
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Triton charge radius to next-to-next-to-leading order in
pionless effective field theory

Jared Vanasse
Phys. Rev. C 95, 024002 — Published  8 February 2017

DOI: 10.1103/PhysRevC.95.024002

http://dx.doi.org/10.1103/PhysRevC.95.024002


The Triton Charge Radius to Next-to-next-to-leading order in

Pionless Effective Field Theory

Jared Vanasse1, 2, ∗

1Department of Physics, Duke University, Durham, NC 27708, USA

2Department of Physics and Astronomy Ohio University, Athens OH 45701, USA

(Dated: November 13, 2016)

Abstract

The triton point charge radius is calculated to next-to-next-to-leading order (NNLO) in pionless

effective field theory (EFT(/π)), yielding a prediction of 1.14±0.19 fm (leading order), 1.59±0.08 fm

(next-to leading order), and 1.62 ± 0.03 fm (NNLO) in agreement with the current experimental

extraction of 1.5978± 0.040 fm [1]. The error at NNLO is due to cutoff variation (∼ 1%) within a

reasonable range of calculated cutoffs and from a EFT(/π) error estimate (∼ 1.5%). In addition new

techniques are introduced to add perturbative corrections to bound and scattering state calculations

for short range effective field theories, but with a focus on their use in EFT(/π).
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I. INTRODUCTION

If a system is probed at length scales, `, larger than the scale of the underlying interaction,

r, then its interactions can be expanded in a series of contact interactions known as short-

range effective field theory (EFT) [2], and its applicability to any system for which ` > r

is known as universality [3]. Short range EFT has been used in cold atom systems, halo

nuclei using Halo-EFT, and for low-energy few-body nuclear systems using pionless EFT

(EFT(/π)). For all of these systems the scattering length, a, is unnaturally large (a > r).1

Thus at leading order (LO) the scattering length contribution is treated nonperturbatively,

and higher order range corrections ([r/a]n) are added perturbatively [4, 5].

Nucleon-nucleon (NN) interactions are dominated by one pion exchange at large length

scales. Thus for length scales ` > 1/mπ (or energies E < m2
π/MN) NN interactions can

be expanded in a short-range EFT known as EFT(/π). The series of contact interactions

in EFT(/π) can be written down as a Lagrangian of nucleon terms and possible external

currents. These terms are ordered by the power counting of EFT(/π) [2, 4, 5] which has the

expansion (1/(MNQ))(Q/mπ)n, where (Q/mπ)∼ 1/3, Q ∼ γt, n ≥ 0, and γt ≈ 45 MeV is

the deuteron binding momentum.2 In addition to making EFT(/π) tractable (one only needs

a finite number of terms to a given order) the power counting also allows for an estimation

of the error in calculations.

LO EFT(/π) has two low energy constants (LECs) in the two-body sector fit to the 3S1

and 1S0 bound and virtual bound state poles respectively, and one three-body LEC fit to a

three-body datum. At next-to-leading order (NLO) there are two more LECs in the two-

body sector fit to the effective ranges in the 3S1 and 1S0 channels. Next-to-next-to-leading

order (NNLO) has a two-body LEC parametrizing the mixing between the NN 3S1 and 3D1

channels and an energy dependent three-body LEC. Thus to NNLO in EFT(/π) two- and

three-body systems are characterized by seven LECs and predict observables to roughly

3% accuracy. However, certain observables, such as the neutron-deuteron (nd) polarization

observable Ay, are sensitive to higher order interactions and are three orders of magnitude

1 Note, for nuclear systems the scattering length is fixed, but for cold atom systems the scattering length

can be made large by tuning a magnetic field near a Feshbach resonance.
2 The factor of 1/(MNQ) only occurs for two-body resonant S-wave interactions, which are a leading

contribution in the three-body sector. However, for higher two-body partial waves the factor of 1/(MNQ)

will not occur and n ≥ 1 in the power counting since these partial waves are not resonant in EFT(/π).
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smaller than experiment at NNLO, which is the first order at which Ay is non-zero. The Ay

observable is sensitive to two-body P -wave contact interactions that occur at N3LO [6].

EFT(/π) (see e.g. Ref. [7] for a review) has been used with great success in the two-body

sector calculating deuteron electromagnetic form factors [8, 9], NN scattering [8, 10, 11],

neutron-proton (np) capture [8, 9, 12] to (<∼1%) [13], proton-proton fusion [14–16], and

neutrino deuteron scattering [17]. Progress has also been made in the three-body sector

with calculations of nd scattering [6, 18–23], pd scattering [24–26], nd capture [27–29], and

the energy difference between 3H and 3He [25, 30, 31]. Previous three-body calculations of

nd scattering in EFT(/π) made use of the partial resummation technique [21]. This method

has the advantage of being able to calculate diagrams that contain full off-shell scattering

amplitudes without needing to calculate the full off-shell scattering amplitude. However,

this method suffers the drawback that it contains an infinite subset of higher order diagrams

and although correct up to the order one is working is not strictly perturbative. This work

was improved upon in Ref. [23] where a new technique no more numerically complicated

than the partial resummation technique but strictly perturbative was introduced. This

technique makes higher order strictly perturbative numerical calculations in nd scattering

much simpler [6]. However, this method initially suffered the drawback that it could not

be used to calculate perturbative corrections to three-body bound-state systems such as the

triton. This work corrects that drawback. Using the new perturbative method developed

here for bound states I will show that the triton charge radius has excellent agreement with

experiment at NNLO in EFT(/π).

Hagen et al. [32] calculated the point charge radius of halo nuclei to LO in Halo-EFT,

and introduced the concept of a trimer field to calculate vertex functions for bound-state

calculations. Building on that work a technique similar to Hagen et al. is introduced, but one

that can also calculate perturbative corrections to three-body bound states. This technique

introduces a triton auxiliary field and thus treats three-body forces in the doublet S-wave

channel differently, but analytically equivalent to previous approaches to all orders. In

addition it is shown how this technique improves the calculation of the leading-order (LO)

three-body force by removing the need for iterative numerical schemes. One can also now

calculate the NNLO energy dependent three-body force without the need for a numerical

limiting procedure [33]. The new technique also leads to slight numerical simplifications in

the calculation of nd scattering.
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Using this new technique for perturbative corrections to bound states the calculation of

the triton charge form factor to NNLO and the resulting point charge radius for the triton

are considered. The charge form factor of the triton is reproduced well by potential model

calculations (PMC) including chiral EFT (χEFT) potentials which give diffraction minima

at the correct values of Q2 [34, 35]. From experimental data the triton point charge radius

has been extracted, most recently with a value of 1.5978± 0.040 fm [1]. A NNLO EFT(/π)

calculation of the triton point charge radius is accurate to roughly 1.5%. However, as I will

show cutoff variation gives an additional source of error leading to an overall error estimate of

2%. This cutoff variation is either a signal of slow divergence or convergence. Either a careful

asymptotic analysis or a numerical calculation to higher cutoffs will be needed to answer

this unambiguously. However, reliable calculations to very large cutoffs (Λ > 106 MeV) are

currently unfeasible, due to numerical instabilities.

This paper is organized as follows. In Sec. II properties of the two-body system in EFT(/π)

necessary for three-body calculations are reviewed. Sec. III introduces new techniques for

nd scattering, the connection between the auxiliary triton and non-auxiliary triton field

approach for three-body forces, and the calculation of perturbative corrections to the triton

vertex function. In Sec. IV it is shown how the triton auxiliary field is used to calculate

three-body forces in the doublet S-wave channel. Discussion of the calculation of the triton

charge form factor to NNLO is given in Sec. V, results are shown in Sec. VI, and conclusions

given in Sec. VII.

II. TWO-BODY SYSTEM

The two-body Lagrangian in EFT(/π) is

L2 = N̂ †

(
i∂0 +

~∇2

2MN

)
N̂ + t̂†i

[
∆t − c0t

(
i∂0 +

~∇2

4MN

+
γ2
t

MN

)]
t̂i

+ ŝ†a

[
∆s − c0s

(
i∂0 +

~∇2

4MN

+
γ2
s

MN

)]
ŝa

+ yt

[
t̂†iN̂

TPiN̂ + H.c.
]

+ ys

[
ŝ†aN̂

T P̄aN̂ + H.c.
]
.

where t̂i (ŝa) is the spin-triplet iso-singlet (spin-singlet iso-triplet) dibaryon auxiliary field.

The projector Pi = 1√
8
σ2σiτ2 (P̄a = 1√

8
τ2τaσ2) projects out the spin-triplet iso-singlet (spin-

singlet iso-triplet) combination of nucleons.
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At LO the bare deuteron propagator, i/∆t, is dressed by the infinite sum of bubble

diagrams in Fig. 1. The parameters are then fit to reproduce the deuteron pole at the

(LO)

(NLO) (NNLO)

FIG. 1: The top equation shows the LO dressed dibaryon propagator, which can be solved analyt-

ically via a geometric series. The cross represents a NLO order effective range insertion from c
(0)
0t ,

and the star a NNLO correction from c
(1)
0t .

physical position. At NLO the parameters are chosen to fix the deuteron pole at the same

position and give the correct residue about the deuteron pole. This parametrization is known

as the Z-parametrization [22, 36] and is advantageous because it reproduces the correct

residue about the deuteron pole at NLO instead of being approached perturbatively order-

by-order as in the effective range expansion (ERE) parametrization. The same procedure is

carried out the in the 1S0 channel except the virtual bound-state pole and its residue is fit

to. Carrying out this procedure the coefficients are given by [22]

y2
t =

4π

MN

, ∆t = γt − µ, c
(n)
0t = (−1)n(Zt − 1)n+1MN

2γt
(1)

y2
s =

4π

MN

, ∆s = γs − µ, c
(n)
0s = (−1)n(Zs − 1)n+1MN

2γs
,

where γt = 45.7025 MeV is the deuteron binding momentum, Zt = 1.6908 is the residue

about the deuteron pole, γs = −7.890 MeV is the 1S0 virtual bound-state momentum, and

Zs = .9015 is the residue about the 1S0 pole [37]. The non-physical scale µ is introduced by

using dimensional regularization with the power divergence subtraction scheme [4, 5]. All

physical observables are µ-independent.

After fitting the coefficients, the spin-triplet and spin-singlet dibaryon propagators up to
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and including NNLO are given by

iDNNLO
{t,s} (p0, ~p) =

i

γ{t,s} −
√

~p2

4
−MNp0 − iε

(2)

×

 1︸︷︷︸
LO

+
Z{t,s} − 1

2γ{t,s}

(
γ{t,s} +

√
~p2

4
−MNp0 − iε

)
︸ ︷︷ ︸

NLO

+

(
Z{t,s} − 1

2γ{t,s}

)2(~p2

4
−MNp0 − γ2

{t,s}

)
︸ ︷︷ ︸

NNLO

+ · · ·



The deuteron wavefunction renormalization is given by the residue about the deuteron pole

of the spin-triplet dibaryon, which to NNLO yields

ZD =
2γt
MN

 1︸︷︷︸
LO

+ (Zt − 1)︸ ︷︷ ︸
NLO

+ 0︸︷︷︸
NNLO

+ · · ·

 . (3)

In the formalism used here higher-order corrections to the deuteron wavefunction renormal-

ization will be built into the integral equation and do not need to be added separately. The

LO deuteron wavefunction renormalization is defined by

ZLO =
2γt
MN

. (4)

III. THREE-BODY SYSTEM

A. Doublet Channel Scattering

The LO nd scattering amplitude in the doublet channel is given by an infinite sum of

diagrams represented by the coupled-channel integral equations in Fig. 2. Single lines are

nucleons and the double line (dashed double line) is the spin-triplet (spin-singlet) dibaryon.

For the doublet S-wave channel there is also a contribution from a LO three-body force.

However, in the approach used here the three-body force will be treated in separate diagrams

discussed later. By projecting out the diagrams in the doublet channel and in a partial wave

basis the integral equations can be written as an infinite set of matrix equations in cluster
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FIG. 2: The coupled-channel integral equations for the LO doublet channel nd scattering amplitude.

Single lines represent nucleons and double lines (dashed double lines) spin-triplet (spin-singlet)

dibaryons.

configuration (c.c.) space [22], which gives

t`0,d(k, p) = B`
0(k, p) + K`

0(q, p, E)⊗ t`0,d(k, q), (5)

where the subscript “d” refers to the doublet channel, and the superscript “`” to the partial

wave. The “⊗” notation is shorthand for the integration

A(q)⊗B(q) =
1

2π2

∫ Λ

0

dqq2A(q)B(q),

where Λ is a cutoff imposed to regulate divergences. Physical results should be Λ-

independent. In the integral equation k is the incoming on-shell momentum in the nd

center of mass (c.m.) frame and p is the off-shell outgoing momentum. Since k is on-shell

it is related to the total energy of the three-body system by E = 3
4
k2

MN
− γ2t

MN
. t`n,d(k, q) and

the inhomogeneous term B`
0(k, p) are vectors in c.c. space, defined as

t`m,d(k, p) =

 t`m,Nt→Nt(k, p)

t`m,Nt→Ns(k, p)

 , B`
0(k, p) =

 2π
pk
Q`

(
p2+k2−MNE−iε

pk

)
−6π
pk
Q`

(
p2+k2−MNE−iε

pk

)
 . (6)

Here the subscript “m” refers to the order of the calculation (m = 0 is LO, m = 1 is

NLO, and etc.), t`m,Nt→Nt(k, q) is the nd scattering amplitude, and t`m,Nt→Ns(k, q) is the

unphysical scattering amplitude of a neutron and deuteron to a nucleon and spin-singlet

dibaryon. In this formalism B`
1(k, p) = B`

2(k, p) = 0, even for ` = 0, unlike in Ref. [23]. The

function Q`(a) is a Legendre function of the second kind and is related to standard Legendre

polynomials by3

Q`(a) =
1

2

∫ 1

−1

P`(x)

a+ x
dx. (7)

3 This definition of the Legendre functions of the second kind differs from the normal convention by a phase

of (−1)`.

7



The homogeneous term K`
0(q, p, E) is a matrix in c.c. space defined by

K`
0(q, p, E) = R0(q, p, E) D(0)

(
E − q2

2MN

, ~q

)
, (8)

where

D(0)(E,~q) =

 Dt(E,~q) 0

0 Ds(E,~q)

 (9)

is a matrix of LO dibaryon propagators, and

R0(q, p, E) = −2π

qp
Q`

(
q2 + p2 −MNE − iε

qp

) 1 −3

−3 1

 . (10)

The half off-shell NLO correction to the doublet channel nd scattering amplitude can be

defined by the coupled-channel integral equations in Fig. 3, where the cross represents an

effective range insertion. Iterating the inhomogeneous piece a single time in the kernel gives

1

1

1 1

11

FIG. 3: The coupled-channel integral equations for the NLO correction to the doublet channel nd

scattering amplitude. The cross refers to a single effective range insertion and the number “1” to

the NLO correction to the nd scattering amplitude.

the integral equation for the NLO correction to nd scattering as in Ref. [23] along with an

additional diagram where an effective range insertion appears on an external dibaryon leg. In

the on-shell limit the effective range insertion on the external dibaryon leg becomes the NLO

deuteron wavefunction renormalization, which multiplies the LO nd scattering amplitude.

In other words, in the on-shell limit this integral equation gives the NLO correction to

the nd scattering amplitude plus the LO nd scattering amplitude times the NLO deuteron

wavefunction renormalization, or simply put all NLO contributions. The integral equation

can be written in c.c. space as

t`1,d(k, p) = t`0,d(k, p) ◦R1

(
E −

~p2

2MN

, ~p

)
+ K`

0(q, p, E)⊗ t`1,d(k, q), (11)
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where “◦” is the Schur product (element wise matrix multiplication) and R1(p0, ~p) is a

vector in c.c. space defined by

R1(p0, ~p) =

 Zt−1
2γt

(
γt +

√
1
4
~p2 −MNp0 − iε

)
Zs−1
2γs

(
γs +

√
1
4
~p2 −MNp0 − iε

)
 . (12)

Choosing the kinematics of the 3S1 (1S0) bound-state (virtual bound-state) pole for the upper

(lower) component of R1(p0, ~p), R1(p0, ~p) reduces to

c1 =

 Zt − 1

Zs − 1

 , (13)

which is the NLO correction to the wavefunction renormalization [22].4 Similarly, the half

off-shell NNLO correction to the nd scattering amplitude is given by the coupled-channel

integral equations in Fig. 4, where the star represents an insertion of c
(1)
0t or c

(1)
0s . In c.c. space

12

2 1

2 2

22

FIG. 4: The coupled-channel integral equations for the NNLO correction to the doublet channel

nd scattering amplitude. The star refers to an insertion of c
(1)
0t or c

(1)
0s and the number “2” refers

to the NNLO correction to the doublet channel nd scattering amplitude.

the integral equation is given by

t`2,d(k, p) =
[
t`1,d(k, p)− c1 ◦ t`0,d(k, p)

]
◦R1

(
E −

~p2

2MN

, ~p

)
(14)

+ K`
0(q, p, E)⊗ t`2,d(k, q).

In the ERE parametrization c1 = 0 and the integral equations at NLO and NNLO look the

same. The presence of c1 ◦ t`0,d(k, p) removes the (Zt − 1)2t`0,d(k, k) contribution that comes

from t`1,d(k, p)◦R1

(
E − ~p2

2MN
, ~p
)

in the on-shell limit. Since the wavefunction renormalization

in the Z-parametrization is exact at NLO by construction, there is no (Zt − 1)2 correction.

4 Since t`m,Nt→Ns(k, p) is unphysical its normalization can be chosen arbitrarily without affecting physical

results.
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B. Three-Body Forces

The above description for doublet channel nd scattering is incomplete since in the S-wave

channel a three-body force is required at LO. The Lagrangian for the three-body force up

to NNLO is

L3 =
MNH0(Λ)

3Λ2

[
ytN̂

†(~t · ~σ)† − ysN̂ †(~s · ~τ )†
] [
yt(~t · ~σ)N̂ − ys(~s · ~τ )N̂

]
(15)

+
MNH2(Λ)

3Λ4

4

3

(
i∂0 +

γ2
t

MN

)[
ytN̂

†(~t · ~σ)† − ysN̂ †(~s · ~τ )†
] [
yt(~t · ~σ)N̂ − ys(~s · ~τ )N̂

]
+ H.c.

H0(Λ) first occurs at LO and receives higher order corrections that can be written

H0(Λ) = H0,0(Λ)︸ ︷︷ ︸
LO

+H0,1(Λ)︸ ︷︷ ︸
NLO

+H0,2(Λ)︸ ︷︷ ︸
NNLO

+ · · · , (16)

where the first subscript denotes that it is a correction to H0(Λ) and the second subscript

gives the order of the correction. At NNLO a new energy-dependent three-body force H2(Λ)

appears. The LO three-body force H0,0(Λ) does not renormalize a UV divergence. Rather,

the solution of the LO doublet S-wave nd scattering amplitude is not unique in the limit

where Λ→∞ and this causes oscillations in the solution as Λ is changed [21]. The physical

explanation for H0,0(Λ) comes from the fact that in the doublet S-wave channel there is no

Pauli blocking preventing the nucleons from falling to the center. Thus the doublet S-wave

channel is sensitive to short range physics, which H0,0(Λ) encodes.

The three-body force Lagrangian can be rewritten using a triton auxiliary field ψ, yielding

L3 =ψ̂†

[
Ω− h2(Λ)

(
i∂0 +

~∇2

6MN

+
γ2
t

MN

)]
ψ̂ +

∞∑
n=0

[
ω

(n)
t0 ψ̂

†σiN̂ t̂i − ω(n)
s0 ψ̂

†τaN̂ ŝa

]
(17)

+ H.c..

A matching calculation shows that the parameters from each Lagrangian are related by

H0,0(Λ)

Λ2
= −3(ω

(0)
t0 )2

4πΩ
= −3(ω

(0)
s0 )2

4πΩ
=

3ω
(0)
t0 ω

(0)
s0

4πΩ
, (18)

H0,1(Λ)

Λ2
= −6ω

(0)
t0 ω

(1)
t0

4πΩ
= −6ω

(0)
s0 ω

(1)
s0

4πΩ
=

6ω
(0)
t0 ω

(1)
s0

4πΩ
=

6ω
(1)
t0 ω

(0)
s0

4πΩ
, (19)

H0,2(Λ)

Λ2
= −3((ω

(1)
t0 )2 + 2ω

(0)
t0 ω

(2)
t0 )

4πΩ
= −3((ω

(1)
s0 )2 + 2ω

(0)
s0 ω

(2)
s0 )

4πΩ
(20)

=
3(ω

(1)
s0 ω

(1)
t0 + 2ω

(0)
t0 ω

(2)
s0 )

4πΩ
=

3(ω
(1)
s0 ω

(1)
t0 + ω

(2)
t0 ω

(0)
s0 )

4πΩ
,
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and
4H2,0(Λ)

Λ4
= −3(ω

(0)
t0 )2

πΩ2MN

h2(Λ) = −3(ω
(0)
s0 )2

πΩ2MN

h2(Λ) =
3ω

(0)
t0 ω

(0)
s0

πΩ2MN

h2(Λ). (21)

It is convenient to make the definitions

HLO =
4H0,0(Λ)

Λ2
, HNLO =

4H0,1(Λ)

Λ2
, HNNLO =

4H0,2(Λ)

Λ2
, (22)

and

Ĥ2 =
4H2(Λ)

Λ4
(23)

From these definitions follow the useful identities

HNLO

HLO

= 2
ω

(1)
t0

ω
(0)
t0

, (24)

and

2
ω

(2)
t0

ω
(0)
t0

=
HNNLOHLO − 1

4
(HNLO)2

(HLO)2
. (25)

C. Triton Vertex Function

The LO triton vertex function is given by the coupled-channel integral equations in Fig. 5,

where the triple line represents the triton propagator. These integral equations can be

FIG. 5: The coupled-channel integral equations for the LO triton vertex function, where the triple

line is the triton, and the filled circle is the LO triton vertex function.

written in c.c. space as

G0(E, p) = B̃0 + K`=0
0 (q, p, E)⊗ G0(E, q),

where the “0” subscript indicates LO and B̃0 is a c.c space vector defined by

B̃0 =

(
1

1

)
. (26)
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Note the kernel of these coupled-channel integral equations is the same as in LO nd scat-

tering. The only difference between the integral equations for the LO triton vertex function

G0(E, p) and the LO nd scattering amplitude Eq. (5) is the inhomogeneous term. At the

energy of the bound state the matrix [1−K`=0
0 (q, p, E)] is invertible for all cutoffs for which

H0,0(Λ) 6= 0. For cutoffs for which H0,0(Λ) = 0 the LO triton vertex is still well defined

because the zero of H0,0(Λ) and the infinity of [1 − K`=0
0 (q, p, E)]−1 have a well defined

limit. However, this is numerically tricky and therefore such cutoffs are avoided. G0(E, p)

is defined in c.c. space by

G0(E, p) =

 G0,ψ→Nt(E, p)

G0,ψ→Ns(E, p)

 , (27)

where G0,ψ→Nt(E, p) (G0,ψ→Ns(E, p)) is the triton vertex function for an outgoing neutron

and deuteron (nucleon and spin-singlet dibaryon) state. Note B̃0 is not the “physical”

inhomogeneous term. The “physical” inhomogeneous term B0 is given by

B0 =

 √
3ω

(0)
t0

−
√

3ω
(0)
s0

 . (28)

Since an arbitrary normalization can be absorbed into both components of G0(E, p) it is

convenient to use B̃0 instead of B0. The “physical” triton vertex function Γ0(p) is related

to G0(E, p) by

Γ0(p) = G0(E, p) ◦B0

√
Zψ, (29)

where the value of E is assumed fixed, and Zψ is the triton wavefunction renormalization to

be defined below. Using G0(E, p) instead of Γ0(p) allows three-body forces to be factored

out of expressions that would otherwise be absorbed into Γ0(p).

Adding a NLO effective range insertion to the triton vertex function can be achieved via

the coupled-channel integral equations in Fig. 6, which in c.c. space can be written as

1

1

1

1 1

1

FIG. 6: The coupled-channel integral equations for the NLO correction to the triton vertex function.
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G1(E, p) = G0(E, p) ◦R1

(
E −

~p2

2MN

, ~p

)
+ K`=0

0 (q, p, E)⊗ G1(E, q). (30)

This equation is analogous to the NLO correction to the nd scattering amplitude Eq. (11).

Two effective range insertions and c
(1)
0t and c

(1)
0s corrections to the triton vertex function

at NNLO can be added using the coupled-channel integral equations in Fig. 7, which in

12

2 1 2

2

2

2

FIG. 7: The coupled-channel integral equations for the NNLO correction to the triton vertex

function.

c.c. space are

G2(E, p) =
[
G1(E, p)−c1 ◦G0(E, p)

]
◦R1

(
E −

~p2

2MN

, ~p

)
+K`=0

0 (q, p, E)⊗G2(E, q). (31)

This equation is again entirely analogous to the integral equations for the NNLO correction

to nd scattering Eq. (14). In fact the only difference between the integral equations for the

triton vertex factors and the nd scattering amplitude up to NNLO is the LO inhomogeneous

term.

The function ΣP
0 (E) is defined as

ΣP
0 (E) =

∫
d4q

(2π)4

i

E − q0 − q2

2MN
+ iε

(
iB0 ◦ iD(0)(E − q0, q)

)
· (G0(E, q) ◦ iB0) (32)

and describes the sum of all triton-irreducible diagrams in Fig. 8. Note “·” represents the

ordinary dot product of two c.c space vectors. Subscript “0” denotes this is LO. Integrating

Σ0

FIG. 8: Diagrammatic representation of function ΣP
0 (E).

over the energy pole and angles, the expression for ΣP
0 (E) becomes

iΣP
0 (E) =− i3(ω

(0)
t0 )2

π

1

2π

∫ Λ

0

dqq2D
(0)
t

(
E − q2

2MN

, q

)
G0,ψ→Nt(E, q) (33)

− i3(ω
(0)
s0 )2

π

1

2π

∫ Λ

0

dqq2D(0)
s

(
E − q2

2MN

, q

)
G0,ψ→Ns(E, q).

13



Defining the functions

Σn(E) = −πTr

[
D(0)

(
E − q2

2MN

, q

)
⊗ Gn(E, q)

]
, (34)

and using Eqs. (18) and (22) to rewrite ω
(0)
s0 and ω

(0)
t0 , ΣP

0 (E) becomes

iΣP
0 (E) = −iΩHLOΣ0(E). (35)

Using ΣP
0 (E), the LO dressed triton propagator is given by the infinite sum of diagrams in

Fig. 9, which can be summed as a geometric series giving

Σ0 Σ0Σ0

FIG. 9: LO dressed triton propagator. The triangle is the dressed triton propagator.

i∆
(LO)
3 (E) =

i

Ω
+
i

Ω
HLOΣ0(E) + · · · = i

Ω

1

1−HLOΣ0(E)
. (36)

This is the LO dressed triton propagator in the c.m. frame of the nd system. Thus the

triton propagator always has zero momentum. The formalism here can be straightforwardly

generalized to include a triton propagator with non-zero momentum. At the bound-state

energy B of the triton, the LO dressed triton propagator has a pole, giving the condition

HLO =
1

Σ0(B)
. (37)

Setting B = E(3H) the three-body force can be fit to the triton binding energy E(3H) =

−8.48 MeV [38]. Additionally, the LO triton binding energy can be calculated if a different

renormalization condition is used for HLO. Considering higher orders beyond the work

of Hagen et al. [32] the triton-irreducible functions ΣP
1 (E) and ΣP

2 (E) follow the ΣP
0 (E)

definition and are given by the sum of diagrams in Fig. 10 and 11 respectively.

Σ1 1 1

FIG. 10: Diagrammatic representation of function ΣP
1 (E).

One finds that ΣP
1 (E) and ΣP

2 (E) are defined as

iΣP
1 (E) = −iΩHLOΣ1(E), iΣP

2 (E) = −iΩHLOΣ2(E). (38)

14



Σ2 2 2

FIG. 11: Diagrammatic representation of function ΣP
2 (E).

(NNLO)

(NLO)

Σ0HNLOΣ1

HNLOΣ2 Σ0HNNLO

2HNLOΣ1 Σ1 Σ0 Σ1

h2Σ0 Σ0(HNLO)2

Σ1

FIG. 12: NLO and NNLO corrections to triton propagator. The diagram with h2 comes from the

kinetic term of the triton auxiliary field.

The NLO and NNLO corrections to the triton propagator are given by the diagrams in

Fig. 12. Summing the NLO diagrams gives

i

Ω

1

1−HLOΣ0(E)

{
−iΩHLOΣ1 − iΩ

(
2
ω

(1)
t0

ω
(0)
t0

)
HLOΣ0

}
i

Ω

1

1−HLOΣ0(E)
(39)

for the NLO correction to the triton propagator. The first (second) term comes from the

first (second) diagram in the NLO box of Fig. 12. The second diagram in the NLO box

is ΣP
0 (E), but with a ω

(0)
t0 vertex replaced by ω

(1)
t0 . A factor of two comes the fact the ω

(1)
t0

vertex can be on the left or the right of Fig. 8. Then using Eq. (24) the NLO correction to

the triton propagator reduces to

i

Ω

1

1−HLOΣ0(E)
{−iΩHLOΣ1 − iΩHNLOΣ0}

i

Ω

1

1−HLOΣ0(E)
. (40)

Carrying out a similar procedure gives the triton propagator up to and including NNLO as

i∆NNLO
3 (E) =

i

Ω

1

1−HLOΣ0(E)

[
1 +

HLOΣ1(E) +HNLOΣ0(E)

1−HLOΣ0(E)
(41)

+
HLOΣ2(E) +HNLOΣ1(E) +HNNLOΣ0(E) + 4

3
(MNE + γ2

t )Ĥ2/HLO

1−HLOΣ0(E)

+
(HLOΣ1(E) +HNLOΣ0(E))2

(1−HLOΣ0(E))2

]
.
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The Ĥ2/HLO term comes from the last NNLO diagram in Fig. 12. Fitting the LO three-

body force to the triton binding energy and ensuring that the pole is fixed at higher orders

imposes the conditions

HLOΣ1(B) +HNLOΣ0(B) = 0, (42)

and

HLOΣ2(B) +HNLOΣ1(B) +

(
HNNLO +

4

3
(MNB + γ2

t )Ĥ2

)
Σ0(B) = 0. (43)

HLO = 1/Σ0(B) has been used to rewrite the term with Ĥ2. These two conditions fix

two higher-order three-body forces, and HNNLO is fixed to the physical nd doublet S-wave

scattering length. It will be shown later how this is done in the new formalism. The triton

wavefunction renormalization is the residue about the triton pole, which up to NNLO is

given by

Zψ =− 1

Ω

1

HLOΣ′0(B)

[
1− (HLOΣ′1(B) +HNLOΣ′0(B))

HLOΣ′0(B)
(44)

−
(HLOΣ′2(B) +HNLOΣ′1(B) +HNNLOΣ′0(B)) + 4

3
MNĤ2/HLO

HLOΣ′0(B)

+
(HLOΣ′1(B) +HNLOΣ′0(B))2

(HLOΣ′0(B))2

]
.

Using Eqs. (42) and (43) the dependence on HLO, HNLO, and HNNLO can be removed yielding

Zψ =− 1

Ω

1

HLOΣ′0(B)

[
1−

(
Σ′1(B)

Σ′0(B)
− Σ1(B)

Σ0(B)

)
(45)

−

{
Σ′2(B)

Σ′0(B)
− Σ1(B)Σ′1(B)

Σ0(B)Σ′0(B)
+

(
Σ1(B)

Σ0(B)

)2

− Σ2(B)

Σ0(B)

+
4

3
MNĤ2Σ0(B)

(
Σ0(B)

Σ′0(B)
−B − γ2

t

MN

)}
+

(
Σ′1(B)

Σ′0(B)
− Σ1(B)

Σ0(B)

)2
]
.

For the triton vertex function there is only one external triton propagator, and therefore the

square root of Zψ must be taken. Expanding the square root of Zψ perturbatively to NNLO

16



gives

√
Zψ =

√
− 1

Ω

1

HLOΣ′0

 1︸︷︷︸
LO

− 1

2

(
Σ′1
Σ′0
− Σ1

Σ0

)
︸ ︷︷ ︸

NLO

(46)

−1

2

(
Σ′2
Σ′0

+
1

2

Σ1Σ′1
Σ0Σ′0

− Σ2

Σ0

+
1

4

(
Σ1

Σ0

)2

− 3

4

(
Σ′1
Σ′0

)2

+
4

3
MNĤ2Σ0

(
Σ0

Σ′0
−B− γ2

t

MN

))
︸ ︷︷ ︸

NNLO

+ · · ·

 .
Here the explicit energy dependence for all Σn functions has been dropped with the under-

standing that all functions are evaluated at E = B. The “physical” triton vertex function

is calculated using Eq. (29). Using the definition of B0 and the triton wavefunction renor-

malization, the LO renormalization for the triton vertex function G0(B, p) is

√
ZLO
ψ =

√
3ω

(0)
t0

√
− 1

Ω

1

HLOΣ′0(B)
=

√
−3(ω

(0)
t0 )2

πΩ

π

HLOΣ′0(B)
=

√
π

Σ′0(B)
. (47)

Eq. (18) has been used to simplify the expression. Thus the “physical” LO triton vertex

function is given by

Γ0(p) =
√
ZLO
ψ G0(B, p). (48)

This expression is equivalent to solving the homogeneous equation for the doublet S-wave

channel with a nonzero three-body force and then normalizing the result using techniques in

Refs. [25, 39]. The NLO triton vertex function is given by G1(B, p), G0(B, p) with the ω
(0)
t0

vertex replaced by ω
(1)
t0 , and the LO triton vertex function times the NLO triton wavefunction

renormalization correction. The ω
(1)
t0 vertex can again be replaced by a ratio of three-body

forces as in the calculation of the triton propagator, and then the ratio of three-body forces

can be rewritten in terms of Σn(B) using Eq. (42). With these simplifications the NLO

triton vertex function is given by

Γ1(p) =
√
ZLO
ψ

[
G1(B, p)− 1

2

Σ′1
Σ′0

G0(B, p)

]
. (49)

The calculation of the NNLO triton vertex function follows similarly and yields

Γ2(p) =
√
ZLO
ψ

[
G2(B, p)− 1

2

Σ′1
Σ′0

G1(B, p) (50)

+

{
3

8

(
Σ′1
Σ′0

)2

− 1

2

Σ′2
Σ′0
− 2

3
MNĤ2

Σ2
0

Σ′0

}
G0(B, p)

]
.
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IV. DOUBLET S-WAVE SCATTERING

In the formalism of this work the LO doublet S-wave on-shell nd scattering amplitude

is given by the sum of the two diagrams in Fig. 13. The first diagram is the solution of

Eq. (5) for ` = 0. This diagram contains no three-body forces; all three-body force terms

are contained in the second diagram. The sum of the two diagrams is given by

FIG. 13: Diagrams for LO doublet S-wave nd scattering.

TLO(k) = ZLOt
`=0
0,Nt→Nt(k, k) +HLO

1

1−HLOΣ0(E)
πZLO [G0,ψ→Nt(E, k)]2 . (51)

In the new formalism the LO three-body force HLO is factored out of all numerically de-

termined expressions.5 This is one advantage of this formalism. The LO three-body force

can be found algebraically in terms of numerically determined quantities by fitting to the

scattering length, and = .65 fm [40], which yields

HLO =
x

1 + xΣ0(−γ2
t )
, (52)

where

x =
−
(

3πand

MN
+ TLO(0)

)
πZLO [G0,ψ→Nt(−γ2

t , 0)]
2 . (53)

The NLO nd scattering amplitude is given by the sum of diagrams in Fig. 14. The factor

of two for the second diagram comes from including the time reversed diagram. Summing

1 2 1 Σ1

HNLO Σ0{ }
FIG. 14: Diagrams for the NLO correction to the doublet S-wave nd scattering amplitude. The

factor of two takes into account the diagram related by time reversal symmetry that is not shown.

5 The power of this formalism at LO lies in the fact that the triton pole contribution is contained solely

in the second term. At higher orders contributions from poles are again clearly factored out in specific

diagrams and can be easily read off.
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these yields the NLO nd scattering amplitude

TNLO(k) =ZLOt
`=0
1,Nt→Nt(k, k) (54)

+
πZLO

1−HLOΣ0(E)
G0,ψ→Nt(E, k) [HNLOG0,ψ→Nt(E, k) + 2HLOG1,ψ→Nt(E, k)]

+
πHLOZLO(HLOΣ1(E) +HNLOΣ0(E))

(1−HLOΣ0(E))2
[G0,ψ→Nt(E, k)]2 .

Again, the NLO three-body force is factored out of all numerically determined expressions

and therefore can be algebraically fit to the doublet S-wave nd scattering length. The NNLO

nd scattering amplitude is given by the sum of diagrams in Fig. 15, which gives

2 Σ112

Σ2 Σ1 Σ1

Σ1 Σ0Σ1 }2

HNLO

2 2 11

HNNLO Σ0{ }
(HNLO)2 }{ Σ0 Σ0Σ0

2 Σ011 2{

h2

FIG. 15: Diagrams for the NNLO correction to the doublet S-wave nd scattering amplitude. The

factors of two take into account diagrams related by time reversal symmetry that are not shown.
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TNNLO(k) =ZLOt
`=0
2,Nt→Nt(k, k) (55)

+
πZLO

1−HLOΣ0(E)
G0,ψ→Nt(E, k)

× [HNNLOG0,ψ→Nt(E, k) + 2HNLOG1,ψ→Nt(E, k) + 2HLOG2,ψ→Nt(E, k)]

+
πHLOZLO(HLOΣ2(E) +HNLOΣ1(E) +HNNLOΣ0(E))

(1−HLOΣ0(E))2
[G0,ψ→Nt(E, k)]2

+
πHLOZLO(HLOΣ1(E) +HNLOΣ0(E))2

(1−HLOΣ0(E))3
[G0,ψ→Nt(E, k)]2

+
πHNLOZLO(HLOΣ1(E) +HNLOΣ0(E))

(1−HLOΣ0(E))2
[G0,ψ→Nt(E, k)]2

+
2πHLOZLO(HLOΣ1(E) +HNLOΣ0(E))

(1−HLOΣ0(E))2
G0,ψ→Nt(E, k)G1,ψ→Nt(E, k)

+
πHLOZLO

1−HLOΣ0(E)
(G1,ψ→Nt(E, k))2 +

π 4
3
(MNE + γ2

t )Ĥ2ZLO

(1−HLOΣ0)2
[G0,ψ→Nt(E, k)]2 ,

When k = 0 the term with Ĥ2 disappears and only one new three-body force HNNLO is

present, which can again be solved algebraically and fit to the nd scattering length. Ĥ2 can

then be fit to the triton binding energy. In order to find the physical triton binding energy

the scattering amplitude can be written in the form

t0(k, p, E) + t1(k, p, E) + t2(k, p, E) + · · · = Z0(k, p) + Z1(k, p) + Z2(k, p)

E −B0 −B1 −B2 + · · ·
(56)

+ R0(k, p, E) + R1(k, p, E) + R2(k, p, E) + · · · ,

as an expansion about the bound-state pole [26, 39]. There is a pole at the physical triton

binding energy E(3H) = B0 +B1 +B2 + · · · , with smooth residue c.c. space vector functions

Zn(k, p) and smooth remainder c.c. space vector functions Rn(k, p, E). Expanding this

expression perturbatively gives at LO

t0(k, p, E) =
Z0(k, p)

E +B0

+ R0(k, p, E). (57)

Now the power of this formalism becomes clear because from Eq. (51) it can clearly be seen

that the pole contribution comes from the second term. The location of the pole is given by

Eq. (37) and Z0(k, p) is simply the residue about this pole, which is

Z0(k, k) = −πZLO [G0,ψ→Nt(B0, k)]2

Σ′0(B0)
. (58)

At NLO the perturbative expansion of Eq. (56) gives

t1(k, p, E) =
Z1(k, p)

E −B0

+B1
Z0(k, p)

(E −B0)2
+ R1(k, p, E). (59)
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Comparing to Eq. (54) and using the expression for Z0(k, k), the contributions from the first

and second order pole can easily be extracted, giving the NLO correction to the bound-state

energy

B1 = −HLOΣ1(B0) +HNLOΣ0(B0)

HLOΣ′0(B0)
, (60)

and the NLO residue function

Z1(k, k) = −πZLOG0,ψ→Nt(B0, k) [HNLOG0,ψ→Nt(B0, k) + 2HLOG1,ψ→Nt(B0, k)]

HLOΣ′0(B0)
. (61)

The NNLO perturbative expansion of Eq. (56) gives

t2(k, p, E) =
Z2(k, p)

E −B0

+B2
Z0(k, p)

(E −B0)2
+B1

Z1(k, p)

(E −B0)2
+B2

1

Z0(k, p)

(E −B0)3
+ R2(k, p, E). (62)

Since Z1(k, k) and B1 are known, their second order pole contribution can be subtracted

from Eq. (55) leaving the contribution from B2, which is given by

B2 = −
HLOΣ2(B0) +HNLOΣ1(B0) + (HNNLO + 4

3
(MNB0 + γ2

t )Ĥ2)Σ0(B0)

HLOΣ′0(B0)
(63)

−B1
HLOΣ′1(B0) +HNLOΣ′0(B0)

HLOΣ′0(B0)
− 1

2
B2

1

Σ′′0(B0)

Σ′0(B0)
.

To fit Ĥ2 to the bound-state energy one adjusts Ĥ2 such that E(3H) = B0+B1+B2. Note that

if one sets B1 and B2 to zero then the constraints on the three-body forces are equivalent

to Eqs. (42) and (43) where the three-body forces were fit to the bound-state energy by

fixing the pole position for the triton propagator. This formalism reproduces the results

for three-body forces and doublet S-wave scattering amplitudes found in Ref. [23] up to

numerical accuracy. But it is superior because it avoids iterative techniques for HLO and

numerical limiting procedures for Ĥ2.

V. TRITON CHARGE FORM FACTOR

The LO triton charge form factor is given by the sum of diagrams in Fig. 16, where the

wavy blue lines are minimally coupled A0 photons. The form factor calculation is performed

in the Breit frame in which the photon imparts no energy to the triton but only momentum.

In the Breit frame one chooses the initial (final) momentum of the triton to be ~K (~P). The

momentum imparted by the photon is ~Q = ~P− ~K, and the form factor only depends on the

value ~Q2. Summing all three diagrams in the Breit frame gives
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(a) (b) (c)

FIG. 16: Diagrams for the LO triton charge form factor. The wavy blue lines represent minimally

coupled A0 photons.

ZLO
ψ

∑
j=a,b,c

∫
d4k

(2π)4

∫
d4p

(2π)4
GT

0 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G0(E, ~K, k0, ~k), (64)

where G0(E, ~K, k0, ~k) is the LO triton vertex function in a frame boosted by momentum

~K, and E = B0 + 1
6MN

K2, with B0 = E(3H), the total energy of the triton in this frame.

The functional forms of χj(E, ~K, ~P, p0, k0, ~p, ~k) are listed in App. A. Choosing the four

momentum of the dibaryon (nucleon) to be [2
3
E + k0, ~k + 2

3
~K] ([1

3
E − k0,−~k + 1

3
~K]) the

triton vertex function in the boosted frame is related to the triton vertex function in the

c.m. frame via the integral equation

G0(E, ~K, k0, ~k) = B̃0 (65)

+

[
R0

(
q, k,

2

3
B0 + k0 −

~K · ~k
3MN

+
~k2

2MN

)
D(0)

(
B0 −

~q2

2MN

, ~q

)]
⊗ G0(B0, ~q).

For diagram (a), χa(· · · ) gives delta functions over momentum and energy that remove the

integral over d4p. Then integrating over the energy k0 and using Eq. (65) the LO contribution

from diagram (a) can be written as

F
(a)
0 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗A0(p, k,Q)⊗ G̃0(k) + 2G̃
T

0 (p)⊗A0(p,Q) +A0(Q)
}
. (66)

The subscript “0” in the functions F0(Q2), An(· · · ), and G̃n(p) refer to LO. NLO and

NNLO contributions will be denoted by a “1” and “2” subscript respectively. The function

An(p, k,Q) is a matrix function in c.c. space, An(p,Q) a vector function in c.c. space, and

An(Q) a scalar function. Further details of this calculation and the form of the functions

An(· · · ) are given in App. A. The vector function G̃n(p) in c.c. space is defined as

G̃n(p) = D(0)

(
B0 −

~p2

2MN

, ~p

)
Gn(B0, p). (67)
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Diagram (b) of Fig. 16 can be written as

F
(b)
0 (Q2) = ZLO

ψ G̃
T

0 (p)⊗B0(p, k,Q)⊗ G̃0(k), (68)

where B0(p, k,Q) is a matrix function in c.c. space given in the App. A. For diagram (c)

F
(c)
0 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗ C0(p, k,Q)⊗ G̃0(k) + C0(k,Q)⊗ G̃0(k)
}
, (69)

where C0(p, k,Q) is a matrix function in c.c. space and C0(k,Q) a vector function in

c.c. space6. Summing the contribution from all diagrams the LO triton charge form fac-

tor is given by

F0(Q2) = F
(a)
0 (Q2) + F

(b)
0 (Q2) + F

(c)
0 (Q2) (70)

In the limit Q2 → 0 F0(0) = 1 up to numerical accuracy. It can be shown analytically that

in the limit Q2 → 0 the renormalization condition given in Ref. [25] for the LO homogeneous

solution of the doublet S-wave channel is recovered from F0(0). This is shown in further

detail in App. C.

The NLO correction to the triton charge form factor is given by the diagrams in Fig. 17.

Diagrams (a) through (d) are added together while diagram (e) is subtracted to avoid double

(a) (b) (c)

1 1 1

(d) (e)

FIG. 17: Diagrams for the NLO triton charge form factor, where diagrams related by time reversal

symmetry are not shown. The diagram in the dashed box is subtracted from the other diagrams

to avoid double counting. The photon in diagram (d) is minimally coupled to the dibaryon.

6 Note that in Ref. [32] only the first term for F
(c)
0 (Q2) exists. This is due to the difference in LO three-body

forces between these two calculations.
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counting from diagram (a) and its time reversed version. The photon in diagram (d) is min-

imally coupled via the dibaryon kinetic term. Diagrams related by time reversal symmetry

are not shown in Fig. 17. The sum of diagrams (a)-(d) and subtraction of diagram (e) is

given by

ZLO
ψ

∑
j=a,b,c

∫
d4k

(2π)4

∫
d4p

(2π)4

{
GT

1 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G0(E, ~K, k0, ~k) (71)

+GT
0 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G1(E, ~K, k0, ~k)

}
+ ZLO

ψ

∑
d,−e

∫
d4k

(2π)4

∫
d4p

(2π)4
GT

0 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G0(E, ~K, k0, ~k).

Functions χj(· · · ) for j = a, b, c are the same as in the LO case. At NLO there are new

functions χd(· · · ) and χe(· · · ). To obtain Eq. (71) the LO expression Eq. (64) is replaced

by NLO corrections wherever possible. The NLO correction to the triton vertex function

in a boosted frame is related to the NLO correction to the triton vertex function in the

c.m. frame by the integral equation

G1(E, ~K, k0, ~k) = G0(E, ~K, k0, ~k) ◦R1

(
2

3
E + k0, ~k +

2

3
~K

)
(72)

+

[
R0

(
q, k,

2

3
B0 + k0 −

~K · ~k
3MN

+
~k2

2MN

)
D(0)

(
B0 −

~q2

2MN

, ~q

)]
⊗ G1(B0, ~q).

Using Eq. (65) the NLO triton vertex function in a boosted frame can be written entirely

in terms of c.m. quantities. The NLO contribution from diagram (a) minus diagram (e) is

given by

F
(a)
1 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗A1(p, k,Q)⊗ G̃0(k) + 2G̃
T

1 (p)⊗A0(p, k,Q)⊗ G̃0(k) (73)

+2G̃
T

0 (p)⊗A1(p,Q) + 2G̃
T

1 (p)⊗A0(p,Q) +A1(Q)
}
.

To obtain this NLO expression one replaces all LO terms in Eq. (66) by their NLO counter-

parts. The functions A1(· · · ) only differ by the replacement of a LO dibaryon propagator

by a NLO correction to the dibaryon propagator. Again further details and their functional

forms can be seen in App. A. The NLO contribution from diagram (b) is given by

F
(b)
1 (Q2) = ZLO

ψ

{
2G̃

T

1 (p)⊗B0(p, k,Q)⊗ G̃0(k)
}
, (74)
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for diagram (c) by

F
(c)
1 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗ C1(p, k,Q)⊗ G̃0(k) + G̃
T

1 (p)⊗ C0(p, k,Q)⊗ G̃0(k) (75)

+G̃
T

0 (p)⊗ C0(p, k,Q)⊗ G̃1(k) + C1(k,Q)⊗ G̃0(k) + C0(k,Q)⊗ G̃1(k)
}
.

and finally diagram (d) by

F
(d)
1 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗D1(p, k,Q)⊗ G̃0(k) + D1(k,Q)⊗ G̃0(k)
}
. (76)

The function Dn(p, k,Q) is a matrix function in c.c. space and Dn(k,Q) a vector function

in c.c. space. For the functions Dn(· · · ) n = 0 does not occur; its first contribution is

at NLO. The functions B1(p, k,Q) and B2(p, k,Q) also do not exist. Summing all of the

NLO contributions, replacing ω
(0)
t0 and ω

(0)
s0 by ω

(1)
t0 and ω

(1)
s0 in the LO contributions, and

multiplying the LO contribution by the NLO triton wavefunction renormalization gives

F1(Q2) =
(
F

(a)
1 (Q2) + F

(b)
1 (Q2) + F

(c)
1 (Q2) + F

(d)
1 (Q2)

)
− Σ′1

Σ′0
F0(Q2), (77)

for the NLO correction to the triton vertex function. In the limit Q2 → 0 F1(0) = 0 up to

numerical accuracy.

The NNLO correction to the triton charge form factor is given by the diagrams in Fig. 18.

Diagrams of type (a) through (d) are added while diagrams (e) and (f) are subtracted to avoid

double counting from (a) type diagrams and their time reversed versions. Again diagrams

related by time reversal are not shown. Diagram (g) comes from gauging the kinetic term

of the triton field. Analogously to the NLO case the sum of diagrams (a) through (f) at

NNLO is given by

ZLO
ψ

∑
j=a,b,c

∫
d4k

(2π)4

∫
d4p

(2π)4

{
GT

2 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G0(E, ~K, k0, ~k) (78)

+ GT
0 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G2(E, ~K, k0, ~k)

+GT
1 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G1(E, ~K, k0, ~k)

}
+ ZLO

ψ

∑
j=d,−e

∫
d4k

(2π)4

∫
d4p

(2π)4

{
GT

1 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G0(E, ~K, k0, ~k)

+GT
0 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G1(E, ~K, k0, ~k)

}
+ ZLO

ψ

∑
j=−f

∫
d4k

(2π)4

∫
d4p

(2π)4
GT

0 (E, ~P, p0, ~p)χj(E, ~K, ~P, p0, k0, ~p, ~k)G0(E, ~K, k0, ~k).
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FIG. 18: Diagrams for NNLO triton charge form factor, where diagrams related by time reversal

symmetry are not shown. The diagrams in the dashed boxes are subtracted from the other diagrams

to avoid double counting.

The NNLO correction to the triton vertex function in a boosted frame is related to the

NNLO correction to the triton vertex function in the c.m. frame via the integral equation.

G2(E, ~K, k0, ~k) =
[
G1(E, ~K, k0, ~k)− c1 ◦ G0(E, ~K, k0, ~k)

]
◦R1

(
2

3
E + k0, ~k +

2

3
~K

)
(79)

+

[
R0

(
q, k,

2

3
B0 + k0 −

~K · ~k
3MN

+
~k2

2MN

)
D(0)

(
B0 −

~q2

2MN

, ~q

)]
⊗ G2(B0, ~q).

Using Eqs. (65) and (72) the NNLO correction to the triton vertex function can be written

in terms of c.m. quantities. The sum of type (a) diagrams minus diagrams (e) and (f) gives

F
(a)
2 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗A2(p, k,Q)⊗ G̃0(k) + 2G̃
T

1 (p)⊗A1(p, k,Q)⊗ G̃0(k) (80)

+ 2G̃
T

2 (p)⊗A0(p, k,Q)⊗ G̃1(k) + 2G̃
T

0 (p)⊗A2(p,Q) + 2G̃
T

1 (p)⊗A1(p,Q)

+2G̃
T

2 (p)⊗A0(p,Q) +A2(Q)
}
.

As in the NLO case all functions in Eq. (66) are replaced by their NNLO counterparts. In

addition terms where two expressions are replaced by their NLO counterparts are included.

The functions A2(· · · ) are the same as A0(· · · ) except with LO dibaryon propagators re-

placed by the NNLO correction to the dibaryon propagators. Diagrams of type (b) give the
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contribution

F
(b)
2 (Q2) = ZLO

ψ

{
2G̃

T

2 (p)⊗B0(p, k,Q)⊗ G̃0(k) + G̃
T

1 (p)⊗B0(p, k,Q)⊗ G̃1(k)
}
, (81)

diagrams of type (c) give

F
(c)
2 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗ C2(p, k,Q)⊗ G̃0(k) + 2G̃
T

1 (p)⊗ C1(p, k,Q)⊗ G̃0(k) (82)

+ 2G̃
T

2 (p)⊗ C0(p, k,Q)⊗ G̃0(k) + C2(B0, k, Q)⊗ G̃0(k)

+C1(k,Q)⊗ G̃1(k) + C0(k,Q)⊗ G̃2(k)
}
,

and diagram (d) gives

F
(d)
2 (Q2) = ZLO

ψ

{
G̃
T

0 (p)⊗D2(p, k,Q)⊗ G̃0(k) + 2G̃
T

1 (p)⊗D1(p, k,Q)⊗ G̃0(k) (83)

+D2(k,Q)⊗ G̃0(k) + D1(k,Q)⊗ G̃1(k)
}
.

Finally the contribution from diagram (g) is given by the constant term

4

3
MNĤ2

Σ2
0

Σ′0
(84)

Summing all of the NNLO corrections to the triton charge form factor, replacing ω
(0)
t0 and

ω
(0)
s0 by ω

(2)
t0 and ω

(2)
s0 and two factors of ω

(1)
t0 and ω

(1)
s0 in the LO contributions, replacing

ω
(0)
t0 and ω

(0)
s0 by ω

(1)
t0 and ω

(1)
s0 in the NLO contributions, multiplying the NLO correction by

the NLO triton wavefunction renormalization, and multiplying the LO term by the NNLO

triton wavefunction renormalization yields the NNLO triton charge form factor

F2(Q2) =
(
F

(a)
2 (Q2) + F

(b)
2 (Q2) + F

(c)
2 (Q2) + F

(d)
2 (Q2)

)
(85)

− Σ′1
Σ′0

(
F

(a)
1 (Q2) + F

(b)
1 (Q2) + F

(c)
1 (Q2) + F

(d)
1 (Q2)

)
+

((
Σ′1
Σ′0

)2

− Σ′2
Σ′0
− 4

3
MNĤ2

Σ2
0

Σ′0

)
F0(Q2) +

4

3
MNĤ2

Σ2
0

Σ′0

In the limit Q2 → 0 it should hold that F2(0) = 0. However, it is found that F2(0) ∼ 10−8,

which is only one order of magnitude smaller than the deviation of the LO value of the triton

charge form factor from the value F0(0) = 1 for Q2 ∼ .1 MeV2. This is due to the fact that

this qauntity is very fine tuned with respect to the three-body force HNNLO: taking HNNLO fit

to the triton binding energy and varying it by one part in 1012 it is found that F2(0) ∼ 10−15.

Despite the value of F2(0) being highly fine tuned with respect to HNNLO no such level of
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fine tuning is seen for the NNLO correction to the triton point charge radius. In other words

the slope of the NNLO correction to the triton charge form factor with respect to Q2 is not

fine tuned with respect to HNNLO, but the y-intercept is.

VI. TRITON POINT CHARGE RADIUS AND RESULTS

The triton charge form factor can be expanded in powers of Q2 yielding

F (Q2) = 1−
〈
r2
3H

〉
6

Q2 + · · · , (86)

where δrC =
√〈

r2
3H

〉
is the triton point charge radius. At LO the triton charge form factor

is given by

F0(Q2) = 1−
〈
r2
3H

〉
0

6
Q2 + · · · , (87)

where
〈
r2
3H

〉
0

is the LO contribution to (δrC)2. The NLO correction to the triton charge

form factor is given by

F1(Q2) = −
〈
r2
3H

〉
1

6
Q2 + · · · , (88)

and the NNLO correction by

F2(Q2) = −
〈
r2
3H

〉
2

6
Q2 + · · · . (89)

〈
r2
3H

〉
1

is the NLO correction to δr2
C and

〈
r2
3H

〉
2

is the NNLO correction to δr2
C , and the

square of the triton point charge radius to NNLO is simply given by

〈
δr2
C

〉
=
〈
r2
3H

〉
0

+
〈
r2
3H

〉
1

+
〈
r2
3H

〉
2

+ · · · . (90)

Taking the square root of this expression and expanding perturbatively the triton point

charge radius δrC up to NNLO is given by

δrc =
√〈

r2
3H

〉
0

 1︸︷︷︸
LO

+
1

2

〈
r2
3H

〉
1〈

r2
3H

〉
0︸ ︷︷ ︸

NLO

+
1

2

〈
r2
3H

〉
2〈

r2
3H

〉
0

− 1

8

(〈
r2
3H

〉
1〈

r2
3H

〉
0

)2

︸ ︷︷ ︸
N2LO

+ · · ·

 . (91)

In order to calculate the point charge radius at each order the charge form factor can

be calculated for various values of Q2 and a linear fit with respect to Q2 then performed

to extract the point charge radius. This procedure works well at LO, however, for higher
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cutoffs at NLO and NNLO this approach quickly runs into numerical issues and the point

charge radius cannot be reliably extracted. In order to circumvent this one expands the

functions An(· · · ), B0(· · · ), Cn(· · · ), and Dn(· · · ) in powers of Q2 and extracts their Q2

pieces allowing for a direct calculation of the point charge radius contributions. The Q2 parts

of these functions can be simplified further by analytical integrations of angular integrals,

thereby reducing potential numerical issues and speeding up calculations. The Q2 parts of

these functions are given in App. B.

The triton charge radius rC is related to the triton point charge radius δrC by〈
δr2
C

〉
=
〈
r2
C

〉
−
〈
r2
p

〉
− 2

〈
r2
n

〉
(92)

where rp = .8783± 0.0086 fm [1] is the proton charge radius, r2
n = −.1149± 0.0027 fm2 the

neutron charge radius squared, and rC = 1.7591 ± 0.0363 fm the triton charge radius [1].

From this experimental data a triton point charge radius of δrc = 1.5978 ± 0.040 fm is

extracted.

The cutoff dependence of the LO, NLO, and NNLO triton point charge radius is given in

Fig. 19. Small values of the cutoff should be ignored since they are sensitive to shifts in the
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FIG. 19: Cutoff dependence of the LO, NLO, and NNLO predictions for the triton point charge

radius. The pink band is a 15% error estimate for the LO triton point charge radius, the green

band is a 5% error estimate for the NLO triton point charge radius, and the blue band a 1.5%

error estimate for the NNLO triton point charge radius. The dotted line is the value extracted

from experiment, 1.5978± 0.040 fm [1], and the black lines its error.

momentum in integrals from the finite cutoff regularization. However, for sufficiently large
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cutoffs all terms that go like 1/Λn are suppressed and all integrals are effectively invariant

under a shift in momentum. In Fig. 19 the LO pink band corresponds to a 15% error about

the LO point charge radius prediction, the NLO green band corresponds to a 5% error about

the NLO point charge radius prediction, and the NNLO blue band to a 1.5% error about the

NNLO point charge radius prediction.7 The LO and NLO bands converge as a function of

cutoff, while the NNLO band has a very slight cutoff variation. The LO triton point charge

radius converges to a value of 1.14 fm and the NLO value to 1.59 fm. In the region of cutoffs

from 1000 to 106 MeV the NNLO point charge radius varies from 1.62 fm to 1.63 fm. The

NLO (NNLO) value is within 5% (1.5%) of the experimental number for the triton point

charge radius of 1.5978± 0.040 fm [1]. From LO to NLO a large change is seen in the point

charge radius. This large change from LO to NLO is typical in the Z-parametrization where

fixing the residue about the poles of the deuteron and 1S0 virtual bound state makes a large

correction from LO to NLO. Further examples of this behavior can be seen in Ref. [36] for

the np phase shift in the 3S1 channel.

The LO prediction for the triton point charge radius is slightly more than 15% away

from the experimental error bars. However, calculating the LO triton point charge radius

in the unitary limit yields the result MNE3H

〈
r2
3H

〉
0

= (1 + s2
0)/9 ≈ 0.224, which is in

agreement with analytical techniques found in Ref. [3].8 This gives further confidence that

the LO result, despite perhaps seeming too small, is indeed correct. At NNLO a point

charge radius of 1.62± 0.03 fm is predicted, which agrees with the experimental extraction

within errors, where the error comes from a 1.5% error estimate from EFT(/π) and also a 1%

error from cutoff variation. It is still an open question whether the NNLO result is strictly

converging as Λ → ∞. In order to address this issue either a detailed asymptotic analysis

must be carried out or a calculation to cutoffs large enough where signs of convergence or lack

thereof can be clearly seen. However, the NNLO calculation suffers from numerical noise at

large cutoffs (Λ > 106) and new numerical techniques would be needed to deal with the fine

tuning of three-body forces at large cutoffs. Dealing with this fine tuning could also allow

reliable calculations of the triton charge form factor and not just the triton point charge

7 The usual EFT(/π) error is 30%, 10%, and 3% for LO, NLO, and NNLO respectively. Taking the square

root to get the charge radius divides this percent error in half.
8 The number s0 = 1.00624... is a universal number coming from the solution of the asymptotic form of the

triton vertex function[41, 42].
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radius to higher cutoffs at NNLO. Finally, a previous EFT(/π) calculation using wavefunction

methods obtained a LO prediction of 2.1 ± 0.6 fm for the triton point charge radius [43],

and a coordinate space technique obtained the NLO EFT(/π) prediction of 1.6± 0.2 fm [44].

Note, all of these techniques should find MNE3H

〈
r2
3H

〉
0

= (1 + s2
0)/9 ≈ 0.224 in the unitary

and equal mass limit.

The point charge radius of the triton was obtained using Eq. (92) and the charge radius

of the proton from electron scattering. However, spectroscopy from muonic hydrogen finds

a proton charge radius of .84087(39) fm [45], which is about seven standard deviations away

from the averaged results of electron scattering and electronic hydrogen spectroscopy [46].

This discrepancy is known as the “proton radius puzzle”. An extensive review can be found

in Ref. [47] and an overview of certain current and ongoing experimental efforts in Ref. [48].

Possible solutions lie in the way that functions are fit to electron scattering data to extract

the charge radius [49]. However, this would not explain the discrepancy between muonic

hydrogen and electronic hydrogen spectroscopy data. Both experimental [50–52] and theo-

retical [53] efforts are being carried out to reexamine the electronic hydrogen spectroscopy

results. Other possible theoretical explanations include using new muonic forces [54–56] and

new proton structures [57–62]. Using the value for the proton charge radius from muonic

hydrogen gives a triton point charge radius of 1.6178 ± 0.040 fm. The approximate 1%

difference between the experimental triton point charge radius from muonic hydrogen and

electron scattering would require a N4LO calculation in EFT(/π) to distinguish them. Note a

N4LO calculation does not give information about the fundamental interactions giving rise

to the proton structure in the triton, but only to correlations within and between the triton

and deuteron structures.

A comparison of various calculations of the triton point charge radius is shown in Table I.

The results of Ref. [63] use the Lanzcos sum rule and the effective interaction hyperspherical

harmonics method with the two-body AV18 [64] and three-body UIX [65] (AV18/UIX)

potential to obtain a triton point charge radius of 1.593 fm and using a two- [66] and three-

body [67] χEFT potential they find a triton point charge radius of 1.617 fm. Ref. [68] uses

the AV18/UIX potential with the hyperspherical harmonics method to get a triton point

charge radius of 1.582 fm. Using Green’s function Monte Carlo (GFMC) with the AV18

and three-body IL7 [69] potential (AV18/IL7) a triton point charge radius of 1.58 fm is

found [70]. χEFT predicts a triton point charge radius of 1.594(8), where the error comes
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from looking at the cutoff dependence of the triton point charge radius [35]. The NNLO

results of this work and other lower-order EFT(/π) calculations are displayed as well. Also

shown in Table I are predictions for the triton binding energy. For EFT predictions the

triton binding energy is fit to and therefore not shown9 . Most techniques predict the triton

binding energy reasonably well, but the GFMC seems to slightly overpredict it, and its

error comes from Monte Carlo statistics. All potential model calculations (PMC) seem to

predict roughly the same triton point charge radius, with the exception of the χEFT result

from Ref. [63], which favors the triton point charge radius using the proton charge radius

from muonic hydrogen. None of the PMC values have any error estimates. The EFT(/π)

predictions agree with the triton point charge radius within their respective errors. χEFT

seems to agree quite well with experiment and also has a small error. However, estimating

the error with cutoff variation should be done with caution [71].

VII. CONCLUSIONS

Building upon the work of Hagen et al. [32] I have introduced a technique to treat

perturbative corrections to bound-state calculations for EFTs of short range interactions.

This work focused on the use of these techniques in EFT(/π), but they are equally useful

for Halo-EFT or cold atom calculations. In addition, this new technique leads to numerical

simplifications in calculating nd scattering amplitudes, and the LO three-body force in the

doublet S-wave channel. It also allows the NNLO energy dependent three-body force to be

fixed to the triton bound-state energy without the need for a limiting procedure [33].

Using this new technique the triton point charge radius was calculated to NNLO in

EFT(/π), giving a LO value of 1.14± 0.19 fm, a NLO value of 1.59± 0.08 fm, and a NNLO

value of 1.62±0.03 fm. The LO value disagrees with the experimental extraction of 1.5978±

0.040 fm [1] by about 40%, which is more than the LO estimated EFT(/π) error of 15%.

However, it was found at LO that it agrees with analytical calculations in the unitary

limit [3]. At NLO the value of 1.59±0.08 fm agrees with the experimental extraction within

the expected 5% error. The error for the NNLO value comes from the expected 1.5% error at

NNLO in EFT(/π) and from the slight cutoff variation of the calculation. Within these errors

9 The three-body terms using the χEFT potential in Ref. [63] are clearly not fit exactly to the triton binding

energy. For further details of how their three-body parameters are chosen consult Ref. [67]
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Method B3H [MeV] δrC [fm]

AV18/UIX [63] 8.473 1.593

χEFT [63] 8.478 1.617

AV18/UIX HH [68] 8.479 1.582

AV18/IL7 GFMC[70] 8.50(1) 1.58

χEFT N3LO/N2LO [35] – 1.594(8)

EFT(/π) (LO) [43] – 2.1(6)

EFT(/π) (NLO) [44] – 1.6(2)

EFT(/π) (NNLO) – 1.62(3)

Experiment: 8.4818

Experiment: e− 1.5978(40) [1]

Experiment: µ− 1.6178(40) [1, 45]

TABLE I: Different theoretical predictions for the triton point charge radius and the triton binding

energy. All EFT calculations fit to the experimental triton binding energy, with the exception of

the χEFT calculation of Ref. [63]. The error for the triton binding energy for the GFMC results

comes from statistical errors in Monte Carlo calculations. All other errors are estimates from EFT

or experimental errors. The error for the χEFT value of δrC comes from varying the cutoff of the

calculation [35]. Experimental numbers for the triton point charge radius are given using both the

proton charge radius from electron scattering data and muonic hydrogen.

the NNLO prediction of 1.62±0.03 fm agrees with the experimental extraction. Future work

should address the cutoff variation at NNLO, and see if the results actually converge as a

function of cutoff. In addition future work should carry out a more rigorous error analysis

by means of Bayesian statistics [72].

Fitting the three-body force to the triton binding energy in the unitary limit the triton

point charge radius is 1.05 fm. Including the proper NN scattering lengths gives the LO

value 1.14 fm, and including range corrections up to NNLO gives the value 1.62± 0.03 fm.

Thus range corrections give significant contributions to the triton point charge radius with

respect to the unitary limit. Despite this, a controlled expansion in terms of a finite number

of parameters from the unitary limit is observed, and therefore the triton can be thought of

as being in the so called Efimov window [73].
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Future work will also consider the 3He point charge radius, which in the absence of

Coulomb is the isospin mirror of the current calculation presented here. Coulomb effects can

be included in this formalism straightforwardly either perturbatively or nonperturbatively.

For a description of 3He it should be sufficient to treat Coulomb fully perturbatively [31].

In addition future work will consider the magnetic moments of the triton and 3He as well

as their magnetic radii. These observables are of interest because they will be measured to

greater precision in upcoming experiments using spectroscopy of µ3He+ [74]. EFT(/π) offers

a way to make precision calculations for these observables in a controlled expansion matched

on to low energy nuclear observables.
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Appendix A:

The function (χji
a (· · · ))µανβ is given by(

χji
a (E, ~K, ~P, p0, k0, ~p, ~k)

)µα
νβ

= ie(2π)4δ (k0 − p0) δ(3)

(
~k− ~p− 2

3
~Q

)
(A1)

× iD(0)

(
2

3
E + k0, ~k +

2

3
~K

)
i

1
3
E − k0 −

(~k− 1
3
~K)2

2MN
+ iε

× i

1
3
E − k0 −

(~k− 2
3
~Q− 1

3
~P)2

2MN
+ iε

(
1 + τ3

2

)µ
ν

δαβ δ
ij,

where α (β) is the initial (final) nucleon spin, µ (ν) the initial (final) nucleon isospin, and

i (j) the initial (final) dibaryon polarization. Using the projection operators as defined in
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Ref. [22] to project the c.c. space spin-isospin operator into the doublet channel yields

1

3

 σj 0

0 τB

 (1+τ3
2

)
δij 0

0
(

1+τ3
2

)
δAB

 σi 0

0 τA

 =

 0 0

0 2
3

 . (A2)

Thus the function χa(· · · ) is a matrix in c.c. space given by

χa(E, ~K, ~P, p0, k0, ~p, ~k) = ie(2π)4δ (k0 − p0) δ(3)

(
~k− ~p− 2

3
~Q

)
(A3)

× iD(0)

(
2

3
E + k0, ~k +

2

3
~K

)
i

1
3
E − k0 −

(~k− 1
3
~K)2

2MN
+ iε

× i

1
3
E − k0 −

(~k− 2
3
~Q− 1

3
~P)2

2MN
+ iε

 0 0

0 2/3

 .

Plugging χa(· · · ) into Eq. (64) the integration over d4p is removed by the delta functions.

Integrating over the energy pole the integration over dk0 leaves only a d3k integration. Next

Eq. (65) is used to rewrite the triton vertex function in the boosted frame in terms of the

triton vertex function in the c.m. frame. The momentum ~k from Eq. (64) and momentum

~q from Eq. (65) are interchanged, and then ~q→ ~q + 1
3
~Q. This shift makes the time reversal

symmetry of the expressions apparent. Finally, integrating over the azimuthal angle of ~q

leaves a double integral for the analytical forms of the functions An(· · · ) which are given

by10

An(p, k,Q) = MN

1∣∣∣
0

∫ Λ

0

dqq2

∫ 1

−1

dx
1

qQx

1

kp
√
q2 + 2

3
qQx+ 1

9
Q2

√
q2 − 2

3
qQx+ 1

9
Q2

(A4)

Q0

k2 + q2 + 1
9
Q2 + (y − 1

3
)qQx−MNB0

k
√
q2 + 2

3
qQx+ 1

9
Q2

Q0

p2 + q2 + 1
9
Q2 + (y − 2

3
)qQx−MNB0

p
√
q2 − 2

3
qQx+ 1

9
Q2


D(n)
s

(
B0 −

q2

2MN

− Q2

12MN

+

(
1

2
− y
)
qQx

MN

, ~q

) 6 −2

−2 2/3

 ,

10 Note all of the functions here should be similar to those found in Hagen et al. [32], in the limit where

the core mass equals the neutron mass. However, where I find the term Q2/(12MN ) in the dibaryon

propagator for the functions An(· · · ) they find Q2/(8MN ).
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An(p,Q) = −MN

2π

1∣∣∣
0

∫ Λ

0

dqq2

∫ 1

−1

dx
1

qQx

1

p
√
q2 − 2

3
qQx+ 1

9
Q2

(A5)

×Q0

p2 + q2 + 1
9
Q2 + (y − 2

3
)qQx−MNB0

p
√
q2 − 2

3
qQx+ 1

9
Q2


×D(n)

s

(
B0 −

q2

2MN

− Q2

12MN

+

(
1

2
− y
)
qQx

MN

, ~q

) 2

−2/3

 ,

and

An(Q) =
MN

4π2

1∣∣∣
0

∫ Λ

0

dqq2

∫ 1

−1

dx
1

qQx

2

3
D(n)
s

(
B0 −

q2

2MN

− Q2

12MN

+

(
1

2
− y
)
qQx

MN

, ~q

)
, (A6)

where
1∣∣∣
0

f(y) = f(1)− f(0). (A7)

The matrix (vector) of the function An(p, k,Q) (An(p,Q)) is defined in c.c. space. To

obtain the c.c. space matrix for An(p, k,Q) the c.c. space matrix from χa(· · · ) is multiplied

on either side by a c.c. space matrix from the LO kernel leading to 1 −3

−3 1

 0 0

0 2
3

 1 −3

−3 1

 =

 6 −2

−2 2
3

 , (A8)

giving the c.c. space matrix as defined in Eq. (A4).

The function (χji
b (· · · ))µανβ is given by(

χji
b (E, ~K, ~P, p0, k0, ~p, ~k)

)µα
νβ

= i
2πe

MN

iD(0)
x

(
2

3
E + k0, ~k +

2

3
~K

)
i

1
3
E − k0 −

(~k− 1
3
~K)2

2MN
+ iε

(A9)

i

1
3
E − p0 + `0 −

(~p− 1
3
~P)2

2MN
+ iε

i

1
3
E + k0 + p0 −

(~k+~p− 1
3
~Q+ 1

3
~K)2

2MN
+ iε

i

1
3
E + k0 + p0 −

(~k+~p+ 1
3
~Q+ 1

3
~P)2

2MN
+ iε

iD(0)
w

(
2

3
E + p0, ~p +

2

3
~P

)[
P

(w)
i

†
(

1 + τ3

2

)
P

(x)
j

]αµ
βν

,

where P
(x)
j =

√
8Pj (P

(x)
j =

√
8P̄j) for x = t (x = s) in the spin-triplet iso-singlet (spin-

singlet iso-triplet) channel. Here the indices “i” and “j” are either spinor or isospinor

indices depending on the values of (x) and (w). The values of (x) and (w) pick out the
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matrix element of (χji
b (· · · ))µανβ in c.c. space. Projecting (χji

b (· · · ))µανβ onto the doublet S-

wave channel gives

χb(E, ~K, ~P, p0, k0, ~p, ~k) = i
2πe

MN

iD(0)

(
2

3
E + k0, ~k +

2

3
~K

)
i

1
3
E − k0 −

(~k− 1
3
~K)2

2MN
+ iε

(A10)

i

1
3
E − p0 −

(~p− 1
3
~P)2

2MN
+ iε

i

1
3
E + k0 + p0 −

(~k+~p− 1
3
~Q+ 1

3
~K)2

2MN
+ iε

i

1
3
E + k0 + p0 −

(~k+~p+ 1
3
~Q+ 1

3
~P)2

2MN
+ iε

−1 1

1 1/3

 iD(0)

(
2

3
E + p0, ~p +

2

3
~P

)
Plugging χb(· · · ) into Eq. (64) and then integrating over the energy poles removes the dp0

and dk0 integrals. After performing these integrations the LO triton vertex functions are

already in the c.m. frame, leaving only six integrations to be performed. Integrating over one

of the azimuthal angles and noting that Eq. (68) already has two integrations, the function

B0(p, k,Q) has three remaining integrals and is defined by

B0(p, k,Q) = −MN

4

∫ 1

−1

dx

∫ 1

−1

dy

∫ 2π

0

dφ (A11)

× 1

k2 + p2 + kp
(
xy +

√
1− x2

√
1− y2 cosφ

)
− 1

3
Q(kx+ 2py) + 1

9
Q2 −MnB0

× 1

k2 + p2 + kp
(
xy +

√
1− x2

√
1− y2 cosφ

)
+ 1

3
Q(2kx+ py) + 1

9
Q2 −MnB0

×

−1 1

1 1/3

 .

Time reversal symmetry in this expression is immediately apparent as it is invariant under

the transformation k ←→ p, and Q→ −Q.

The function (χji
c (· · · ))µανβ is given by(

χji
c (E, ~K, ~P, p0, k0, ~p, ~k)

)µα
νβ

= (A12)

i
eMN

Q
(2π)4δ (k0 − p0) δ(3)

(
~p− ~k− 1

3
~Q

)
i

1
3
E − k0 −

(~k− 1
3
~K)2

2MN
+ iε

arctan

 Q

2
√

1
4
(~k + 2

3
~K)2 − 2

3
MNE −MNk0 + 2

√
1
4
(~k + ~Q + 2

3
~K)2 − 2

3
MNE −MNk0


iD(0)

w

(
2

3
E + k0, ~k +

2

3
~K

)
iD(0)

x

(
2

3
E + k0, ~k + ~Q +

2

3
~K

)
Tr

[
P

(x)
j

(
1 + τ3

2

)
P

(w)
i

†
]
δαβ δ

µ
ν ,
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which projected onto the doublet S-wave channel gives

χc(E, ~K, ~P, p0, k0, ~p, ~k) = (A13)

i
eMN

Q
(2π)4δ (k0 − p0) δ(3)

(
~p− ~k− 1

3
~Q

)
i

1
3
E − k0 −

(~k− 1
3
~K)2

2MN
+ iε

arctan

 Q

2
√

1
4
(~k + 2

3
~K)2 − 2

3
MNE −MNk0 + 2

√
1
4
(~k + ~Q + 2

3
~K)2 − 2

3
MNE −MNk0


iD(0)

(
2

3
E + k0, ~k +

2

3
~K

) 2 0

0 2/3

 iD(0)

(
2

3
E + k0, ~k + ~Q +

2

3
~K

)
,

where the analytical expression of the two-body sub-diagram of diagram (c) is included.

Integrating over the delta functions and the energy dk0 leaves only the integration d3k.

After this, one LO triton vertex function is in the c.m. frame and the other is not and must

be rewritten using Eq. (65). Integrating over the azimuthal angle the functions Cn(· · · ) are

given by

Cn(p, k,Q) = −MNπ

Q

∫ 1

−1

dx (A14)

× arctan

 Q

2
√

3
4
k2 −MNB0 + 2

√
3
4
k2 + 1

2
Qkx+ 1

12
Q2 −MNB0


× 1

p
√
k2 + 2

3
kQx+ 1

9
Q2
Q0

p2 + k2 + 2
3
kQx+ 1

9
Q2 −MNB0

p
√
k2 + 2

3
kQx+ 1

9
Q2


×

 2 −2

−6 2/3

D(n)

(
B0 −

k2

2MN

− Qkx

2MN

− Q2

12MN

, k

)
,

and

Cn(k,Q) =
MN

2Q

∫ 1

−1

dx (A15)

× arctan

 Q

2
√

3
4
k2 −MNB0 + 2

√
3
4
k2 + 1

2
Qkx+ 1

12
Q2 −MNB0


×

 2

−2/3

T

D(n)

(
B0 −

k2

2MN

− Qkx

2MN

− Q2

12MN

, k

)
.

In the current form of the functions Cn(· · · ) time reversal invariance is not immediately

apparent. Recasting these expressions into an immediately apparent time reversal invari-
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ant form requires shifting momentum before integrating out angles. However, the gain in

analytical insight is outweighed by the loss in numerical efficiency and the form above is

kept.

Diagram (d) is essentially diagram (c) without the two-body sub-diagram and therefore

(χji
d (· · · ))µανβ is similar to (χji

c (· · · ))µανβ and is given by(
χji
d (E, ~K, ~P, p0, k0, ~p, ~k)

)µα
νβ

= (A16)

ie(2π)4δ (k0 − p0) δ(3)

(
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1

3
~Q

)
i

1
3
E − k0 −
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3
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+ iε

iD(0)
w
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2

3
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2

3
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iD(0)

x
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2

3
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2

3
~K

)
Tij
wxδ

α
β δ

µ
ν ,

where Tij
wx = δwx(c

(0)
0t δwtδij + c

(0)
0s δwsδi3δj3). The delta function δwt picks out the contribution

from the spin-triplet dibaryon and δws from the spin-singlet dibaryon. The indices i and

j in δi3δj3 are isospin indices and correspond to the fact that only the the np spin-singlet

dibaryon is charged and not the nn spin-singlet dibaryon. Projecting (χji
d (· · · ))µανβ onto the

doublet S-wave channel yields

χd(E, ~K, ~P, p0, k0, ~p, ~k) = (A17)

ie(2π)4δ (k0 − p0) δ(3)

(
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1

3
~Q

)
i

1
3
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3
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+ iε
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3
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2

3
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) c
(0)
0t 0

0 1/3c
(0)
0s

 iD(0)

(
2

3
E + k0, ~k + ~Q +

2

3
~K

)

The calculation of the functions Dn(· · · ) is analogous to the calculation of Cn(· · · ) and

yields

Dn(p, k,Q) = π

∫ 1

−1

dx (A18)

× 1

p
√
k2 + 2

3
kQx+ 1

9
Q2
Q0

p2 + k2 + 2
3
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Q2 −MNB0

p
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3
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9
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×

n∑
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 c
(j−1)
0t −c(j−1)

0s

−3c
(j−1)
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1/3c
(j−1)
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D(n−j)
(
B0 −

k2

2MN

− Qkx

2MN

− Q2

12MN

, k

)
,
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and

Dn(k,Q) = −1

2

∫ 1

−1

dx (A19)

×
n∑
j=1

 c
(j−1)
0t

−1/3c
(j−1)
0s

T

D(n−j)
(
B0 −

k2

2MN

− Qkx

2MN

− Q2

12MN

, k

)
.

The functions χe(· · · ) and χf (· · · ) are the same as χa(· · · ), but with the LO dibaryon

propagator replaced by its corresponding NLO and NNLO correction. The NLO and NNLO

results for type (a) diagrams Eqs. (73), (80), (A4), (A5), and (A6) already contain the

subtraction of diagrams (e) and (f) and therefore χe(· · · ) and χf (· · · ) are not shown.

Appendix B:

Expanding the scalar function An(Q) as a function of Q2 and picking out the Q2 contri-

bution gives

1

2

∂2

∂Q2
An(Q)

∣∣∣
Q=0

=
2

3

∫ Λ

0

dqq2fn(q), (B1)

where

f0(q) =
MN

384π2

1

D̃5D4

{
q2(D2 − 2DD̃ + 2D̃2) + 4DD̃2(3D̃ − γs)

}
, (B2)

f1(q) = (Zs − 1)f0(q), (B3)

and

f2(q) =

(
Zs − 1

2γs

)2 [(
D̃2 − γ2

s

)
f0(q) +

MN

192π2D̃3D3

{
8D̃2D − q2(γs − 3D̃)

}]
. (B4)

The variables D and D̃ are given by

D̃ =

√
3

4
q2 −MNE , D = γs − D̃. (B5)

Extracting the Q2 part of the c.c. space vector functions An(p,Q) gives

1

2

∂2

∂Q2
An(p,Q)

∣∣∣
Q=0

=

∫ Λ

0

dqq2fn(p, q)

 2

−2/3

 (B6)
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where

f0(p, q) = −2πf0(q)
1

pq
Q0(a) (B7)

− MN

27π
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The variable a is defined by

a =
q2 + p2 −MNE

qp
. (B10)

Pulling out the Q2 part of the c.c. space matrix functions An(p, k,Q) gives

1

2

∂2
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An(p, k,Q)
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Q=0

=
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where
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{[
4 +

k

q
b+

p

q
a− 2

k

q

p

q
ab

]
+
k

q
(1− b2)

(
1− 2a

p

q

)
Q0(b) +

p

q
(1− a2)

(
1− 2b

k

q

)
Q0(a)

−2
k

q

p

q
(1− b2)(1− a2)Q0(b)Q0(a)

}
1

(1− b2)(1− a2)

+ 2π

(
Zs − 1

2γs

)2

(D̃2 − γ2
s )

[
f0(k, q)

1

pq
Q0(a) + f0(p, q)

1

kq
Q0(b)

]
− 4π2

(
f2(q)−

(
Zs − 1

2γs

)2

(D̃2 − γ2
s )f0(q)

)
1

pq
Q0(a)

1

kq
Q0(b).

The variable b is defined as

b =
q2 + k2 −MNE

qk
. (B15)

Extracting the Q2 part of the c.c. space matrix function B0(p, k,Q) gives

1

2

∂2

∂Q2
B0(p, k,Q)

∣∣∣
Q=0

= −2MNπ

9

1

p3k3

1

(1− a2)2
(B16)

×
{

4

3

a

1− a2
− 2a− 1

3

p2 + k2

pk

1 + 3a2

1− a2

}−1 1

1 1/3

 ,

where

a =
p2 + k2 −MNE

pk
. (B17)

The Q2 part of the c.c. space vector function Cn(k,Q) is

1

2

∂2

∂Q2
Cn(k,Q)

∣∣∣
Q=0

=

 2g
(n)
t (k)

−2/3g
(n)
s (k)

T

, (B18)

where

g
(0)
{t,s}(k) =

MN

384D̃5D3
{t,s}

{
4D̃2D{t,s}(2D̃ − γ{t,s}) + k2(γ{t,s} − 3D̃)D{t,s} + 2k2D̃2

}
, (B19)

g
(1)
{t,s}(k) =

(
Z{t,s} − 1

2γ{t,s}

)[
(γ{t,s} + D̃)g

(0)
{t,s}(k) +

MN

192D̃4D2
{t,s}

{
2D̃2D{t,s} + k2(D̃ −D{t,s})

}]
,

(B20)
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and

g
(2)
{t,s}(k) =

(
Z{t,s} − 1

2γ{t,s}

)2
[

(D̃2 − γ2
{t,s})g

(0)
{t,s}(k) +

MN

96D̃3D2
{t,s}

{
2D̃2D{t,s} + k2

(
D̃ − 1

2
D{t,s}

)}]
.

(B21)

For these functions and all functions below in this appendix the variables D̃ and D are

defined as

D̃ =

√
3

4
k2 −MNE , Dt = γt − D̃ , Ds = γs − D̃. (B22)

Also note that the notation {t, s} is a shorthand for two different functions one with

subscript t and other with subscript s. The Q2 dependence of the c.c. space matrix function

Cn(p, k,Q) is given by

1

2

∂2

∂Q2
Cn(p, k,Q)

∣∣∣
Q=0

=

 2g
(n)
t (p, k) −2g

(n)
s (p, k)

−6g
(n)
t (p, k) 2/3g

(n)
s (p, k)

 , (B23)

where

g
(0)
{t,s}(p, k) = −2πg

(0)
{t,s}(k)

1

pk
Q0(a) (B24)

− MNπ

54D̃D{t,s}

1

pk

{
1

pk

1

1− a2
+

1

p2

(
4a+ a

(p
k

)2

− 2
p

k
(1 + a2)

)
1

(1− a2)2

}
− MNπ

144

k

p

1

D̃3D2
{t,s}

{
1

k2
Q0(a)− 1

pk

2− p
k
a

1− a2

}[
γ{t,s} − 3D̃

]
,

g
(1)
{t,s}(p, k) =

(
Z{t,s} − 1

2γt

)[
(γ{t,s} + D̃)g

(0)
{t,s}(p, k) (B25)

− MNπ

96D̃4D2
{t,s}

1

pk
Q0(a)

{
2D̃2D{t,s} + k2(D̃ −D{t,s})

}
−k
p

MNπ

72D̃2D{t,s}

{
2

pk

1

1− a2
− 1

k2

a

1− a2
− 1

k2
Q0(a)

}]
,

and

g
(2)
{t,s}(p, k) =

(
Zt − 1

2γt

)2 [
(D̃2 − γ2

{t,s})g
(0)
{t,s}(p, k) (B26)

− MNπ

48D̃3D2
{t,s}

1

pk
Q0(a)

{
2D̃2D{t,s} + k2

(
D̃ − 1

2
D{t,s}

)}

−k
p

MNπ

36D̃D{t,s}

{
2

pk

1

1− a2
− 1

k2

a

1− a2
− 1

k2
Q0(a)

}]
.
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Extracting the Q2 term of the c.c. space vector function DN(k,Q) gives

1

2

∂2

∂Q2
Dn(k,Q)

∣∣∣
Q=0

=

 h
(n)
t (k)c

(n−1)
0t

−1
3
h

(n)
s (k)c

(n−1)
0s

T

, (B27)

where

h
(1)
{t,s}(k) = − 1

96D̃3D3
{t,s}

{
4D̃2D{t,s} + k2(3D̃ − γ{t,s})

}
(B28)

and

h
(2)
{t,s}(k) = 0. (B29)

Note there is no n = 0 value for the Dn(· · · ) functions. Finally, the Q2 piece of the c.c. space

matrix function Dn(p, kQ) is given by

1

2

∂2

∂Q2
Dn(p, k,Q)

∣∣∣
Q=0

=

 h
(n)
t (p, k)c

(n−1)
0t −h(n)

s (p, k)c
(n−1)
0s

−3h
(n)
t (p, k)c

(n−1)
0t

1/3h
(n)
s (p, k)c

(n−1)
0s

 , (B30)

where

h
(1)
{t,s}(p, k) = −2πh

(1)
{t,s}(k)

1

pk
Q0(a) +

2π

27D{t,s}

1

(pk)2

[(
4
k

p
+
p

k

)
a− 3a2 − 1

]
1

(1− a2)2

(B31)

− π

18D̃D2
{t,s}

1

pk

{
Q0(a) +

a− 2k
p

1− a2

}

and

h
(2)
{t,s}(p, k) = −

(
Z{t,s} − 1

2γ{t,s}

)[
D{t,s}h

(1)
{t,s}(p, k) + 2πD{t,s}h

(1)
{t,s}(k)

1

pk
Q0(a) (B32)

− π

18D̃D{t,s}

1

pk

{[
2
k

p
− a
]

1

1− a2
−Q0(a)

}]

Appendix C:

Taking the limit Q2 → 0 the contribution from the LO diagram (a) is given by
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ieF
(a)
0 (0) = −ieπ2MN

(
Γ̃0(q)

)T
⊗ 1

q2

δ(q − `)√
3
4
q2 −MNB0

 0 0

0 2/3

⊗ Γ̃0(`) (C1)

+ i2πeMN

(
Γ̃0(q)

)T
⊗ 1

q2`2 − (q2 + `2 −MNB0)2

 0 −2

−2 4/3

⊗ Γ̃0(`),

where

Γ̃0(q) = D(0)

(
B0 −

q2

2MN

, q

)
Γ0(q). (C2)

In order to obtain the expression for F
(a)
0 (0) it is easiest to take the limit Q2 → 0 before

carrying out the integration over energy. Doing this creates a double pole that is then

integrated out to lead to the expression above. Evaluating the LO diagram (b) in the limit

Q2 → 0 yields

ieF
(b)
0 (0) = −i2πeMN

(
Γ̃0(q)

)T
⊗ 1

q2`2 − (q2 + `2 −MNB0)2

−1 1

1 1/3

⊗ Γ̃0(`), (C3)

and for the LO diagram (c)

ieF
(c)
0 (0) = −ieπ2MN

(
Γ̃0(q)

)T
⊗ 1

q2

δ(q − `)√
3
4
~q2 −MNB0

 1 0

0 1/3

⊗ Γ̃0(`). (C4)

Combining all these terms the total LO triton charge form factor in the limit Q2 → 0 is

given by

F0(0) = −2πMN

(
Γ̃0(q)

)T
⊗

π2 1

q2

δ(q − `)√
3
4
q2 −MNB0

 1 0

0 1

 (C5)

− 1

q2`2 − (q2 + `2 −MNB0)2

 1 −3

−3 1

⊗ Γ̃0(`).

The normalization expression for the triton vertex function in Ref. [25] is equivalent to the

expression for F0(0) derived here. Therefore, it automatically follows that F0(0) = 1 if the

triton vertex function is properly renormalized.

Appendix D

The method used to derive the corrections to the bound-state energy are rigorous but

cumbersome. An elegant way to obtain the same corrections to the bound-state energy is
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shown here. The condition that the triton propagator have a bound-state pole at the triton

binding energy is given by

1−HΣ(B) = 0. (D1)

In this formula H, Σ(B), and B represent the full non-perturbative expressions that contain

corrections from all orders in EFT(/π). Expanding each of these expressions perturbatively

gives

1− (H0 +H1 +H2 + · · · ) (D2)

× [Σ0(B0 +B1 +B2 + · · · ) + Σ1(B0 +B1 +B2 + · · · )

+ Σ2(B0 +B1 +B2 + · · · ) + · · · ] = 0,

where the subscript n = 0 is LO, n = 1 is NLO, and so on. The term H2 contains con-

tributions from both HNNLO and the energy dependent three-body force Ĥ2. Collecting

expressions order by order and solving for the bound-state energy reproduces Eqs. (60) and

(63). This same technique can also be used to derive the expressions in Eqs. (54) and (55).

[1] I. Angeli and K. Marinova, Atomic Data and Nuclear Data Tables 99, 69 (2013), ISSN 0092-

640X, URL http://www.sciencedirect.com/science/article/pii/S0092640X12000265.

[2] U. van Kolck, Nucl.Phys. A645, 273 (1999), nucl-th/9808007.

[3] E. Braaten and H.-W. Hammer, Phys. Rept. 428, 259 (2006), cond-mat/0410417.

[4] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B 424, 390 (1998), nucl-th/9801034.

[5] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B 534, 329 (1998), nucl-th/9802075.

[6] A. Margaryan, R. P. Springer, and J. Vanasse, Phys. Rev. C93, 054001 (2016), 1512.03774.

[7] S. R. Beane, P. F. Bedaque, W. C. Haxton, D. R. Phillips, and M. J. Savage (2000), nucl-

th/0008064.

[8] J.-W. Chen, G. Rupak, and M. J. Savage, Nucl. Phys. A 653, 386 (1999), nucl-th/9902056.

[9] S.-i. Ando and C. H. Hyun, Phys. Rev. C 72, 014008 (2005), nucl-th/0407103.

[10] X. Kong and F. Ravndal, Nucl. Phys. A 665, 137 (2000), hep-ph/9903523.

[11] S.-i. Ando, J. W. Shin, C. H. Hyun, and S. W. Hong, Phys. Rev. C 76, 064001 (2007),

0704.2312.

[12] J.-W. Chen and M. J. Savage, Phys. Rev. C 60, 065205 (1999), nucl-th/9907042.

47

http://www.sciencedirect.com/science/article/pii/S0092640X12000265


[13] G. Rupak, Nucl. Phys. A 678, 405 (2000), nucl-th/9911018.

[14] X. Kong and F. Ravndal, Phys. Rev. C 64, 044002 (2001), nucl-th/0004038.

[15] S. Ando, J. Shin, C. Hyun, S. Hong, and K. Kubodera, Phys. Lett. B 668, 187 (2008),

0801.4330.

[16] J.-W. Chen, C.-P. Liu, and S.-H. Yu, Phys. Lett. B 720, 385 (2013), 1209.2552.

[17] M. Butler, J.-W. Chen, and X. Kong, Phys. Rev. C 63, 035501 (2001), nucl-th/0008032.

[18] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev. C 58, 641 (1998), nucl-

th/9802057.

[19] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A 676, 357 (2000), nucl-

th/9906032.

[20] F. Gabbiani, P. F. Bedaque, and H. W. Grießhammer, Nucl. Phys. A 675, 601 (2000), nucl-

th/9911034.

[21] P. F. Bedaque, G. Rupak, H. W. Grießhammer, and H.-W. Hammer, Nucl. Phys. A 714, 589

(2003), nucl-th/0207034.

[22] H. W. Grießhammer, Nucl. Phys. A 744, 192 (2004), nucl-th/0404073.

[23] J. Vanasse, Phys. Rev. C 88, 044001 (2013), 1305.0283.

[24] G. Rupak and X.-w. Kong, Nucl. Phys. A 717, 73 (2003), nucl-th/0108059.

[25] S. König and H.-W. Hammer, Phys. Rev. C 83, 064001 (2011), 1101.5939.

[26] J. Vanasse, D. A. Egolf, J. Kerin, S. König, and R. P. Springer, Phys. Rev. C89, 064003

(2014), 1402.5441.

[27] H. Sadeghi, S. Bayegan, and H. W. Grießhammer, Phys. Lett. B643, 263 (2006), nucl-

th/0610029.

[28] M. M. Arani, H. Nematollahi, N. Mahboubi, and S. Bayegan, Phys. Rev. C89, 064005 (2014),

1406.6530.

[29] S. König, H. W. Grießhammer, and H.-W. Hammer, J. Phys. G42, 045101 (2015), 1405.7961.

[30] S.-i. Ando and M. C. Birse, J. Phys. G 37, 105108 (2010), 1003.4383.

[31] S. König, H. W. Grießhammer, H.-W. Hammer, and U. van Kolck, J. Phys. G43, 055106

(2016), 1508.05085.

[32] P. Hagen, H.-W. Hammer, and L. Platter, Eur. Phys. J. A49, 118 (2013), 1304.6516.

[33] C. Ji and D. R. Phillips, Few-Body Syst. 54, 2317 (2013), 1212.1845.

[34] R. Schiavilla, V. R. Pandharipande, and D.-O. Riska, Phys. Rev. C41, 309 (1990).

48



[35] M. Piarulli, L. Girlanda, L. E. Marcucci, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev.

C87, 014006 (2013), 1212.1105.

[36] D. R. Phillips, G. Rupak, and M. J. Savage, Phys. Lett. B 473, 209 (2000), nucl-th/9908054.

[37] J. J. de Swart, C. P. F. Terheggen, and V. G. J. Stoks, in 3rd International Symposium on

Dubna Deuteron 95 Dubna, Russia, July 4-7, 1995 (1995), nucl-th/9509032.

[38] A. H. Wapstra and G. Audi, Nucl. Phys. A432, 1 (1985).

[39] C. Ji, D. R. Phillips, and L. Platter, Ann. Phys. (N.Y.) 327, 1803 (2012), 1106.3837.

[40] W. Dilg, L. Koester, and W. Nistler, Physics Letters B 36, 208 (1971), ISSN 0370-2693, URL

http://www.sciencedirect.com/science/article/pii/0370269371900700.

[41] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A 646, 444 (1999), nucl-

th/9811046.

[42] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys. Rev. Lett. 82, 463 (1999), nucl-

th/9809025.

[43] L. Platter and H.-W. Hammer, Nucl. Phys. A766, 132 (2006), nucl-th/0509045.

[44] J. Kirscher, H. W. Grießhammer, D. Shukla, and H. M. Hofmann, Eur. Phys. J. A44, 239

(2010), 0903.5538.

[45] A. Antognini et al., Science 339, 417 (2013).

[46] P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012), 1203.5425.

[47] R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki, Ann. Rev. Nucl. Part. Sci. 63, 175 (2013),

1301.0905.

[48] R. Pohl (CREMA), Hyperfine Interact. 227, 23 (2014).

[49] K. Griffioen, C. Carlson, and S. Maddox, Phys. Rev. C93, 065207 (2016), 1509.06676.

[50] A. Beyer et al., J. Phys. Conf. Ser. 467, 012003 (2013).

[51] A. Beyer, J. Alnis, K. Khabarova, A. Matveev, C. G. Parthey, D. C. Yost, R. Pohl, T. Udem,
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