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Abstract

Background: The discovery of neutrinoless double-beta (0νββ) decay would demonstrate the

nature of neutrinos, have profound implications for our understanding of matter-antimatter mys-

tery, and solve the mass hierarchy problem of neutrinos. The calculations for the nuclear matrix

elements M0ν of 0νββ decay are crucial for the interpretation of this process.

Purpose: We study the effects of relativity and nucleon-nucleon short-range correlations on the

nuclear matrix elements M0ν by assuming the mechanism of exchanging light or heavy neutrinos

for the 0νββ decay.

Methods: The nuclear matrix elements M0ν are calculated within the framework of covariant

density functional theory, where the beyond-mean-field correlations are included in the nuclear

wave functions by configuration mixing of both angular-momentum and particle-number projected

quadrupole deformed mean-field states.

Results: The nuclear matrix elements M0ν are obtained for 10 0νββ-decay candidate nuclei.

The impact of relativity is illustrated by adopting relativistic or nonrelativistic decay operators

respectively. The effects of short-range correlations are evaluated.

Conclusions: The effects of relativity and short-range correlations play an important role in the

mechanism of exchanging heavy neutrinos though the influences are marginal for light neutrinos.

Combining the nuclear matrix elements M0ν with the observed lower limits on the 0νββ-decay

half-lives, the predicted strongest limits on the effective masses are |〈mν〉| < 0.06 eV for light

neutrinos and |〈m−1
νh

〉|−1 > 3.065 × 108 GeV for heavy neutrinos.
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I. INTRODUCTION

The neutrinoless double-beta (0νββ) decay is a process where an even-even nucleus (N,Z)

transforms into its even-even neighbor (N − 2, Z + 2) with only two electrons emitted.

The fact that the 0νββ decay violates the total lepton number by two units makes it a

sensitive probe to revealing the mysterious nature of massive neutrinos: this process occurs

only if the neutrinos are Majorana particles and the violation of total lepton number is

possible. Several other fundamental questions on neutrinos, including their absolute mass

scale, mass spectrum hierarchy (normal, inverted, or quasi-degenerate) and the mechanism

of masses generation, are expected to be clarified if one can possibly combine the results

from this process and other neutrino experiments [1]. To date, no actual signal for the 0νββ

decay has been confirmed despite numerous experimental data released. Recently, the most

stringent lower limits on the half-lives are reported by the KamLAND-Zen collaboration [2]

for 136Xe, T 0ν
1/2 > 1.07× 1026 yr (90% C.L.), and by the NEMO-3 collaboration [3] for 150Nd,

T 0ν
1/2 > 2.0× 1022 yr (90% C.L.).

In the 0νββ-decay mechanism of exchanging virtual Majorana neutrinos, the half-life T 0ν
1/2

is inversely proportional to an effective parameter f(mi, Uei) related to neutrino masses, a

kinematic phase-space factor G0ν , and the nuclear matrix element (NME) M0ν squared:

[T 0ν
1/2]

−1 = G0ν g
4
A |M0ν |2 f(mi, Uei). (1)

Considering the two limiting cases of neutrino propagator

mi

qµqµ −m2
i

→











mi/qµq
µ, m2

i ≪ qµq
µ

−1/mi, m2
i ≫ qµq

µ

(2)

the amplitude is proportional to the mass for a light neutrino,

f(mi, Uei) = |〈mν〉|
2m−2

e , (3)

〈mν〉 =
∑

k

(Uek)
2mk,

3



but inversely proportional to the mass for a heavy neutrino,

f(mi, Uei) = |〈m−1
νh
〉|2m2

p, (4)

〈m−1
νh
〉 =

∑

kh

(Uekh)
2m−1

kh
.

Note that qµ is the momentum transferred by the neutrino, Uek and Uekh are elements in

the neutrino mixing matrix that mix light and heavy neutrinos respectively. me and mp are

electron and nucleon masses, and the bare value gA = 1.254 is used for the axial-vector cou-

pling constant. Given that the phase-space factor G0ν has been precisely determined [4], an

accurate knowledge of the NMEM0ν is the key to connecting the experimental measurement

with fundamental physics.

The calculation of the NME requires the wave functions of initial and final nuclear states

as well as the decay operator. Previously the NMEs M0ν have been calculated within the

framework of covariant density functional theory (CDFT) [5–8], where the relativistic wave

functions and the relativistic 0νββ-decay operator derived from weak interaction Hamil-

tonian are used in the calculations. Various nonrelativistic nuclear structure models have

been applied as well. They include the configuration-interacting shell model (CISM) [9–

24], the quasiparticle random phase approximation (QRPA) [25–44], the projected Hartree-

Fock-Bogoliubov (PHFB) model [45–50], the interacting boson model (IBM) [51–54], and

the nonrelativistic energy density functional (EDF) theory [55–57]. In contrast with the

CDFT application, the 0νββ-decay operator has to be reduced to its nonrelativistic form

in these calculations, in order to be adapted to the nonrelativistic nuclear wave functions.

Therefore, the fully relativistic framework of CDFT allows one to examine the validity of

the nonrelativistic approximation and to reveal the relativistic effects in the NME, by con-

ducting comparative studies with the relativistic or nonrelativistic-reduced decay operators

respectively.

Previous studies based on beyond-mean-field CDFT [5, 6] have shown that the nonrela-

tivistic decay operator is a good approximation to the full relativistic operator within the

assumption of light-neutrino exchange. The goal of this paper is to generalize the calcula-

tions to the case with heavy-neutrino exchange and to present a comprehensive study on the

effects of relativity and nucleon-nucleon short-range correlations (SRC) on the NME of 0νββ

decay. The calculations are based on nuclear wave functions in which the dynamic effects
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of particle-number and angular-momentum conservations as well as shape fluctuations are

incorporated by the projection techniques and the generator coordinate method (GCM),

in full analogy to Refs. [5, 6]. The SRC corrections neglected in previous calculations of

light-neutrino NME are now taken into account via a Jastrow function using the Argonne

V18 parametrization [58–60].

II. FORMALISM

In the framework of beyond-mean-field CDFT, the nuclear many-body wave function

is constructed by superposing a set of quantum-number projected non-orthogonal states

around the equilibrium shape [61–65],

|JNZ;α〉 =
∑

κ∈{β2,K}

fJα
κ P̂ J

MKP̂
N P̂Z |β2〉. (5)

The deformation parameters β2 are chosen as the generator coordinates in the GCM method

so that the quadrupole axial deformation and its quantum fluctuations are considered. The

reference states |β2〉 are a set of BCS states generated from the self-consistent mean-field

calculations based on the universal relativistic energy functional PC-PK1 [66]. The pro-

jection operators P̂G’s (G ≡ J,N, Z) [67] are responsible for restoring broken symmetries

by projecting the reference wave functions onto states with good angular momenta J and

numbers (N,Z) of neutrons and protons. The coefficients fJα
κ are determined by solving

the Hill-Wheeler-Griffin equation [67]. The indices α = 1, 2, . . . distinguish different nuclear

states with energy Eα.

The 0νββ-decay operator is derived from the second-order weak Hamiltonian with charge-

exchange nucleonic and leptonic currents. It reads,

Ô0ν =
4πR

g2A

∫∫

d3x1d
3x2

∫

d3q

(2π)3
h(q)

× J †
µ(x1)J

µ†(x2) e
iq·(x1−x2), (6)

with R = 1.2A1/3 fm.
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The neutrino potential h(q) for light-neutrino exchange is,

h(q) = q−1(q + Ed)
−1 , (7)

Ed ≡ Ē − (EI + EF )/2 ,

where EI(F ) corresponds to the energy of initial (final) nuclear state, and Ē is the average

energy of intermediate states. For heavy-neutrino exchange the neutrino potential is,

h(q) = (mpme)
−1. (8)

These potentials are obtained by taking the limiting forms of the neutrino propagator in

Eq. (2). While the light-mass limit leads to a q−2-dependence in h(q), the heavy-mass limit

gives a constant.

The charge-exchange nucleonic current is given by J †
µ(x) ≡ ψ̄(x)Γµ(q)τ−ψ(x) with the

vertex,

Γµ(q) = gV (q
2)γµ + igM(q2)

σµν
2mp

qν

− gA(q
2)γµγ5 − gP (q

2)qµγ5, (9)

where τ− is the isospin lowering operator. More details about the current operator J †
µ as

well as its nonrelativistic-reduced form can be found in Refs. [5, 6].

Here we consider the most probable path for the 0νββ decay, namely, the transition

between the ground states (Jπ = 0+) of even-even nuclei. Taking the nuclear wave functions

in Eq. (5) constructed with the GCM+PNAMP (particle-number and angular-momentum

projection) method, the total NME reads

M0ν =
∑

βI

2
,βF

2

f ∗
0+
F

(βF
2 )f0+

I

(βI
2)

∫

d3q

(2π)3
h(q)

×
∑

abcd

〈ab|Γ(1)
µ (q)Γµ(2)(q) eiq·(x1−x2) |cd〉 (10)

× 〈βF
2 | c

(π)†
a c

(π)†
b c

(ν)
d c(ν)c P̂ J=0P̂NI P̂ZI |βI

2〉,

which is a weighted superposition of the projected matrix elements with different initial and

final deformation parameters βI
2 and βF

2 . The neutron annihilation operators c
(ν)
c,d and proton
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creation operators c
(π)†
a,b are responsible for transforming two neutrons into protons.

In order to take into account the SRC of two interacting nucleons, the 0νββ-decay NME

are calculated with nuclear wave functions modified by a Jastrow correlation function [59, 60]

F (r) = 1− ce−ar2(1− br2), (11)

where r ≡ |x1−x2| is the distance of two nucleons. This is equivalent to modifying the decay

operator, Ô0ν(r) → F (r)Ô0ν(r)F (r). Therefore the single integration over q in Eq. (10) now

becomes twofold:

∫

d3q

(2π)3
h(q) Γ(1)

µ (q)Γµ(2)(q) eiq·(x1−x2) ⇒ (12)

∫

d3k

(2π)3
G̃(k)

∫

d3q

(2π)3
h(q) Γ(1)

µ (q)Γµ(2)(q) ei(q+k)·(x1−x2).

Note that the Fourier transform of the correlation function,

G̃(k) ≡

∫

d3r F 2(r)e−ik·r, (13)

is used in order to treat the NME in the reciprocal spaces.

III. NUMERICAL DETAILS

The single-particle Dirac equation is solved by expanding the wave functions in the three-

dimensional harmonic oscillator basis with 12 major shells [68]. A zero-range force V pp
0 δ(r1−

r2) is implemented in the particle-particle channel. The pairing strength parameters V pp
0 are

−314.55 MeV fm3 for neutrons and −346.5 MeV fm3 for protons, determined by reproducing

the corresponding pairing gaps of separable finite-range pairing force [69] in 150Nd (see Fig. 1

of Ref. [5]). Note that only the like-particle pairing has been considered here. The isovector

or isoscalar proton-neutron pairing is not included and the isospin symmetry is broken. On

the one hand, the problem with isospin symmetry has been addressed in the QRPA [37, 70]

and the IBM calculations [53], respectively. It is proposed that the (partial) restoration of

isospin symmetry can be achieved by imposing the condition that the 2νββ Fermi matrix

elements M2ν
F vanish. This has been realized by adjusting the value of the renormalization

constant gT=1
pp in QRPA [43, 44] or by modifying the mapped fermion operators in IBM [54].
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Although the Fermi matrix elementsM0ν
F are considerably reduced, the restoration of isospin

symmetry has only a limited effect on the total NMEs. On the other hand, it has been known

in the case of QRPA that the effect of the inclusion of the isoscalar pairing is significant. The

renormalization parameter gT=0
pp is crucial to the NME calculation, and its value is usually

determined by the requirement that the calculated 2νββ Gamow-Teller matrix elements

M2ν
GT reproduce their experimental values [71]. Recently this issue has been revisited by

taking the isoscalar-pairing amplitude as a generator coordinate in GCM [72, 73]. This

effect turns out to quench the NME M0ν significantly by a factor even larger than 50%.

Inclusion of this effect in CDFT is not trivial and to be investigated as the next step of our

study.

The generator coordinates are chosen in the interval of β2 ∈ [−0.4, 0.6] with a step

size ∆β2 = 0.1. The empirical values for the energy denominator Ed = 1.12A1/2 MeV

(Ed ≃ 13.72 MeV for A = 150), proposed by Haxton et al. [9] and examined in Ref. [5], are

used in the calculations of the NME with light-neutrino exchange.

Three parametrizations for the Jastrow SRC function F (r) [58–60], Miller-Spencer (M-S),

Argonne V18 (Argonne), and CD Bonn (Bonn), are discussed and the final results with the

Argonne parameters a = 1.59 fm−2, b = 1.45 fm−2, and c = 0.94 are shown.

IV. RESULTS AND DISCUSSION

A. NME with light- and heavy-neutrino exchange

We now discuss in detail the NME for the 0νββ decay, 150Nd → 150Sm, mediated by the

exchange of light and heavy neutrinos, respectively.

The major results of this paper for the 0νββ NME, labeled as “Rel. (SRC)” in Fig. 1,

are given by the calculations based on the full relativistic decay operator and the Jastrow

SRC using the Argonne parameterization. The values for the total NME are M0ν = 5.46 in

the light-neutrino mechanism and M0ν = 218.2 in the heavy-neutrino case. Furthermore,

the results obtained from the relativistic operator and the nonrelativistic-reduced operator

are compared side by side (Rel. vs. NR) in the figure. For each case, two sets of values,

obtained with and without considering the SRC, are distinguished by the color-filled and

unfilled bars, respectively.
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FIG. 1. NME M0ν for the 0νββ decay of 150Nd → 150Sm mediated by (a) light- and (b) heavy-

neutrino exchange, with the total and the VV, AA, AP, PP, and MM components separately.

Results are calculated within the GCM+PNAMP scheme based on the CDFT using both the full

relativistic (Rel.) and nonrelativistic-reduced (NR) decay operators with (SRC) and without (bare)

the Argonne-parameterized SRC.

According to the different coupling channels of Γµ(q) in Eq. (9), the total NME can

be decomposed into vector (VV), axial-vector (AA), axial-vector and pseudoscalar (AP),

pseudoscalar (PP), and weak-magnetism (MM) terms. Figure 1 shows the contributions of

these individual terms to the total NMEs in different cases. All of them are consistent with

the conclusion in Ref. [6] that the AA term exhausts more than 95% of the total NME. The

values for the total NMEs are listed in Table I.

TABLE I. NME M0ν for the 0νββ decay of 150Nd → 150Sm, calculated within the GCM+PNAMP

scheme based on the CDFT using both the full relativistic (Rel.) and nonrelativistic-reduced (NR)

decay operators with (SRC) and without (bare) the Argonne-parameterized SRC.

150Nd
NME (light-ν) NME (heavy-ν)

bare SRC bare SRC

Rel. 5.59 5.46 365.3 218.2

NR 5.55 5.51 320.3 220.8

Comparing to our previous calculations for the light-neutrino NME [5], the new results

obtained here after implementing the SRC indicate that the SRC effects can be safely ne-
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glected in this circumstance. Moreover, the calculation confirms our previous conclusion

that the nonrelativistic reduction of the decay operator is a very good approximation to the

full operator in the light-neutrino NME, regardless of whether the SRC are included or not.

The heavy-neutrino NME, on the other hand, has a more sensitive response to both the

inclusion of the SRC and the nonrelativistic reduction of the decay operator. First, Fig. 1(b)

shows that the SRC introduce a significant reduction in the total NME up to 40%. This can

be understood by considering the short-range nature of the heavy-neutrino exchange process,

as we shall see in the detailed investigation later. Second, the impacts of relativity on the

heavy-neutrino NME manifest clearly a dual feature; while the nonrelativistic approximation

results in a reduction of 12% in the bare NME, this effect is completely compensated after

the implementation of the SRC. The cancellation of relativistic effects mainly comes from

the PP and AP channels whose contributions have the opposite signs. With the onset of the

SRC, the positive relativistic effects in the PP channel are decreased while the magnitude

of the negative relativistic effects in the AP channel are increased, resulting in the final

elimination of the difference in the total NME. The interplay between the effects of SRC

and relativity in the heavy-neutrino NME will be further discussed in the following.

B. Effects of SRC

The disparate SRC-responses of the light- and heavy-neutrino 0νββ NME can be well un-

derstood by decomposing the NME into its contributions from the various channels i =VV,

AA, AP, PP, and MM. For this purpose, we rewrite the NME in Eq. (10) as,

M0ν
i ≡

4πR

g2A

∫

q2dq

(2π)3
Hi(q)Ii(q). (14)

Here the q-dependence in Γµ(q) is put into the function Hi(q), i.e.,

HVV(q) = h(q) g2V (q
2) , (15a)

HAA(q) = h(q) g2A(q
2) , (15b)

HAP(q) = h(q) gA(q
2)gP (q

2)q , (15c)

HPP(q) = h(q) g2P (q
2)q2 , (15d)

HMM(q) = h(q) g2M(q2)q2/4m2
p . (15e)
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For simplicity, the other parts of the NME in Eq. (10) that are not included in Hi(q) are

defined as a new function Ii(q), which is also channel-specified and q-dependent. With this

definition, the SRC-corrected NME, which contains a twofold integration as in Eq. (12), can

be calculated by simply replacing Hi(q) with a modified function Hsrc
i (q) in Eq. (14):

Hsrc
i (q) = Hi(q) +

∫

q′2dq′

(2π)2
Hi(q

′)
1

2qq′

∫ (q+q′)2

(q−q′)2
du g(u),

(16)

where g(u) = 4π
∫∞

0
[F 2(r)− 1] j0(kr)r

2dr with u ≡ k2, F (r) is the pre-mentioned Jastrow

SRC correlation function, and j0(kr) is the spherical Bessel function.

(a) (b)

(c) (d)
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FIG. 2. The function Hi(q) with (SRC) and without (bare) the Argonne-SRC modification for

the VV, AA, AP, PP and MM channels in the 0νββ NME of light- and heavy-neutrino exchange,

respectively.

The information regarding the decay mechanism of light- or heavy-neutrino exchange is

contained exclusively in the function Hi(q) in Eq. (14) or, in Hsrc
i (q) after the modification

with the SRC. Figure 2 shows the function Hi(q) (bare) in comparison with the SRC-

modified function Hsrc
i (q) (SRC) for the light- and heavy-neutrino cases respectively. For

heavy-neutrino exchange (Figs. 2(b, d)), the H(q)-functions are altered significantly by the

SRC correction. For instance, the downward shift of HAA(q) is responsible for the large-

amplitude reduction of the AA matrix element by the SRC in Fig. 1(b). The curve of
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HMM(q) is also shifted downward. In this case, it becomes negative in the low-q range,

leading to a cancellation of the SRC-corrected MM matrix element after the q-integration.

On the contrary, Figs. 2(a, c) show only minor differences between the H(q)-functions

with and without including the SRC correction in different channels of the light-neutrino

NME. This explains the reason why the light-neutrino NMEs are merely affected by the

SRC, and can be easily interpreted in terms of the q-dependence of neutrino potential h(q).

Unlike the constant h(q) in Eq. (8) for heavy-neutrinos, the light-neutrino h(q) in Eq. (7)

grows very sharply when q → 0 and vanishes very rapidly as q increases. As a result, for

light-neutrinos, the h(q) dominates the q-dependence of the H(q)-function, diminishing the

difference between Hi(q) and Hsrc
i (q). Therefore, the differences in the q-dependence of

the neutrino potential h(q) cause the different effects that the SRC have on the light- and

heavy-neutrino NMEs.

To validate the above conclusions in a systematic way, we generalize the NME-calculations

to several other 0νββ candidate nuclei, by considering 3 parametrizations for the SRC

function F (r) in Eq. (11): M-S, Argonne, and Bonn, using the parameters determined in

Refs. [58–60]. The systematic calculations are performed with the full relativistic decay

operator and the particle-number projected spherical wave functions, where the normalized

NMEs are provided as

M0ν
sph =

〈βF
2 = 0|Ô0νP̂NI P̂ZI |βI

2 = 0〉
∏

a=I,F

√

〈βa
2 = 0|P̂NaP̂Za|βa

2 = 0〉
. (17)

Table II shows the calculated NMEs M0ν
sph for 10 candidate nuclei, ranging from 48Ca to

150Nd, for the 0νββ decay mediated by light- and heavy-neutrino exchange. The relative

corrections ∆src ≡ (M0ν
bare − M0ν

src)/M
0ν
bare represent the SRC effects in a quantitative way.

Columns 2-8 of Table II list the calculated light-neutrino NMEs without (bare) and with 3

types of SRC, as well as the relative corrections ∆src. Columns 9-15 show the counterparts

in the case of heavy-neutrinos.

Consistent with the full GCM calculation for 150Nd, the inclusion of the Argonne-

parameterized SRC can reduce the light-neutrino NME by a factor of 1-3% and the heavy-

neutrino NME by a factor of 40-44%. In the case of light-neutrinos, only the M-S SRC

provide a noticeable correction of about 15%. Both the Argonne and Bonn SRC have few

influences on the total NME. For the heavy-neutrino NME, the M-S and the Bonn SRC
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TABLE II. Normalized NME M0ν
sph for the 0νββ decay obtained with the particle-number projected

spherical mean-field configurations (βI
2 = βF

2 = 0) based on CDFT. Columns 2-8 list the calculated

light-neutrino NME without (bare) and with 3 types of SRC, respectively. Columns 9-15 show the

counterparts in the case of heavy-neutrinos. Also shown are the relative corrections ∆src.

NME (light-ν) NME (heavy-ν)

bare M-S ∆src Argonne ∆src Bonn ∆src bare M-S ∆src Argonne ∆src Bonn ∆src

48Ca 3.67 3.26 11% 3.62 1% 3.74 −2% 145.6 42.8 71% 82.3 43% 117.0 20%
76Ge 7.61 6.36 17% 7.48 2% 7.84 −3% 466.8 135.7 71% 267.0 43% 378.1 19%
82Se 7.60 6.38 16% 7.48 2% 7.83 −3% 454.0 132.7 71% 261.4 42% 369.0 19%
96Zr 5.68 4.84 15% 5.58 2% 5.82 −2% 307.3 89.0 71% 177.7 42% 250.5 18%

100Mo 10.99 9.38 15% 10.80 2% 11.27 −3% 596.3 174.1 71% 346.7 42% 487.4 18%
116Cd 6.19 5.18 16% 6.08 2% 6.37 −3% 378.3 111.3 71% 222.7 41% 311.2 18%
124Sn 6.70 5.68 15% 6.58 2% 6.87 −3% 381.2 111.7 71% 224.6 41% 313.8 18%
130Te 9.55 8.03 16% 9.38 2% 9.82 −3% 573.0 168.5 71% 339.2 41% 472.8 17%
136Xe 6.62 5.58 16% 6.51 2% 6.80 −3% 394.5 116.3 71% 234.3 41% 326.2 17%
150Nd 13.26 11.11 16% 13.00 2% 13.62 −3% 804.1 237.7 70% 481.7 40% 667.9 17%

introduce the most significant (70%) and the most modest (15-20%) quenching effects,

respectively. The correction given by the Argonne parametrization lies in between.

In the calculation of the 0νββ NMEs for the heavy neutrino exchange mode, it is not

surprising that the short-range effects play a significant role. Besides the nucleon-nucleon

SRC, the effect of finite nucleon size (FNS) also comes into play. The FNS effect is con-

sidered in this work by employing the phenomenological dipole nucleon form factors in the

momentum space [74, 75]. The sensitivity of the heavy-neutrino NMEs to the form factors

has been manifested in Ref. [76] via the calculation with both the phenomenological form

factors and the form factors deduced from the quark confinement model. Despite that there

only exist small differences between the two types of the form factors, the resulting values

for the NMEs differ by almost one order of magnitude. Furthermore, it is seen for the heavy

neutrino exchange mode in Ref. [76] as well as in this paper that the absolute values of

M0ν
AP andM0ν

PP, which are originated from the nucleon pseudoscalar coupling interaction, are

comparable in size to that of M0ν
AA and M0ν

VV. This fact, according to Ref. [76], emphasizes

the importance of the alternative 0νββ-decay mechanisms such as double charge exchange

of the pions in flight between the two nucleons [77]. Similar conclusion has also been drawn

in the framework of R-parity-violating supersymmetry that the pion-exchange mechanism
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may dominate over the conventional two-nucleon one if the 0νββ decay is mediated by heavy

neutrinos [78, 79]. Thus, it still needs more investigations as to the accurate treatment of

the FNS as well as the 0νββ-decay mechanisms in the calculation with heavy-neutrinos.

C. Effects of relativity

The relativistic correction that is missing in the nonrelativistic approximation is of the

order of (q/mp)
4 at the lowest level. In other words, the effects of this correction display a

high-q character. Consequently, relativity does not play an important role in the calculation

of light-neutrino NME due to the large suppression of h(q) in the intermediate- and high-q

regions. There are small differences in the individual channels, especially the PP and AP

channels, but the differences almost cancel out in the total NME.
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FIG. 3. The q-space distribution of the 0νββ NME with heavy-neutrino exchange. Comparisons

are made between the calculations using both the full relativistic (Rel.) and nonrelativistic-reduced

(NR) decay operators with (SRC) and without (bare) the Argonne-parameterized SRC. Particle-

number projected spherical wave functions are used in this calculation for the initial nucleus 150Nd

and the final nucleus 150Sm.

For the heavy-neutrino NME, the relativistic corrections have a more significant effect.

As we have seen in Fig. 1(b), the contribution of the relativistic correction constitutes about

12% of the total NME without switching on the SRC. In this case the effects in the PP and

other positive terms are not entirely cancelled out by the negative contribution arising from
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the AP term. With the SRC, however, the positive and negative contributions from those

individual terms become compensated with each other as in the light-neutrino case. So there

are no remarkable effects left in the total NME.

The cancellation mainly comes from the PP and AP channels. Figure 3(b) shows for the

PP channel that the q-space distribution of the heavy-neutrino NME,Hi(q)Ii(q)q
2, i = PP, is

only modified slightly by the SRC when the nonrelativistic operator is used [“NR (bare)” vs.

“NR (SRC)”], while the distribution changes remarkably in the full relativistic calculation

[“Rel. (bare)” vs. “Rel. (SRC)”]. As a result, the nonrelativisitc NME in the PP channel

is almost unchanged by the SRC, while the relativistic NME gets reduced, leading to a

smaller difference between the two NME, i.e. a relatively weak relativistic effect. The

opposite is found for the AP channel in Fig. 3(c). The relativistic effects in this channel are

enhanced by the SRC as the nonrelativisitc curve is modified more significantly. The other

channels, whose q-space distributions are shown in Fig. 3(d-f), have little contribution to the

relativistic effects. Notably, the relativistic corrections in the AP and PP channels have the

opposite signs. Therefore, the decrease of the positive contribution and the increase of the

negative term diminish the overall (positive) effects that appear in the bare NME. From the

q-space distribution of the total NME,
∑

iHi(q)Ii(q)q
2, shown in Fig. 3(a), it is also clearly

seen that the SRC affect the relativistic NME more significantly than the nonrelativistic

one, resulting in an overall reduction of the relativistic effect. For the sake of simplicity,

the functions plotted in Fig. 3 are extracted from the NME-calculations with only spherical

configurations of the initial and final nuclear states. The features we discuss here should

apply to the complete GCM calculations without loss of generality.

We have carried out systematic investigations of the relativistic effects on the 0νββ-

decay NMEs of other candidate nuclei. The normalized NMEs of Eq. (17) are calculated

with the relativistic and nonrelativistic operators respectively, and the relative corrections

∆Rel. ≡ (M0ν
Rel. −M0ν

NR)/M
0ν
Rel. are extracted.

Shown in Table III are the values of ∆Rel. obtained for both the light- and heavy-neutrino

exchange NMEs with and without considering the SRC effects. Consistent with the full

GCM calculation for 150Nd, the error arisen from the nonrelativistic approximation for the

light-neutrino NME is marginal. It increases or decreases the total NME by a factor less than

5%. The relativistic corrections become more significant in the heavy-neutrino case where

we find that the nonrelativistic calculations underestimate the bare NME by 10-15% while
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TABLE III. Relativistic correction ∆Rel. in the 0νββ-decay NME with (SRC) and without (bare)

the Argonne-parameterized SRC. Particle-number projected spherical mean-field wave functions

(βI
2 = βF

2 = 0) based on the CDFT are used in the calculation.

∆Rel. (light-ν) ∆Rel. (heavy-ν)

bare SRC bare SRC
48Ca −2% −1% 15% −2%
76Ge −1% −3% 10% −6%
82Se −1% −3% 11% −5%
96Zr 1% −1% 11% −2%

100Mo 1% −1% 11% −2%
116Cd 1% −1% 12% −3%
124Sn −1% −2% 10% −3%
130Te −1% −2% 10% −3%
136Xe −1% −3% 10% −3%
150Nd 1% −0% 13% −0%

they overestimate the SRC-corrected NME by a factor of roughly 10%. Interestingly, the

SRC, by affecting the PP and AP channels differently, not only reduce the relativistic effects

observed in the bare NMEs, but also reverse the signs of net effects in most circumstances.

D. Comparison and discussion

Table IV displays our final NMEs for the 0νββ decay of 150Nd → 150Sm in comparison

with those from earlier investigations: nonrelativistic EDF [55, 57], PHFB [49, 50], QRPA by

the Tübingen group (QRPA-Tü) [44], Skyrme QRPA by the North-Carolina group (QRPA-

NC) [41], and IBM [54]. Here, only the results obtained with consideration of nuclear

deformations are adopted for comparison. All results are calculated with an unquenched

axial-vector coupling constant gA = 1.254 or a value close to it and using the radius param-

eter R = 1.2A1/3 fm.

The Argonne parametrization is applied in our calculation for the nucleon-nucleon SRC, as

well as in the listed results of PHFB and IBM. The nonrelativistic EDF calculation considers

the SRC via the unitary correlation operator method, which according to Ref. [53] gives

similar effects as the Argonne-parameterized Jastrow function. The QRPA-Tü calculation

uses the Bonn parametrization for the SRC while the QRPA-NC calculation neglects the
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SRC completely, both of which are expected to result in a larger total NME than the

Argonne parametrization. However, according to Table II, the discrepancies are negligible

in the light-neutrino NME. Hence, the possible uncertainties arisen from different ways of

treating the SRC will not alter the conclusions of this comparison.

TABLE IV. NME for the 0νββ decay of 150Nd → 150Sm mediated by light- and heavy-neutrino

exchange. The column “CDFT” shows the results of this work, which are calculated within the

GCM+PNAMP scheme based on the CDFT, in comparison with the results from other model

calculations. With the latest data for the half-life T 0ν
1/2 > 2.0 × 1022 yr (90% C.L.) [3] and the

calculated phase-space factor G0ν = 63.03 × 10−15 yr−1 [4], the limits for the effective neutrino

masses |〈mν〉|(eV) and |〈m−1
νh

〉|−1(×106 GeV) are derived for each model calculation using Eq. (1).

CDFT EDF PHFB QRPA-Tü QRPA-NC IBM

light-ν NME 5.46 1.71/2.19 2.49–3.31 3.37 3.14/2.71 2.67

|〈mν〉| < 1.7 < 5.4/4.2 < 3.7–2.8 < 2.7 < 2.9/3.4 < 3.4

heavy-ν NME 218.2 – 77.3–97.8 – – 116.0

|〈m−1
νh
〉|−1 > 11.4 – > 4.0–5.1 – – > 6.1

The EDF calculations are carried out within a similar beyond-mean-field framework as

ours and based on the nonrelativistic Gogny functional D1S. By choosing the quadrupole

deformation β2 as the generator coordinate in the GCM method, the final NME includes

the shape mixing effect and the resulting NME is M0ν = 1.71 [55]. This value increases to

M0ν = 2.19 when the pairing fluctuations are included explicitly [57]. The results from the

PHFB model are obtained with a pairing plus quadrupole-quadrupole interaction, and the

ranges presented in the table are given by choosing a series of different parameterizations

for this interaction [49, 50]. The NME of QRPA-Tü is obtained by deformed QRPA calcu-

lations based on a set of Woods-Saxon single-particle levels and using the G matrix of the

realistic CD Bonn potential as residual interaction. Isospin symmetry is partially restored

by enforcing the Fermi matrix elementM2ν
F = 0 [44]. In the QRPA-NC calculations, modern

Skyrme functionals (SkM*/modified SkM*) are used in a self-consistent way for generating

both the HFB mean fields and the residual interactions in QRPA [41]. The IBM results are

calculated by applying the interacting boson model IBM-2 [54].

Among different nuclear models, our CDFT beyond-mean-field calculation provides the

largest values for the NMEs of the 0νββ decay for 150Nd → 150Sm. In particular, our

result obtained for the light-neutrino NME is almost 3 times as large as that of the density-
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functional method using the nonrelativistic Gogny functional D1S for possible reasons that

have been discussed in detail in Refs. [5, 6]. Other nuclear models provide predictions for the

NME that lie between the two density-functional results. For the heavy-neutrino mediated

0νββ process, the NME is not provided by nonrelativisitc EDF, but our result is larger by

a factor of 2 than those from PHFB and IBM. Moreover, we find that the ratios of the

heavy-neutrino NME to the light-neutrino NME given by our calculations and by IBM are

surprisingly similar, which are around 40, while the PHFB calculations lead to a smaller

ratio of around 30.

The results of double-beta decay experiments, recently released by the NEMO-3 Col-

laboration, have set a lower limit of T 0ν
1/2 > 2.0 × 1022 yr (90% C.L.) for the half-life of

150Nd [3]. With the computed phase-space factor G0ν = 63.03×10−15 yr−1 [4], it is straight-

forward to derive the constraints on the fundamental parameters in f(mi, Uei) according

to Eq. (1). Combining the experimental data and the CDFT results for the NMEs, our

predictions for the limits of neutrino masses are |〈mν〉| < 1.7 eV for light neutrinos and

|〈m−1
νh
〉|−1 > 11.4 × 106 GeV for heavy neutrinos. The predictions by other nuclear models

are shown in Table IV. By comparison, the CDFT beyond-mean-field results impose the

most stringent constraints on the effective masses of both light and heavy neutrinos.

TABLE V. The NMEs M0ν and the limits imposed the effective neutrino masses |〈mν〉|(eV) and

|〈m−1
νh

〉|−1(×106 GeV) based on the present CDFT calculation. The lower limits of the half-life

T 0ν
1/2(×1022 yr, 90% C.L.) for the 0νββ decay are from the most recent measurements [2, 3, 80–88],

and the phase-space factors G0ν(×10−15 yr−1) are from Ref. [4].

T 0ν
1/2 G0ν light-ν heavy-ν

M0ν |〈mν〉| M0ν |〈m−1
νh
〉|−1

48Ca 5.8 24.81 2.71 < 3.2 84.5 > 4.7
76Ge 3000 2.363 6.04 < 0.2 209.1 > 82.1
82Se 36 10.16 5.30 < 1.0 189.3 > 16.9
96Zr 0.92 20.58 6.37 < 3.7 220.9 > 4.5

100Mo 110 15.92 6.48 < 0.4 232.6 > 45.4
116Cd 17 16.70 5.43 < 1.1 201.1 > 15.8
124Sn 0.005 9.04 4.25 < 114 168.5 > 0.2
130Te 280 14.22 4.89 < 0.3 193.8 > 57.1
136Xe 10700 14.58 4.24 < 0.06 166.3 > 306.5
150Nd 2.0 63.03 5.46 < 1.7 218.2 > 11.4
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FIG. 4. Comparison of the NMEs M0ν of the 0νββ decay from different model calculations, which

include the EDF [57], IBM [54], PHFB [49, 50], QRPA-NC [41], QRPA-Tü [44], and CSM [14]

calculations, as well as the CDFT calculation in this paper with the GCM+PNAMP wave functions

and the Argonne-parameterized SRC. The CDFT results without considering the SRC effect [6] is

also shown for the light neutrino exchange mode.

TABLE V lists our final NMEs M0ν of the 0νββ decay in 10 candidate nuclei for both

the light and the heavy neutrino exchange modes. According to the lower limits of the

half-life T 0ν
1/2 from the most recent measurements [2, 3, 80–88] and the phase-space factors

G0ν [4], the limits on the effective neutrino masses |〈mν〉| and |〈m−1
νh
〉|−1 are further estimated,

respectively. So far, the most stringent constraints are set by the case of 136Xe, which imply

that |〈mν〉| < 0.06 eV for light neutrinos and |〈m−1
νh
〉|−1 > 3.065 × 108 GeV for heavy

neutrinos. Finally, the CDFT results are compared with the NMEs M0ν recently obtained

from other nuclear models in Fig. 4. Our results are among the largest values of the existing

calculations in most cases, except that the NMEs M0ν for 124Sn and 130Te are considerably

smaller than those given by the nonrelativistic EDF calculation. The agreements with the

EDF results are remarkable in the nuclei other than 124Sn, 130Te, and 150Nd.
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V. SUMMARY

The 0νββ-decay NMEs have been calculated within the framework of beyond-mean-

field CDFT by considering the underlying mechanisms of both light- and heavy-neutrino

exchange. In particular, by investigating in detail the effects of relativity and SRC in 150Nd,

we come to the following conclusions: 1) Both effects are negligible for the light-neutrino

NME, which indicates that the nonrelativistic reduction to the decay operator is a good

approximation and the SRC correction can be safely neglected. 2) The heavy-neutrino NME

is more sensitive to both the relativistic correction and the inclusion of SRC than in the light-

neutrino case. Therefore it should be treated more carefully. 3) For the SRC, the M-S and

the Bonn parametrizations respectively introduce the most and the least quenching effects

to the total NME, while the Argonne parametrization lies in between. Finally, according

to our results for the total NMEs in 10 candidate nuclei, combined with the observed lower

limits on the 0νββ-decay half-lives, the predicted strongest limits on the effective masses are

|〈mν〉| < 0.06 eV for light neutrinos and |〈m−1
νh
〉|−1 > 3.065× 108 GeV for heavy neutrinos.
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