculations.
The results for the 48V γSF in the pf space (black dashed stair line), along with the available experimental data

for 50V (red circles and blue down triangles), are shown in Fig. 10. These data are reanalyzed [35] and renormalized
to new neutron-resonance data and new spin distributions. As neutron-resonance data on 50V are not available (since
49V is unstable), the systematics in this mass region and lower/upper limits for 51V have been used as constraints.
The upper limit of the 50V experimental data agrees better with the theoretical calculations. The lack of experimental
data below Eγ = 1.75 MeV makes the comparison with theory difficult in this important region. The γSFs calculated
using the f7/2 model space is only added for demonstration reasons. As was noted in Figs. 7-8, the f7/2 model space
cannot be used for comparison with the experiment due to the lack of the other orbitals, which play also a significant
role to the formation of the strength distribution, however it can be used to clarify certain physical aspects of the
γSF.
The exponential form seems to be generic for the problems where we have a bilinear combination of more or less

random operators. An analog can be found in the statistical distribution for off-diagonal matrix elements of a realistic
many-body Hamiltonian used in the full shell-model calculations in a finite orbital space. It was studied in detail for an
example of the sd shell model long ago [37], see Figs. 8 and 9 and the Appendix there. Contrary to standard embedded
ensembles of random matrices with Gaussian-like distribution of matrix elements [38], in such practical applications we
typically have a distribution close to the exponential, maybe with some prefactors (mostly important for the smallest
matrix elements). This situation supposedly emerges when the random quantities are matrix elements of multipole
operators while the main terms of the many-body Hamiltonian are their bilinear combinations like multipole-multipole
forces. Similar to the Porter-Thomas, or more general chi-square, case, the distributions of the bilinear combinations
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are mainly exponential. The exponential factor, as the effective temperature above, can be roughly estimated as the
mean (over the spectrum) excitation energy characteristic for the multipole operator. In our small orbital space, the
spin-orbital and monopole terms are reduced to constants. The effective Hamiltonian governed by the pairing-type
interaction contains also less coherent parts creating actual superpositions corresponding to complicated stationary
states. The diagonal in seniority matrix elements of a time-odd operator, such as the magnetic moment, are not
renormalized by pairing. This corresponds to the maximum strength at small Eγ . For the components changing the
seniority the mean transition energy is of the order of the pairing gap ∆ equal to about 1.5 MeV for this group of
nuclei. This estimate agrees with the effective temperature TB found above.
This physics cannot satisfy the Brink-Axel hypothesis which can be approximately valid for the excitations of

general macroscopic nature. In the GDR case, the main part is played by the local dipole polarization of the nuclear
medium which is essentially a universal property of nuclear matter. Such an excitation can be erected on top of
any shell-model state. In the case considered above, low-energy properties, such as isovector pairing and spin-orbit
splitting of specific single-particle orbitals, are crucial.

IV. CONCLUSION

Summarizing, we have performed shell-model calculations in the f7/2 shell, producing the full spectra and decay

schemes of 48V, 49Cr, and 50Cr. The results indicate a strong low-Eγ B(M1) component, in accordance with
experimental and theoretical findings. The new outcome of this study is that the low energy enhancement is
essentially a one-partition phenomenon. Also, it is practically independent of the initial energy window or the spin
distribution considered. All the B(M1) functions can be well fitted as exponential, while it is shown that it is the
T = 1 matrix elements which are responsible for the exponential shape (the T = 0 matrix elements provide a very
small bump at low energies). The comparison of the calculations of the γSF in the f7/2 and the full pf shell model
space, as well as for the successive occupation of different orbitals in the pf model space, suggests that the mixing of
different orbitals with the f7/2 leads to the quenching of the low−energy enhancement. The f5/2 orbital has a special
role, as it gives a spin−flip peak at Eγ = 6−8 MeV. The role of spin-orbital interactions should be studied in more
detail.
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[21] M. Wiedeking, L. A. Bernstein, M. Krtička, D. L. Bleuel, J. M. Allmond, M. S. Basunia, J. T. Burke, P. Fallon, R. B.
Firestone, B. L. Goldblum, R. Hatarik, P. T. Lake, I-Y. Lee, S. R. Lesher, S. Paschalis, M. Petri, L. Phair, and N. D.
Scielzo, Phys. Rev. Lett. 108, 162503 (2012).

[22] R. Schwengner, S. Frauendorf, and A. C. Larsen, Phys. Rev. Lett. 111, 232504 (2013).
[23] A. C. Larsen, N. Blasi, A. Bracco, F. Camera, T. K. Eriksen, A. Görgen, M. Guttormsen, T. W. Hagen, S. Leoni, B.

Million, H. T. Nyhus, T. Renstrøm, S. J. Rose, I. E. Ruud, S. Siem, T. Tornyi, G. M. Tveten, A. V. Voinov, and M.
Wiedeking, Phys. Rev. Lett. 111, 242504 (2013).

[24] F. Giacoppo, F. L. Bello Garrote, L. A. Bernstein, D. L. Bleuel, R. B. Firestone, A. Görgen, M. Guttormsen, T. W. Hagen,
M. Klintefjord, P. E. Koehler, A. C. Larsen, H. T. Nyhus, T. Renstrøm, E. Sahin, S. Siem, and T. Tornyi, Phys. Rev. C
91, 054327 (2015).

[25] A. C. Larsen, M. Guttormsen, R. Schwengner, D. L. Bleuel, S. Goriely, S. Harissopulos, F. L. Bello Garrote, Y. Byun,
T. K. Eriksen, F. Giacoppo, A. Görgen, T. W. Hagen, M. Klintefjord, T. Renstrøm, S. J. Rose, E. Sahin, S. Siem, T. G.
Tornyi, G. M. Tveten, A. V. Voinov, and M. Wiedeking, Phys. Rev. C 93, 045810 (2016).

[26] T. Renstrøm, H.-T. Nyhus, H. Utsunomiya, R. Schwengner, S. Goriely, A. C. Larsen, D. M. Filipescu, I. Gheorghe, L. A.
Bernstein, D. L. Bleuel, T. Glodariu, A. Görgen, M. Guttormsen, T. W. Hagen, B. V. Kheswa, Y.-W. Lui, D. Negi, I. E.
Ruud, T. Shima, S. Siem, K. Takahisa, O. Tesileanu, T. G. Tornyi, G. M. Tveten, and M. Wiedeking, Phys. Rev. C 93,
064302 (2016).

[27] B. A. Brown and A. C. Larsen, Phys. Rev. Lett. 113, 252502 (2014).
[28] A. C. Larsen and S. Goriely, Phys. Rev. C 82, 014318 (2010).
[29] OXBASH (The Oxford-Buenos-Aires-MSU Shell Model Code), W. D. M. Rae, A. Etchegoyen, N. S. Godwin, and B. A.

Brown, MSUCL Report Number 524 (1984).
[30] W. Kutchera, B. A. Brown, and K. Ogawa, Nuov. Cim. 1, No. 12 (1978).
[31] R. Sen’kov and V. Zelevinsky, Phys. Rev. C 93, 064304 (2016).
[32] A. Bohr and B.R. Mottelson, Nuclear Structure, Vol. I: Single Particle Motion, p. 169 (W. A. Benjamin, INC, 1969).
[33] M. Honma, T. Otsuka, B. A. Brown and T. Mizusaki, Phys. Rev. C 69, 034335 (2004).



10

[34] M. Honma, T. Otsuka, B. A. Brown and T. Mizusaki, Eur. Phys. J. A 25, Suppl. 1, 499 (2005).
[35] A.C. Larsen, private communication; re-analysis of data from A.C. Larsen et al., Ref. [16].
[36] Data measured at the Oslo Cyclotron Laboratory with the Oslo method, found in http://

www.mn.uio.no/fysikk/english/research/about/ infrastructure/OCL/nuclear-physics-research/ compilation/.
[37] V. Zelevinsky, B.A. Brown, N. Frazier, and M. Horoi, Phys. Rep. 276, 85 (1996).
[38] V.K.B. Kota, Embedded Random Matrix Ensembles in Quantum Physics, Lecture Notes in Physics, vol. 884 (Springer,

Heidelberg, 2014).


