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Abstract

Using halo effective field theory (EFT), an expansion in Rcore/Rhalo, where Rcore is the radius of

the core and Rhalo the radius of the halo nucleus, the charge and neutron form factors of the two-

neutron halo nuclei 11Li, 14Be, and 22C are calculated to next-to-leading-order (NLO) by treating

them as an effective three-body system. From the form factors the point charge and point matter

radii, inter-neutron distance, and neutron opening angle are extracted. Agreement is found with

existing experimental extractions. Results are given for the point charge and point matter radii

for arbitrary neutron core scattering effective range, ρcn, that can be used for predictions once ρcn

is measured. Estimates for ρcn are also used to make NLO predictions. Finally, the point charge

radii of this work are compared to other halo-EFT predictions, and setting the core mass equal

to the neutron mass the point charge radius is found to agree with an analytical prediction in the

unitary limit.
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I. INTRODUCTION

When probing distance scales much larger than the scale of the underlying interaction,

r, interactions can be approximated in a series of contact interactions known as short-

range effective field theory (EFT). The wide applicability of this formalism to low energy

systems such as cold atoms, low energy few-nucleon systems, and halo nuclei is known as

universality [1]. Short-range EFT is an expansion in Mlow/Mhigh, where Mhigh ∼ 1/r sets the

scale of physics not explicitly included, and Mlow ∼ Q, with Q a typical momentum scale in

the problem. For most systems of interest in short-range EFT it is found that the two-body

S-wave scattering length, a, scales unnaturally (Mlow ∼ 1/a < Mhigh). This requires leading-

order (LO) interactions to be treated non-perturbatively leading to the creation of shallow

two-body bound states [2, 3]. Higher-order range interactions are added perturbatively on

top of the LO results in an expansion in powers of r/a. This work focuses on two-neutron

halo nuclei through the short-range EFT known as halo-EFT, however, via universality the

methods and results are equally applicable to cold atom systems and low energy few-nucleon

systems using pionless EFT (EFT(/π)).

Halo nuclei found along the nuclear drip lines are characterized by a core of size, Rcore ∼

1/Mhigh, and loosely bound valence nucleons giving the size of the halo nucleus, Rhalo ∼

1/Mlow, such that Rcore � Rhalo. Halo-EFT takes advantage of these disparate scales

by expanding in powers of (Rcore/Rhalo). In halo-EFT the core is treated as a fundamental

degree of freedom with no internal structure. Breakdown of this description occurs at energy

scales Mhigh ∼ E∗c or Mhigh ∼ Bc−n, where E∗c is the first excited state energy of the core

and Bc−n the one neutron separation energy of the core. At these energies the core can

no longer be treated as a fundamental degree of freedom. The typical momentum scale

of the halo nucleus is given by its binding energy Bhalo ∼ Mlow. In addition to offering a

systematically improvable method for calculating properties of halo nuclei, halo-EFT also

allows for estimation of theoretical errors.

In the two-body sector halo-EFT was introduced to study p-wave resonance interactions

in nα scattering [4, 5]. It has also been used to investigate properties of the one neutron

halo nuclei such as 8Li [6, 7], 15C [8] and 11Be and 19C [9]. Investigation into the possibility

of excited Efimov states of two-neutron halo nuclei with dominant S-wave interactions was

carried out in Ref. [10] at LO. This work also considered point charge and point matter radii
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of two-neutron halo nuclei, and was later extended to next-to-leading-order (NLO) [11] by

including range corrections. However, the NLO calculation was not strictly perturbative as

it resummed range corrections to all orders. This calculation had all the necessary contribu-

tions to NLO, but contained an infinite subset of higher order terms. The two-neutron halo

6He was considered in Refs. [12, 13] by including two-body resonant P -wave interactions.

Examination of the two-neutron halo 22C matter radius was carried out to LO in Ref. [14],

and the charge radii of the two-neutron halos 11Li, 14Be, and 22C were calculated by Hagen

et al. [15] at LO.

Building upon the work of Hagen et al., Vanasse [16] calculated the triton charge radius

in EFT(/π) to next-to-next-to-leading-order (NNLO). In this work I will calculate the charge

and matter form factors and radii of the two-neutron halos 11Li, 14Be, and 22C to NLO by

adding range corrections perturbatively. Note, this differs from the work of Canham and

Hammer [11] in which range corrections are summed to all orders. In addition to showing

NLO results the point charge radii results of Hagen et al. [15] are demonstrated to be

incorrect, most likely due to a wrong factor in front of a single term. The LO analytical

functions for the charge form factor of this work nearly agree with those of Hagen et al. except

in one instance. Using the slightly modified functions of Hagen et al. I am able to reproduce

their results, however, I find in the unitary and equal mass limit that they do not agree with

an analytical solution for the point charge radius [1]. Using the analytical functions of this

work the correct point charge radius in the unitary and equal mass limit is obtained and

different point charge radii from Hagen et al. for 11Li, 12Be, and 22C are found.

This work introduces the Lagrangian for halo-EFT is Sec. II and interactions in the two-

body sector in Sec. III. The trimer vertex function is discussed in Sec. IV and the formalism

for the charge and neutron form factors in Sec. V. In Sec. VI the basic observables of interest

for two-neutron halo nuclei are reviewed. Sec. VII gives the LO and NLO point charge and

point matter radii for 11Li, 14Be, and 22C and compares them with available experimental

data. NLO results use naturalness assumptions to estimate the core neutron effective range,

ρcn. The inter-neutron separation and neutron opening angle are also calculated and com-

pared with experimental data. Also given are the NLO corrections to the charge and matter

radii for arbitrary ρcn that can be used to calculate NLO corrections once experimental data

is available for ρcn. Finally, conclusions are given in Sec. VIII.
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II. LAGRANGIAN AND FORMALISM

At LO in halo-EFT two-neutron halo nuclei are described by zero range interactions be-

tween the cn and nn two-body sub-systems. NLO adds range correction interactions between

the cn and nn sub-systems. These two-body interactions are encoded in the Lagrangian

L2 = ĉ†

(
iD0 +

~D2

2mc

)
ĉ+ n̂†

(
i∂0 +

~∇2

2mn

)
n̂+ d̂†0

[
∆0 + w0

(
i∂0 +

~∇2

4mn

+
γ2
nn

mn

)]
d̂0 (1)

+ d̂†1

[
∆1 + w1

(
iD0 +

~D2

2(mn +mc)
+
γ2
cn

2µ

)]
d̂1 −

g0√
8
d̂†0n̂

T iσ2n̂− g1d̂
†
1n̂ĉ+ H.c.,

where ĉ is the core field, n̂ the neutron field, and d̂0 (d̂1) an auxiliary dimer field of the nn (cn)

system. The nn-dimer, d̂0, is not a physical degree of freedom assuming the nonexistence of

the di-neutron.1 Likewise, the cn-dimer, d̂1, only corresponds to a physical degree of freedom

if the cn system is bound. Despite dimer fields being unphysical they are still useful in the

calculation of bound cnn systems. The coefficient g0 (g1) sets the strength of the interaction

between the nn-dimer and two neutrons (cn-dimer and core and neutron). Gauging the

derivatives of the charged core and cn-dimer gives the covariant derivative

Dµ = ∂µ + ieZÂµ, (2)

where Z is the number of protons in the core and Âµ is the photon field. To calculate the

neutron form factor of cnn systems derivatives acting on neutrons and the nn-dimer can be

gauged with a fictitious neutron charge not shown in this Lagrangian. Neutron and charge

form factors are both necessary to extract the matter radii of halo nuclei. The mass of the

core and neutron are given by mc and mn respectively, while their reduced mass is given by

µ =
mnmc

mn +mc

. (3)

∆0 (∆1) is the bare nn-dimer (cn-dimer) propagator, and γ0 (γ1) the binding momentum

of the nn virtual bound state (cn real or virtual bound state). The parameters w0 and w1

are proportional to range corrections. Finally, iσ2 is a Pauli matrix that projects out the

spin-singlet combination of neutrons. All values of the two-body parameters are given in

the next section.

1 For work discussing the existence of a di-neutron see Refs. [17, 18]
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In addition to two-body interactions at LO a three-body interaction must also be included

to properly renormalize the three-body system [19, 20]. This is most easily achieved by the

introduction of a trimer field t̂ that interacts with a core and nn-dimer via the Lagrangian [15,

21]

L3 = Ωt̂†t̂− h0t̂
†ĉd̂0 − h1t̂

†ĉd̂0 + H.c. (4)

The parameter i/Ω is the bare trimer propagator, h0 is the LO interaction between the

trimer, core, and nn-dimer, and h1 is the NLO correction to h0 introduced to avoid refitting

at NLO. Both h0 and h1 are fit to the cnn bound state energy. Note, the form for the trimer

Lagrangian is not unique [15]. The total Lagrangian of the system is given by

L = L2 + L3 + · · · , (5)

where higher order interactions and unnecessary higher body terms are ignored.

III. TWO-BODY SYSTEMS

The LO dimer propagators are given by the infinite sum of diagrams in Fig. 1. Solid lines

are neutrons, dashed lines the core, the dark rectangle is the bare nn-dimer propagator,

i/∆0, and the light rectangle is the bare cn-dimer propagator, i/∆1. At NLO the dimer

propagators receive range corrections represented by crosses in Fig. 1. The infinite sum of

{LO

{NLO

FIG. 1: Infinite sum of bubble diagrams that give LO cn and nn-dimer propagators. Solid lines

are neutrons, dashed lines are cores, light rectangles are bare cn-dimer propagators, i/∆1, and

dark rectangles are bare nn-dimer propagators, i/∆0. The NLO dimer propagators receive range

corrections, to the LO dressed dimer propagators, represented by a cross.
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diagrams is readily solved via a geometric series yielding the NLO nn-dimer propagator

Dnn(q0, q) =
1√

1
4
q2 −mnq0 − iε− γnn

 1︸︷︷︸
LO

+
Znn − 1

2γnn

(
γnn +

√
1

4
q2 −mnq0 − iε

)
︸ ︷︷ ︸

NLO

 ,

(6)

and NLO cn-dimer propagator

Dcn(q0, q) =
1√

A
(1+A)2

q2 − 2A
1+A

mnq0 − iε− γcn
(7)

×

 1︸︷︷︸
LO

+
Zcn − 1

2γcn

(
γcn +

√
A

(1 + A)2
q2 − 2A

1 + A
mnq0 − iε

)
︸ ︷︷ ︸

NLO

 ,

where A = mc

mn
. Parameters of the dimer propagators are fit using the Z-parametrization [22,

23], which fits to the pole in the two-body scattering amplitude at LO and to its residue

at NLO. The parameter γnn is fit to the nn virtual bound state momentum, which can be

related to the nn-scattering length, ann, and effective range, ρnn, via [23]

γnn =
1

ann
+
ρnn
2
γ2
nn + · · · (8)

The residue to NLO about the nn virtual bound state pole is given by

Znn =
1

1− γnnρnn
. (9)

Using the values ann = −18.7(6) fm [24] and ρnn = 2.75(11) fm [25] for the nn scattering

length and effective range yields the value γnn = −9.87 MeV (Znn = 1.16) for the nn virtual

bound state momentum (residue).

For the cn-dimer, γcn = sign(B1)
√

2µ|B1|, is fit to the cn system “binding energy”,

B1. Negative B1 values give virtual bound states, and the imaginary part of the binding

momentum for such resonant cn-states is ignored. The value of the residue, Zcn, about the

cn pole is given by

Zcn =
1

1− γcnρcn
(10)

where ρcn is the effective range for cn scattering. Unfortunately, experimental determinations

of ρcn are currently unavailable. Therefore, NLO corrections from Znn and Zcn will be
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disentangled, and results will be given for arbitrary values of Zcn, which can be used to easily

determine charge and matter radii once ρcn is measured. In addition ρcn ∼ 1/mπ = 1.4 fm,

will be given a value based on naturalness to make NLO predictions, where mπ is the pion

mass.

Finally the parameters in the two-body Lagrangian are given by [23]

∆0 = γnn − µPDS, w0 = (Znn − 1)
mn

2γnn
, g2

0 =
4π

mn

(11)

∆1 = γcn − µPDS, w1 = (Zcn − 1)
µ

γcn
, g2

1 =
2π

µ
.

The scale µPDS comes from using dimensional regularization with the power divergence

subtraction technique [2, 3] for all loop integrals.

IV. THREE-BODY SYSTEM

Calculation of bound state properties of two-neutron halo nuclei requires the three-body

wavefunction, which is directly related to the trimer vertex function. The LO trimer vertex

function is given by the coupled integral equations in Fig. 2 , which give the matrix equation

FIG. 2: Coupled integral equations for LO trimer vertex function. The trimer field is given by the

triple line and the trimer vertex function the the red circle.

G0(E, p) = B +
[
R0(E, p, q)D(E, q)

]
⊗ G0(E, q), (12)

where the “⊗” operator is defined by

A(q)⊗B(q) =
1

2π2

∫ Λ

0

dqq2A(q)B(q). (13)

Λ is a cutoff used to regulate potential divergences. Once properly renormalized all physical

quantities should have a well defined limit in the limit Λ→∞. B the inhomogeneous term
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and G0(E, p) the LO trimer vertex function are both vectors defined by

B =

(
1

0

)
, Gm(E, p) =

(
Gm,t→d0c(E, p)
Gm,t→d1n(E, p)

)
, (14)

where Gm,t→d0c(E, p) (Gm,t→d1n(E, p)) is the vertex function for a trimer going to a spectator

core and nn-dimer (spectator neutron and cn-dimer).2 The subscript “m” refers to the order

of the trimer vertex function (i.e. m = 0 is LO, m = 1 is NLO, etc...). The kernel term

R0(E, p, q) is a matrix defined by

R0(E, p, q) =

 R00(E, p, q) R01(E, p, q)

R10(E, p, q) R11(E, p, q)

 , (15)

where

R00(E, p, q) = 0, (16)

R01(E, p, q) =
2
√

2π(1+A)

A

1

pq
Q0

(
1+A
2A
p2 + q2 −mnE

pq

)
, (17)

R10(E, p, q) = R01(E, q, p), (18)

and

R11(E, p, q) =
(1+A)2π

A

1

pq
Q0

(
(1+A)

2
(p2 + q2)− AmnE

pq

)
. (19)

Q0(a) is a Legendre function of the second kind defined by

Q0(a) =
1

2
ln

(
1 + a

a− 1

)
. (20)

Finally D(E, q) is a matrix of LO dimer propagators given by

D(E, q) =

 D̄
(0)
nn (E, q) 0

0 D̄
(0)
cn (E, q)

 , (21)

with

D̄(m)
nn (E, q) = D(m)

nn

(
E − q2

2Amn

, q

)
, D̄(m)

cn (E, q) =
2A

1 + A
D(m)
cn

(
E − q2

2mn

, q

)
, (22)

where the superscript “(m)” refers to only the LO (NLO) part of Eqs. (6) and (7) for m = 0

(m = 1).

2 Note, that the “physical” inhomogeneous term should go like h from Eq. (4). However, since the nor-

malization of the trimer vertex function is arbitrary the value of one is given to the inhomogeneous term.

Once the trimer vertex function is properly renormalized the scaling will be fixed.
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1 1

11

1

FIG. 3: Coupled integral equations for the NLO correction to the trimer vertex function. The box

with a “1” inside represents the NLO correction to the trimer vertex function.

The NLO correction to the trimer vertex function receives range corrections as shown

in the coupled integral equations of Fig. 3 This set of coupled integral equations gives the

matrix equation

G1(E, p) = R1(E, p)G0(E, p) +
[
R0(E, p, q)D(E, q)

]
⊗ G1(E, q), (23)

where the matrix R1(E, p) is

R1(E, p) =

 Znn−1
2γnn

(
γnn +

√
2+A
4A
p2 −mnE

)
0

0 Zcn−1
2γcn

(
γcn +

√
A(2+A)
(1+A)2

p2 − 2A
1+A

mnE
)
 .

(24)

Finally, the trimer wavefunction renormalization up to NLO is given by

Zt =
1

Σ′0(E)

 1︸︷︷︸
LO

− Σ′1(E)

Σ′0(E)︸ ︷︷ ︸
NLO

+ · · ·

 , (25)

where Σm(E) are the order-by-order corrections to the trimer self energy defined by [16]

Σm(E) =
mn

2
Gm,t→d0c(E, q)⊗ D̄(0)

nn (E, q). (26)

The functions Σ0(E) and Σ1(E) are given by the diagrams in Fig. 4. Fitting the energy,

1

LO NLO

FIG. 4: Diagrams representing the LO Σ0(E) and NLO Σ1(E).

E = Bcnn, to the cnn bound state energy, Bcnn, yields the values

h2
0

Ω
=

1

Σ0(E)
,

2h1h0

Ω
= − Σ1(E)

(Σ0(E))2 , (27)
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for the parameters in the three-body Lagrangian [16]. However, for the purposes of this

calculation the values of three-body forces are not relevant, but only the values of Σ′0(E),

and Σ′1(E) are relevant. Finally, the quantity ZLO
t is defined as

ZLO
t =

1

Σ′0(E)
. (28)

V. CHARGE AND MATTER FORM FACTORS

The LO charge form factor of two-neutron halo nuclei is given by the sum of diagrams in

Fig. 5, where the blue wavy lines represent minimally coupled A0 photons that only couple to

the charged core. Meanwhile, the LO neutron form factor of two-neutron halo nuclei is given

(a) (b) (c)

FIG. 5: Diagrams for the LO charge form factor of two-neutron halo nuclei. The wavy blue lines

represent minimally coupled A0 photons.

by the sum of diagrams in Fig. 6, where the green zig-zag is a fictitious current that couples

to neutrons with a charge of one. For the neutron form factor there are two different type

(c) diagrams, one for an intermediate cn-dimer and the other for an intermediate nn-dimer.

All form factors are calculated in the Breit frame in which the external current only imparts

momentum, but no energy. Form factors only depend on the external current exchange

momentum squared, ~Q2 = (~P − ~K)2, where ~K (~P) is the trimer momentum before (after)

the external current.

The LO diagram (a) contribution for both charge and neutron form factors is given by

F
(a;X)
0 (Q2) = ZLO

t

{
G̃
T

0 (p)⊗A(X)
0 (p, k,Q)⊗ G̃0(k) + 2G̃

T

0 (p)⊗A(X)
0 (p,Q) +A(X)

0 (Q)
}
,

(29)

where the superscript X = C (X = n) for the charge (neutron) form factor. Functions

A(X)
m (p, k,Q), A(X)

m (p,Q), and A(X)
m (Q) are a matrix, vector, and scalar respectively and are
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(c)

(c)

(a) (b)

FIG. 6: Diagrams for the LO neutron form factor of two-neutron halo nuclei. The green zig-zags

represent an external current that only couples to neutrons. Note there are two (c) type diagrams,

one with an intermediate cn-dimer and the other with an intermediate nn-dimer.

defined in Appendix A. The vector G̃m(p) is defined as

G̃m(p) = D(E, p)Gm(E, p). (30)

Diagram (b) gives the contribution

F
(b;X)
0 (Q2) = ZLO

t G̃
T

0 (p)⊗B(X)
0 (p, k,Q)⊗ G̃0(k), (31)

to the charge and neutron form factors, where B(X)
0 (p, k,Q) is a matrix defined in Ap-

pendix A. The function B(X)
0 (p, k,Q) does not receive higher order corrections. Finally, the

contribution from (c) type diagrams to charge and neutron form factors is given by

F
(c;X)
0 (Q2) = ZLO

t

{
G̃
T

0 (p)⊗ C(X)
0 (p, k,Q)⊗ G̃0(k) + C(X)

0 (k,Q)⊗ G̃0(k) + C(X)
0 (Q)

}
, (32)

where C(X)
m (p, k,Q) is a matrix, C(X)

m (k,Q) a vector, and C(X)
m (Q) a scalar defined in Ap-

pendix A. Combining the contributions from (a) through (c) type diagrams yields the LO

charge and neutron form factors

F
(X)
0 (Q2) = F

(a;X)
0 (Q2) + F

(b;X)
0 (Q2) + F

(c;X)
0 (Q2). (33)

The NLO correction to the two-neutron halo nuclei charge form factor is given by the

sum of diagrams in Fig. 7. Diagram (d) comes from gauging the cn-dimer kinetic term in
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(a) (b) (c)

1 1 1

(d) (e)

FIG. 7: Diagrams for NLO correction to the charge form factor for two-neutron halo nuclei. The

boxed diagram (e) is subtracted to avoid double counting from diagram (a) and its time reversed

version, and diagram (d) comes from gauging the cn-dimer kinetic term. Diagrams related by time

reversal symmetry are not shown.

Eq. (1). The NLO correction to the two-neutron halo nuclei neutron form factor is given

by the sum of diagrams in Fig. 8, where the coupling for the (d) type diagrams comes from

gauging the nn- and cn-dimer kinetic terms in Eq. (1). In Figs. 7 and 8 diagrams related

by time reversal symmetry are not shown, and diagram (e) is subtracted to avoid double

counting from diagram (a) and its time reversed version.

The NLO correction to the charge and neutron form factor from diagram (a) minus

diagram (e) is given by

F
(a;X)
1 (Q2) = ZLO

t

{
G̃
T

0 (p)⊗A(X)
1 (p, k,Q)⊗ G̃0(k) + 2G̃

T

1 (p)⊗A(X)
0 (p, k,Q)⊗ G̃0(k)

(34)

+2G̃
T

0 (p)⊗A(X)
1 (p,Q) + 2G̃

T

1 (p)⊗A(X)
0 (p,Q) +A(X)

1 (Q)
}
.

NLO corrections to the charge and neutron form factors from diagram (b) yield

F
(b;X)
1 (Q2) = ZLO

t

{
2G̃

T

1 (p)⊗B(X)
0 (p, k,Q)⊗ G̃0(k)

}
, (35)
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(a) (c)(b)

1 1 1

(c)

1

(d) (e)

(d)

FIG. 8: Diagrams for the NLO correction to the neutron form factor for two-neutron halo nuclei.

The boxed diagram (e) is subtracted to avoid double counting. Note, there are two type (c) and

type (d) diagrams. Diagrams related by time reversal symmetry are not shown

and from diagrams (c)

F
(c;X)
1 (Q2) = ZLO

t

{
G̃
T

0 (p)⊗ C(X)
1 (p, k,Q)⊗ G̃0(k) + G̃

T

1 (p)⊗ C(X)
0 (p, k,Q)⊗ G̃0(k) (36)

+ G̃
T

0 (p)⊗ C(X)
0 (p, k,Q)⊗ G̃1(k) + C(X)

1 (k,Q)⊗ G̃0(k)

+C(X)
0 (k,Q)⊗ G̃1(k) + C(X)

1 (Q)
}
.

At NLO there are new contributions from (d) type diagrams to the charge and neutron form

factors which give

F
(d;X)
1 (Q2) = ZLO

t

{
G̃
T

0 (p)⊗D
(X)
1 (p, k,Q)⊗ G̃0(k) + D

(X)
1 (k,Q)⊗ G̃0(k) + D

(X)
1 (Q)

}
,

(37)

where D
(X)
1 (p, k,Q) is a matrix, D

(X)
1 (k,Q) a vector, and D

(X)
1 (Q) a scalar defined in Ap-

pendix A. Combining the contribution from diagrams (a) through (d) and multiplying the

LO form factor by the NLO trimer wavefunction renormalization gives the NLO correction

13



to the charge and neutron form factors

F
(X)
1 (Q2) =

(
F

(a;X)
1 (Q2) + F

(b;X)
1 (Q2) + F

(c;X)
1 (Q2) + F

(d;X)
1 (Q2)

)
− Σ′1(E)

Σ′0(E)
F

(X)
0 (Q2). (38)

VI. OBSERVABLES

Expanding the LO two-neutron halo nuclei charge form factor as a function of Q2 yields

F
(C)
0 (Q2) = 1− 1

6

〈
r2
C

〉
0
Q2 + · · · (39)

where 〈r2
C〉0 is the LO point charge radius squared of the cnn system. The LO neutron form

factor expanded in powers of Q2 yields

F
(n)
0 (Q2) = 2

(
1− 1

6

〈
r2
n

〉
0
Q2 + · · ·

)
(40)

where 〈r2
n〉0 is the LO neutron radius of the cnn system. Expanding in powers of Q2 the

NLO correction to the charge form factor is given by

F
(C)
1 (Q2) = −1

6

〈
r2
C

〉
1
Q2 + · · · , (41)

and the NLO correction to the neutron form factor by

F
(n)
1 (Q2) = 2

(
−1

6

〈
r2
n

〉
1
Q2 + · · · .

)
, (42)

where 〈r2
n〉1 (〈r2

C〉1) is the NLO correction to the neutron (point charge) radius of the cnn

system. Due to gauge invariance the NLO correction to the form factors are zero at Q2 =

0 and this is observed numerically to at least seven digits. Likewise it is observed that

F
(C)
0 (0) = 1 and F

(n)
0 (0) = 2 to at least seven digits.

The point charge radius squared of the cnn system is related to its physical charge radius

squared, 〈r2
C〉

cnn
, by 〈

r2
C

〉cnn
=
〈
r2
C

〉
+
〈
r2
C

〉c
+

2

Z

〈
r2
C

〉n
, (43)

where 〈r2
C〉

c
is the charge radius squared of the core, Z the number of protons in the core,

and 〈r2
C〉

n
= −0.115(4) fm2 [26] is the charge radius squared of the neutron. In isotope shift

experiments using laser spectroscopy the value of 〈r2
C〉 is directly accessible if the relatively

small contribution from the neutron charge radius squared is ignored [27]. The point matter

radius of the cnn system is obtained from the charge and neutron radius via√
〈r2
M〉 =

√
1

2+A
((A 〈r2

C〉+ 2 〈r2
n〉), (44)
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and the physical matter radius squared, 〈r2
M〉

cnn
, of the cnn system is related to the point

matter radius squared by〈
r2
M

〉cnn
=
〈
r2
M

〉
+

A

2+A

〈
r2
M

〉c
+

2

2+A

〈
r2
M

〉n
, (45)

where 〈r2
M〉

c
is the matter radius squared of the core and 〈r2

M〉
n

is the matter radius squared

of the neutron. The small contribution from the neutron is ignored.

Two-neutron halo nuclei can be understood geometrically as in Fig. 9. The large circle

rnn

rnc

rn

rc

rnn

R
θnn

FIG. 9: Geometric representation of two-neutron halo nucleus. The value rc is the charge radius

and rn the neutron radius, which both extend from from the c.m. of the two-neutron halo nucleus

to the core (large circle) and neutron (small circle) respectively.

represents the core and the smaller circles the valence neutrons. rc is the point charge radius

that extends from the center of mass (c.m.) of the cnn system to the core, and rn is the

neutron radius. Writing all other geometrical quantities in Fig. 9 in terms of rc, rn, and A

gives

R =
2 + A

2
rc (46)

for the average distance between the core and the nn center of mass,

rnn = 2

√
r2
n −

(
A

2
rc

)2

(47)

for the average inter-neutron separation,

rnc =

√
r2
n +

2 + A

2
r2
c (48)

for the average core neutron separation, and

θnn = 2 arctan

(
rnn

(2 + A)rc

)
(49)
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Nucleus mc [MeV] Bcn [MeV] Bcnn [MeV] Jπc : Jπcn : Jπcnn

9−11Li 8408 -0.026(13) 0.3693(6) 3/2−:(2−, 1−):3/2−

12−14Be 11203 -0.510 1.27(13) 0+:(1/2−):0+

20−22C 18667 -0.01(47) [28] 0.11(6) [28] 0+:(1/2+):0+

TABLE I: The mass mc and quantum numbers, Jπc , of the 9Li, 12Be, and 20C core are given.

Binding energies, Bcn and quantum numbers, Jπcn, of the 10Li, 13Be, and 21C resonances are given

and the bound state energies, Bcnn and quantum numbers, Jπcnn, of the halo nuclei 11Li, 14Be,

and 22C. The quantum number J is the total angular momentum and π the parity. All numbers

without a reference come from Ref. [29].

for the neutron opening angle. These geometrical quantities prove useful as they are more

accessible in certain experiments and also have widespread adoption in the literature.

VII. RESULTS

The LO calculation of the neutron and charge form factors only requires four two-body

inputs and one piece of three-body data. In the nn channel there is the nn virtual bound

state energy, γnn = −9.87 MeV, and the neutron mass. While in the cn channel there is

the core mass and cn “binding energy”, Bcn, given in Table I for halo nuclei considered

in this work. For unbound cn systems |Bcn| is given by the real part of the lowest lying

resonance for cn scattering and Bcn is negative. Using the cnn system binding energy given

in Table I the three-body force is fixed at LO and NLO. In addition the quantum numbers

of the core, cn system, and bound cnn system are shown in Table I. The Lithium system

does not have a spin zero core as assumed in this work. However, since the core is much

heavier than the neutrons the static limit in which the core spin is unchanged can be used

to approximate the core as spin zero. Other two-neutron halo nuclei such as 6He and 17B

are not considered here as they are dominated by two-body P -wave interactions and will be

dealt with in future work. At NLO only the two-body nn effective range ρnn and cn effective

range ρcn are needed.

There are three sources of error in the calculation of the form factors, (i) numerical error,

(ii) error from two- and three-body parameters, and (iii) error from the halo-EFT expansion.
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Nucleus E∗c [MeV] Bc−n [MeV]
√
|Bcn/E∗c |

√
Bcnn/E∗c

√
|Bcn/Bc−n|

√
|Bcnn/Bc−n|

9−11Li 2.69 4.06 0.098 0.370 0.078 0.301

12−14Be 2.10 3.17 0.493 0.78 0.40 0.63

20−22C 1.59 [30] 2.9(3) 0.09 0.26 0.07 0.19

TABLE II: The first excited state energy E∗c and the one neutron separation energy Bc−n of

the 9Li, 12Be, and 20C cores are given. Using these values the ratios
√
|Bcn/E∗c |,

√
|Bcnn/E∗c |,√

|Bcn/Bc−n|, and
√
|Bcn/Bc−n| are calculated to estimate the error of the halo-EFT expansion.

All numbers for E∗c and Bc−n without a reference come from Ref. [29].

Numerical error is negligible compared to the other sources of error and will henceforth be

disregarded. The predominant source of error for 11Li and 14Be comes from the halo-EFT

expansion, which is estimated in Table II for each halo nucleus, where ratios of Mhi to Mlow

parameters are taken. The scales for Mhi are the core’s first excited state energy, E∗c , and

the one neutron separation energy, Bc−n, for the core, both shown in Table II. These scales

signal the breakdown of halo-EFT since the core can no longer be a fundamental degree of

freedom at these energies. The scales for Mlow are given by Bcn and Bcnn. Taking the most

conservative error estimate the error of the EFT expansion is 37% for 11Li, 78% for 14Be,

and 26% for 22C. However, the error for 22C is dominated by the uncertainty in Bcn and

Bcnn. Since within the error of Bcn it can equal Bcnn the charge and matter radius of 22C

diverge, and it can only be bounded from below.

The LO and NLO predictions for the point charge radius, point matter radius, and

existing experimental determinations are shown in Table III for each halo nucleus. All results

are calculated at a cutoff of Λ = 20000 MeV, which is sufficient to ensure convergence with

respect to Λ. The radii are extracted from the form factors by performing a linear fit with

respect to Q2 over the range Q2 = 0 − 0.5 MeV2. At NLO the cn effective range, ρcn, is

estimated using naturalness assumptions giving the value ρcn ∼ 1/mπ = 1.4 fm. Atomic

spectroscopy gives the experimental value of 1.171(120) fm2 for the 11Li point charge radius

squared [27]. This value was later revised in Ref. [31] by adding finite mass corrections

giving a value of 1.104(85) fm2. Using the cluster sum rule [38] the experimental electric

dipole response of 11Li [33] can be related to its point charge radius squared yielding a

value of 0.82(11) fm2 [32]. In this work the LO prediction for the 11Li point charge radius
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Nucleus
〈
r2
C

〉
0

fm2
〈
r2
M

〉
0

fm2
〈
r2
C

〉
0+1

fm2
〈
r2
M

〉
0+1

fm2
〈
r2
C

〉
-Exp. fm2

〈
r2
M

〉
-Exp. fm2

11Li 0.744(275) 5.76± 2.13 0.774(106) 6.05± 0.83 1.171(120) [27]

1.104(85) [31]

0.82(11) [32, 33]

5.34± 0.15 [34]

14Be 0.126(98) 1.23± 0.96 0.134(81) 1.34± 0.81 — 4.24± 2.42 [34]

2.90± 2.25 [34]

22C 0.520+∞
−0.274 9.00+∞

−5.01 0.530+∞
−0.283 9.22+∞

−5.16 — 21.1± 9.7 [35, 36]

3.77±0.61 [35, 37]

TABLE III: LO and NLO halo-EFT predictions for charge and matter radii of two-neutron halo

nuclei. Included are existing experimental results. The NLO results use the naturalness estimate

ρcn ∼ 1/mπ ∼ 1.4 fm for the NLO prediction, where ρcn is the effective range for cn scattering.

of 0.744(275) fm2 squared agrees with the smaller experimental value within errors, and

NLO corrections, assuming a natural value for ρcn, give 0.774(106) fm2 again agreeing with

the smaller experimental number within errors. The difference between these experimental

values is often attributed to polarization effects of the core [32], which occur at orders beyond

NLO in halo-EFT. In addition realistic values of ρcn may alleviate some of the disagreement

with atomic spectroscopy measurements. Range corrections are found to be an important

contribution for the triton charge radius in EFT(/π) [16].

The point charge radius squared of 14Be is 0.126(98) fm2 at LO and 0.134(81) fm2 at

NLO, while for 22C it is 0.520+∞
−0.274 fm2 at LO and 0.530+∞

−0.283 fm2 at NLO. The range for

22C comes from varying Bcn and Bcnn within their experimental errors. Unfortunately, no

experimental determination of the charge radius currently exists for 14Be or 22C. The results

of this work for the point charge radius of 11Li, 14Be, and 22C disagree with those of Hagen et

al. [15]. However, if the coefficient of a single Q2 term in diagram (a) of Fig. 5 is changed then

the charge radii of Hagen et al. are found and moreover their expressions for the diagram in

Fig. 5 are reproduced. For further details of this difference see Appendix A.

The point matter radius squared of 11Li is 5.76 ± 2.13 fm2 at LO and 6.05 ± 0.83 fm2

at NLO. This agrees well with the experimental number for the 11Li point matter radius of

5.34±0.15 fm2, which is given by the matter radius of 2.32±0.02 fm [34] for 9Li, the matter

radius of 3.12±0.02 fm [34] for 11Li, and the use of Eq. (45). In Eq. (45) the unknown matter

18



radius of the neutron is ignored since it is suppressed by a factor of 2/(2+A). For 14Be one

finds a LO point matter radius squared of 1.23±0.96 fm2 and NLO value of 1.34±0.81 fm2,

which agrees with the experimental results of 4.24 ± 2.42 fm2 2.90 ± 2.25 fm2 within the

large theoretical and experimental uncertainty. 22C has a LO point matter radius squared of

9.00+∞
−5.01 fm2 and a NLO matter radius squared of 9.22+∞

−5.16 fm2. The ranges for 22C, due to

varying Bcn and Bcnn within their experimental errors, overlap with the experimental results

of 21.1± 9.7 fm2 and 3.77± 0.61 fm2. In order to find the experimental point matter radius

of 14Be and 22C Eq. (45) is used, the value 2.59 ± 0.06 fm [34] for the 12Be matter radius,

3.16± 0.38 fm [34] and 2.94± 0.38 fm [34] for the 14Be matter radius, 2.98± 0.05 fm [34] for

the 20C [35] matter radius, and 5.4± 0.9 fm [36] and 3.44± 0.08 fm [37] for the 22C matter

radius. The smaller values for the 14Be and 22C matter radii give the smaller experimental

values for their respective point matter radii in Table III.

In addition to the point matter and point charge radii the LO values for the average inter-

neutron distance, rnn, and neutron opening angle, θnn, shown in Fig. 9, are given in Table IV.

Experimental results of rnn for 11Li and 14Be from Marqués et al. [39, 40] using two-neutron

interferometry agree within errors with the predictions of this work. The neutron opening

angles of Bertulani et al. [41] are determined using rnn from Marqués et al. [39, 40], atomic

spectroscopy data on 11Li for R [27], which gives an angle of 58◦+10
−14 , and dipole response

data for 11Li with the cluster sum rule for R, which gives an angle of 66◦+22
−18 [33]. For 14Be

Bertulani et al. [41] used a model calculation for R. The neutron opening angles of Hagino et

al. [42] use the dipole response data for 11Li with a model to extract R, the matter radius of

11Li [34] to get the neutron opening angle 56.2◦+17.8
21.3 , and the data of Marqués et al. [39, 40] to

get rn, which gives a value of 65.2◦+11.4
−13.0 . These values agree within errors with the calculated

results in Table IV. However, the error bars are quite large. Also shown in Table IV are

LO halo-EFT predictions from Canham and Hammer [10] for 11Li and 14Be. For 11Li they

find the neutron opening angles 77◦+8
−9 and 68◦+31

−25 using different values of Bcn and for 14Be

find 72◦+16
−13 . Their values for θnn and rnn differ from the ones of this work in part due to

different choices for the values of Bcn and Bcnn, however, within errors they agree with the

results of this work. These calculations were extended to NLO in Ref. [11] by resumming

range corrections to all orders and using naturalness assumptions for ρcn. This differs from

this work in which range corrections are added perturbatively. NLO values for θnn and rnn

are not shown because θnn barely changes and rnn only slightly.
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Nucleus rnn fm θnn deg. rnn fm θnn deg.

11Li 7.30+1.24
−1.51 75.4+43.1

−36.3 6.6± 1.5 [39, 40]

8.7± 0.7 [10]

6.8± 1.8 [10]

58+10
−14, 66+22

−18 [41]

56.2+17.8
−21.3, 65.2+11.4

−13.0 [42]

77+8
−9, 68+31

−25 [10]

14Be 3.66+1.22
−1.94 73.1+88.0

−62.6 5.4± 1.0 [39, 40]

4.1± 0.5 [10]

64+9
−10 [41]

72+16
−13 [10]

22C 13.0+∞
−4.72 78.8+101.2

−27.3 — —

TABLE IV: Values of rn and θnn for halo nuclei. The error for rnn and θnn on 22C is due to varying

the value for Bcn and Bcnn within their errors.

Nucleus nn:
〈
r2
C

〉
1

fm2 nn:
〈
r2
M

〉
1

fm2 cn:
〈
r2
C

〉
1

fm2 cn:
〈
r2
M

〉
1

fm2

11Li 3.71× 10−3 0.117 7.66 49.2

14Be 2.05× 10−3 5.94× 10−2 1.99 15.1

22C -(4.18+∞
−0.587 × 10−4) 6.75+∞

−1.02 × 10−2 3.02+∞
−2.38 43.8+∞

−40.5

TABLE V: NLO halo-EFT corrections for charge and matter radii of two-neutron halo nuclei. The

nn: results come from setting nn effective range corrections to their physical values and setting

cn effective range corrections to zero, while the cn: results come from setting nn effective range

corrections to zero and setting the quantity (Zcn − 1)/(2γcn) = 1 MeV−1.

Table V gives the NLO corrections to the charge and matter point radii from the nn and

cn effective range corrections separately. The nn NLO range corrections use the physical

values for the nn effective range correction, whereas for the cn effective range

Zcn − 1

2γcn
= 1 MeV−1. (50)

If future experiments determine the cn effective range ρcn then the value Zcn−1
2γcn

can be

calculated and multiply the results in Table V to get the physical cn NLO range corrections.

Finally, in the unitary and equal mass limit their exists an analytical result [1] for the

point charge and point matter radius squared which states

mE
〈
r2
〉

=
1 + s2

0

9
= 0.224..., (51)

where m is the mass of the particles, E the three-body binding energy, 〈r2〉 the point charge
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or point matter radius squared, and s0 ≈ 1.00624 [43] is a universal number from the

asymptotic solution of the three-boson problem with short range interactions. Taking the

equal mass and unitary limit in my code I find the number 0.224 for the combination of

parameters in Eq. (51). Any technique that claims to calculate the zero-range limit exactly

must obtain this result within numerical accuracy and therefore this result should serve as

an essential benchmark.

VIII. CONCLUSION

Using halo-EFT to NLO I have calculated the charge and neutron form factors for the

two-neutron halo nuclei 11Li, 14Be, and 22C. From the form factors the point charge and

point matter radii have been extracted to NLO as well as the inter-neutron separation and

neutron opening angle to LO. NLO results were obtained using a naturalness assumption for

the cn effective range, ρcn ∼ 1/mπ = 1.4 fm. At LO and NLO agreement was found between

the predicted matter radii and experimental extractions. However, this is partly due to the

large error bars in both experiment and theory. Further work will be needed in both theory

and experiment to further reduce these error bars. The charge radius of 11Li was found to

agree with the experimental extraction from the electric dipole response function of 11Li, but

found to slightly under-predict the charge radius from laser spectroscopy. Charge radii for

14Be and 22C were also given for which there are no current experimental determinations.

Future experiments measuring the charge form factors of halo nuclei are planned for the

electron-ion scattering experiment (ELISe) at the International Facility for Antiproton and

Ion Research (FAIR) [44].

The inter-neutron separation and neutron opening angle were also calculated and com-

pared with experimental extractions. Again agreement was found with “experimental” val-

ues, but this is in part due to large error bars. Only LO values are shown for these numbers

as the neutron opening angle barely changes at NLO and the inter-neutron separation only

slightly. Finally, the NLO corrections to the point charge and point matter radii from the nn

effective range ρnn and the cn effective range ρcn were calculated separately, such that the

point charge and point matter radii can be easily calculated to NLO once ρcn is measured.

The point charge and point matter radii were also calculated in the unitary equal mass

limit and shown to agree with the analytical prediction of Ref. [1]. However, the point charge
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radii of this work disagree with those of Hagen et al. [15]. Comparing the functions for the

LO charge form factor in this work with those of Hagen et al. a minor discrepancy is found

given in detail in Appendix A. Using the incorrect function from Hagen et al. I reproduce

the point charge radii given in their paper, but fail to reproduce the correct value in the

unitary and equal mass limit.

In order to have more realistic predictions at NLO the parameter ρcn must be known.

One possible way to measure ρcn for n+9Li is through the breakup process d(9Li)→ np(9Li).

Certain kinematical regimes of the three-body breakup spectrum should be especially sen-

sitive to the n9Li interaction. A halo-EFT calculation of this process is complicated by the

binding energy of the deuteron, 2.22 MeV, being only slightly smaller than the first excited

state energy of 9Li, 2.69 MeV. The ratio of these two quantities makes for a poor expansion

and would likely require that the first excited state of 9Li be added as a new degree of

freedom. Similar experiments could also be carried out for 12Be and 20C. ρcn could also be

determined by ab initio approaches and then combined with halo-EFT [45–47].

In this work the contribution of two-body P -wave interactions was not considered. Such

interactions can be added perturbatively as in Ref. [48] for the three-nucleon system. How-

ever, for the two-neutron halos 6He and 17B resonant two-body P -wave interactions must

be treated non-perturbatively [13]. This work also approximated all cores as spin zero, but

future work should consider arbitrary spin cores. Further reduction of the theoretical error

in halo-EFT will require a NNLO calculation. However, at NNLO a new energy dependent

three-body force, h2, occurs that will require a new piece of three-body data. The value for

h2 could be potentially fit to three-body data from ab initio approaches or the asymptotic

normalization of the halo nucleus wavefunction. A future NNLO calculation will need to

carefully consider appropriate renormalization conditions for h2.
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Appendix A:

The matrix function A(C)
m (p, k,Q) for the diagram (a) contribution in Figs. 5 and 7 to

the charge form factor is given by[
A(C)
m (p, k,Q)

]
ij

=
m2
nA

8π2

∫ Λ

0

dqq2

∫ 1

0

dx
1

qQx

{
Ri0

(
E +

qQx

mnA
, k, d(q,Q, x)

)
(A1)

×R0j (E, d(q,Q,−x), p) D̄(m)
nn

(
E +

qQx

2mnA
− Q2

4mnA(2 + A)
, q

)
−Ri0 (E, k, d(q,Q, x))R0j

(
E − qQx

mnA
, d(q,Q,−x), p

)
×D̄(m)

nn

(
E − qQx

2mnA
− Q2

4mnA(2 + A)
, q

)}
δj1δi1,

where i, j = 0, 1 label the matrix components, and m = 0 (m = 1) gives the LO contribution

(NLO correction). A(C)
m (p,Q) the vector function is given by[

A(C)
m (p,Q)

]
j

=
m2
nA

8π2

∫ Λ

0

dqq2

∫ 1

0

dx
1

qQx

{
R0j

(
qQx

mnA
+ E, d(q,Q, x), p

)
(A2)

× D̄(m)
nn

(
E +

qQx

2mnA
− Q2

4mnA(2 + A)
, q

)
−R0j (E, d(q,Q, x), p) D̄(m)

nn

(
E − qQx

2mnA
− Q2

4mnA(2 + A)
, q

)}
δ1j,

and the scalar function A(C)
m (Q) by

A(C)
m (Q) =

m2
nA

8π2

∫ Λ

0

dqq2

∫ 1

0

dx
1

qQx

{
D̄(m)
nn

(
E +

qQx

2mnA
− Q2

4mnA(2 + A)
, q

)
(A3)

−D̄(m)
nn

(
E − qQx

2mnA
− Q2

4mnA(2 + A)
, q

)}
,

where

d(q,Q, x) =

√
q2 +

2qQx

2 + A
+

Q2

(2 + A)2
. (A4)

For details of how to calculate the functions in this appendix consult Refs. [15, 16]. The LO

functions A(C)
0 (p, k,Q), A(C)

0 (p,Q), and A(C)
0 (Q) almost agree with the related functions

of Hagen et al. [15], however, where this work finds the value Q2/(4mnA(2 + A)) in the

nn-dimer propagator they find Q2/(8mnA). Using their value for the Q2 term the point

charge radii given in their paper are reproduced. However, using their Q2 value gives the

wrong point charge radius in the equal mass and unitary limit, whereas the Q2 value of this

work gives the correct point charge radius in this limit, given in Eq. (51).
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The matrix function A(n)
m (k, p,Q) contribution to diagram (a) in Figs. 6 and 8 for the

neutron form factor is given by[
A(n)
m (k, p,Q)

]
ij

=
m2
n

8π2

∫ Λ

0

dqq2

∫ 1

0

dx
1

qQx

{
R1i

(
qQx

mn

+ E, d

(
q,

1+A

2
Q, x

)
, k

)
(A5)

×Rj1

(
E, p, d

(
q,

1+A

2
Q,−x

))
D̄(m)
cn

(
E +

qQx

2mn

− (1+A)Q2

8mn(2+A)
, q

)
−R1i

(
E, d

(
q,

1+A

2
Q, x

)
, k

)
×Rj1

(
−qQx
mn

+ E, p, d

(
q,

1+A

2
Q,−x

))
D̄(m)
cn

(
E − qQx

2mn

− (1+A)Q2

8mn(2+A)
, q

)}
,

the vector function A(n)
m (p,Q) by [

A(n)
m (p,Q)

]
j

= 0, (A6)

and scalar function A(n)
m (Q) by

A(n)
m (Q) = 0. (A7)

Diagram (b) in Figs. 5 and 7 for the charge form factor has the matrix function[
B(C)

0 (p, k,Q)
]
ij

=
m2
n

4

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dφ (A8)

× 1

k2 + p2 + 2
1+A

kpθ(x, y, φ) + Q2

(2+A)2
+ Q

2+A
(2xk + 2

1+A
yp)− 2mnA

(1+A)
E

× 1

k2 + p2 + 2
1+A

kpθ(x, y, φ) + Q2

(2+A)2
− Q

2+A
(2yp+ 2kx

1+A
)− 2mnA

(1+A)
E
δj1δi1,

while the neutron form factor diagram (b) and its time reversed version in Figs. 6 and 8 give

the matrix function[
B(n)

0 (p, k,Q)
]
ij

=

√
2m2

n(1 + A)

8A

∫ 1

0

dx

∫ 1

0

dy

∫ 2π

0

dφ (A9)

× 1
1+A
2A
k2 + p2 + A(1+A)

2(2+A)2
Q2 + kpθ(x, y, φ) + Q

2+A
((1 + A)xk + Ayp)−mnE

× 1
1+A
2A
k2 + p2 + 1

(2+A)2
Q2 + kpθ(x, y, φ)− Q

2+A
(xk + 2yp)−mnE

δi1δj0

+ (k ←→ p) δi0δj1.

The (k ←→ p) represents the preceding term, but with k and p interchanged. Due to time

reversal symmetry the δi0δj1 term is equivalent to the δi1δj0 term. Higher order corrections to
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the functions B(X
0 (k, p,Q) do not exist. Finally, the function θ(x, y, φ) is the angle between

vectors ~k and ~p and is defined as

θ(x, y, φ) = xy +
√

1− x2
√

1− y2 cos(φ). (A10)

The matrix function C(C)
m (p, k,Q) for diagram (c) of the charge form factor in Figs. 5

and 7 is given by[
C(C)
m (p, k,Q)

]
ij

=
(1 + A)m2

n

2π2Q

1∑
α,β=0

∫ Λ

0

dqq2

∫ 1

0

dxRi1

(
E, k, d

(
q,
Q

2
, x

))
(A11)

× D̄(α)
cn

(
E − qQx

2mn(1 + A)
− Q2

8mn(1 + A)(2 + A)
, q

)

× arctan

 Q
2(2+A)√

A(2+A)
(1+A)2

d2
(
q, Q

2
, x
)
− 2Amn

1+A
E +

√
A(2+A)
(1+A)2

d2
(
q, Q

2
,−x

)
− 2Amn

1+A
E


×R1j

(
E, d

(
q,
Q

2
,−x

)
, p

)
D̄(β)
cn

(
E +

qQx

2mn(1+A)
− Q2

8mn(1+A)(2+A)
, q

)
δα+β,m,

the vector contribution by [
C(C)
m (k,Q)

]
j

= 0, (A12)

and the scalar contribution gives

C(C)
m (Q) = 0. (A13)

The type (c) diagram for the neutron form factor in Figs. 6 and 8 has two contributions.

The first contribution is from a diagram with an intermediate cn-dimer and the second

contribution has an intermediate nn-dimer. Therefore, the neutron form factor matrix

function C(n)
m (p, k,Q) will be split into

C(n)
m (p, k,Q) = C(1;n)

m (p, k,Q) + C(2;n)
m (p, k,Q), (A14)

the vector function split into

C(n)
m (k,Q) = C(1;n)

m (k,Q) + C(2;n)
m (k,Q), (A15)

and the scalar function split into

C(n)
m (Q) = C(1;n)

m (Q) + C(2;n)
m (Q), (A16)

where the term with a (1;n) ((2;n)) superscript refers to the diagram with an intermediate

cn- (nn-) dimer. The neutron form factor contribution from diagram (c) with an intermediate
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cn-dimer is similar to the (c) diagram for the charge form factor except the external current

couples to the neutron instead of the core. Thus the matrix function C(1;n)
m (p, k,Q) given by

[
C(1;n)
m (p, k,Q)

]
ij

=
(1+A)2m2

n

8π2Q

1∑
α,β=0

∫ Λ

0

dqq2

∫ 1

0

dxR1i

(
E, d

(
q,
Q

2
,−x

)
, k

)
(A17)

× D̄(α)
cn

(
E − Q2

8mn(1+A)(2+A)
− qQx

2mn(1+A)
, q

)
× D̄(β)

cn

(
E − Q2

8mn(1+A)(2+A)
+

qQx

2mn(1+A)
, q

)

× arctan

 A
1+A

Q√
A(2+A)
(1+A)2

d2
(
q, Q

2
,−x

)
− 2mnA

1+A
E +

√
A(2+A)
(1+A)2

d2
(
q, Q

2
, x
)
− 2mnA

1+A
E


×Rj1

(
E, p, d

(
q,
Q

2
, x

))
δα+β,1,

is the same as C(C)
m (p, k,Q) except for an overall constant and the arctan(...) term which is

slightly different. The vector function C(1;n)
m (k,Q) is given by[

C(1;n)
m (k,Q)

]
j

= 0, (A18)

and the scalar function C(1;n)
m (Q) by

C(1;n)
m (Q) = 0. (A19)

For the neutron form factor the type (c) diagram with an intermediate nn-dimer of Figs. 6

and 8 has the matrix function C(2;n)
m (p, k,Q) given by

[
C(2;n)
m (p, k,Q)

]
ij

=
m2
n

2π2Q

1∑
α,β=0

∫ Λ

0

dqq2

∫ 1

0

dxD̄(α)
nn

(
E +

qQx

4mn

− AQ2

16mn(2+A)
, q

)
(A20)

× D̄(β)
nn

(
E − qQx

4mn

− AQ2

16mn(2+A)
, q

)

× arctan

 1
2
Q√

2+A
4A
d2
(
q, A

2
Q, x

)
−mnE +

√
2+A
4A
d2
(
q, A

2
Q,−x

)
−mnE


×R0j

(
E, d

(
q,
A

2
Q,−x

)
, k

)
Ri0

(
E, p, d

(
q,
A

2
Q, x

))
δj1δi1δα+β,m,
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the vector function[
C(2;n)
m (k,Q)

]
j

=
m2
n

π2Q

1∑
α,β=0

∫ Λ

0

dqq2

∫ 1

0

dxD̄(α)
nn

(
E +

qQx

4mn

− AQ2

16mn(2+A)
, q

)
(A21)

× D̄(β)
nn

(
E − qQx

4mn

− AQ2

16mn(2+A)
, q

)

× arctan

 1
2
Q√

2+A
4A
d2
(
q, A

2
Q, x

)
−mnE +

√
2+A
4A
d2
(
q, A

2
Q,−x

)
−mnE


×R0j

(
E, d

(
q,
A

2
Q,−x

)
, k

)
δj1δα+β,m,

and the scalar function

C(2;n)
m (Q) =

m2
n

2π2Q

1∑
α,β=0

∫ Λ

0

dqq2

∫ 1

0

dxD̄(α)
nn

(
E +

qQx

4mn

− AQ2

16mn(2+A)
, q

)
(A22)

× D̄(β)
nn

(
E − qQx

4mn

− AQ2

16mn(2+A)
, q

)

× arctan

 1
2
Q√

2+A
4A
d2
(
q, A

2
Q, x

)
−mnE +

√
2+A
4A
d2
(
q, A

2
Q,−x

)
−mnE

 δα+β,m.

The arctan(...) function for all (c) type diagrams comes from analytically solving the two-

body bubble sub-diagram. The matrix functions BC
0 (p, k,Q) and C(C)

0 (p, k,Q) agree with

the associated functions of Hagen et al. [15].

At NLO the diagram (d) contribution to the charge form factor in Fig. 7 gives the matrix

function[
D

(C)
1 (p, k,Q)

]
ij

= − m2
n

16π2

Zcn − 1

2γcn

∫ Λ

0

dqq2

∫ 1

0

dxRi1

(
E, k, d

(
q,
Q

2
, x

))
(A23)

× D̄(0)
cn

(
E − qQx

2mn(1+A)
− Q2

8mn(1+A)(2+A)
, q

)
×R1j

(
E, d

(
q,
Q

2
,−x

)
, p

)
D̄(0)
cn

(
E +

qQx

2mn(1+A)
− Q2

8mn(1+A)(2+A)
, q

)
,

vector function [
D

(C)
1 (k,Q)

]
j

= 0, (A24)

and scalar function

D
(C)
1 (Q) = 0. (A25)

These functions are entirely analogous to the functions for the charge form factor contribu-

tion to diagram (c). This is because diagram (d) is essentially diagram (c) with the two-body

sub-diagram replaced with a direct coupling to the gauged cn-dimer.
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The diagram (d) contribution to the neutron form factor is split up into two parts in

complete analogy to the diagram (c) contribution. Diagram (d) with an intermediate cn-

dimer gives the matrix function[
D

(1;n)
1 (p, k,Q)

]
ij

= − m2
n

16π2

Zcn − 1

2γcn

∫ Λ

0

dqq2

∫ 1

0

dxR1i

(
E, d

(
q,
Q

2
,−x

)
, k

)
(A26)

× D̄(0)
cn

(
E − Q2

8mn(1+A)(2+A)
− qQx

2mn(1+A)
, q

)
× D̄(0)

cn

(
E − Q2

8mn(1+A)(2+A)
+

qQx

2mn(1+A)
, q

)
×Rj1

(
E, p, d

(
q,
Q

2
, x

))
,

vector function [
D

(1;n)
1 (k,Q)

]
j

= 0, (A27)

and scalar function

D
(1;n)
1 (Q) = 0. (A28)

Finally, diagram (d) with an intermediate nn-dimer has the matrix function[
D

(2;n)
1 (k, p,Q)

]
ij

= −m
2
n

8π2

Znn − 1

2γnn

∫ Λ

0

dqq2

∫ 1

0

dxD̄(0)
nn

(
E +

qQx

4mn

− AQ2

16mn(2+A)
, q

)
(A29)

× D̄(0)
nn

(
E − qQx

4mn

− AQ2

16mn(2+A)
, q

)
×R0j

(
E, d

(
q,
A

2
Q,−x

)
, k

)
Ri0

(
E, p, d

(
q,
A

2
Q, x

))
δj1δi1,

vector function[
D

(2;n)
1 (k,Q)

]
j

= −m
2
n

4π2

Znn − 1

2γnn

∫ Λ

0

dqq2

∫ 1

0

dxD̄(0)
nn

(
E +

qQx

4mn

− AQ2

16mn(2+A)
, q

)
(A30)

× D̄(0)
nn

(
E − qQx

4mn

− AQ2

16mn(2+A)
, q

)
×R0j

(
E, d

(
q,
Q

2
,−x

)
, k

)
δj1,

and scalar function

D
(2;n)
1 (Q) = −m

2
n

8π2

Znn − 1

2γnn

∫ Λ

0

dqq2

∫ 1

0

dxD̄(0)
nn

(
E +

qQx

4mn

− AQ2

16mn(2+A)
, q

)
(A31)

× D̄(0)
nn

(
E − qQx

4mn

− AQ2

16mn(2+A)
, q

)
.
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These functions are again completely analogous to their type (c) diagram counterparts.

Diagram (e) in Fig. 7 for the charge form factor is subtracted from diagram (a) and its

time reversed version in Fig. 7 to avoid double counting. Therefore, the contribution from

diagram (e) in Fig. 7 has been included in the functions A(C)
1 (...). The same procedure is

carried out for diagram (e) for the neutron form factor in Fig. 8.

[1] E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006), cond-mat/0410417.

[2] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B 424, 390 (1998), nucl-th/9801034.

[3] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B 534, 329 (1998), nucl-th/9802075.

[4] C. A. Bertulani, H.-W. Hammer, and U. Van Kolck, Nucl. Phys. A712, 37 (2002), nucl-

th/0205063.

[5] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Lett. B569, 159 (2003), nucl-

th/0304007.

[6] G. Rupak and R. Higa, Phys. Rev. Lett. 106, 222501 (2011), 1101.0207.

[7] L. Fernando, R. Higa, and G. Rupak, Eur. Phys. J. A48, 24 (2012), 1109.1876.

[8] G. Rupak, L. Fernando, and A. Vaghani, Phys. Rev. C86, 044608 (2012), 1204.4408.

[9] L. Fernando, A. Vaghani, and G. Rupak (2015), 1511.04054.

[10] D. L. Canham and H.-W. Hammer, Eur. Phys. J. A37, 367 (2008), 0807.3258.

[11] D. L. Canham and H.-W. Hammer, Nucl. Phys. A836, 275 (2010), 0911.3238.

[12] J. Rotureau and U. van Kolck, Few Body Syst. 54, 725 (2013), 1201.3351.

[13] C. Ji, C. Elster, and D. R. Phillips, Phys. Rev. C90, 044004 (2014), 1405.2394.

[14] B. Acharya, C. Ji, and D. R. Phillips, Phys. Lett. B723, 196 (2013), 1303.6720.

[15] P. Hagen, H.-W. Hammer, and L. Platter, Eur. Phys. J. A49, 118 (2013), 1304.6516.

[16] J. Vanasse (2015), 1512.03805.

[17] H.-W. Hammer and S. König, Phys. Lett. B736, 208 (2014), 1406.1359.

[18] C. R. Howell, W. Tornow, and H. Wita la, EPJ Web Conf. 113, 04008 (2016).

[19] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev. Lett. 82, 463 (1999), nucl-

th/9809025.

[20] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A 646, 444 (1999), nucl-

th/9811046.

29



[21] P. F. Bedaque, G. Rupak, H. W. Grießhammer, and H.-W. Hammer, Nucl. Phys. A 714, 589

(2003), nucl-th/0207034.

[22] D. R. Phillips, G. Rupak, and M. J. Savage, Phys. Lett. B 473, 209 (2000), nucl-th/9908054.

[23] H. W. Grießhammer, Nucl. Phys. A 744, 192 (2004), nucl-th/0404073.

[24] D. E. Gonzalez Trotter et al., Phys. Rev. Lett. 83, 3788 (1999).

[25] G. A. Miller, B. M. K. Nefkens, and I. Šlaus, Phys. Rept. 194, 1 (1990).
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