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I construct a model of the inner crust of neutron stars using interactions from chiral effective field
theory (EFT) in order to calculate its equation of state (EOS), shear properties, and the spectrum
of crustal shear modes. I systematically study uncertainties associated with the nuclear physics
input, the crust composition, and neutron entrainment, and estimate their impact on crustal shear
properties and the shear-mode spectrum. I find that the uncertainties originate mainly in two
sources: The neutron-matter EOS and neutron entrainment. I compare the spectrum of crustal
shear modes to observed frequencies of quasi-periodic oscillations in the afterglow of giant gamma-
ray bursts and find that all of these frequencies could be described within uncertainties, which are,
however, at present too sizeable to infer neutron-star properties from observations.

I. INTRODUCTION

Neutron stars are remarkable objects: With masses
up to 2 M� [1, 2] and typical radii of the order of 12
km [3–5], densities inside neutron stars are higher than
densities accessible in experiments on earth. This makes
neutron stars excellent laboratories for physical theories
under extreme conditions.

A large part of the available observational data on neu-
tron stars is linked to the physics of neutron-star crusts,
which can be divided into the outer and the inner crust.
The outer crust consists of a lattice of neutron-rich nuclei
emerged in a sea of electrons. Deeper in the neutron star,
with increasing density and neutron chemical potential,
the nuclei become more and more neutron-rich. At den-
sities of ρ ∼ 4·1011g/cm

3
, the neutron chemical potential

becomes positive and neutrons begin to drip out of the
nuclei. This is where the inner crust begins. In addi-
tion to free neutrons, inhomogeneous phases of nuclear
matter, the so-called nuclear pasta phases, may appear;
see, e.g., Ref. [6]. At the crust-core transition density,
which is roughly half of the nuclear saturation density
ρ0 ∼ 2.7 · 1014g/cm

3 ∼ 0.16 fm−3, the nuclei will dissolve
and a phase of uniform nuclear matter in β equilibrium
will begin.

Understanding crustal properties is key to describe var-
ious neutron-star observations [7]. In this paper, I fo-
cus on shear properties of the neutron-star crusts: The
shear modulus µ, shear velocities vS , and the frequency
spectrum of crustal shear modes. Crustal shear modes
are of particular interest for the description of quasiperi-
odic oscillations (QPOs) in the afterglow of giant gamma-
ray bursts in magnetars [8–12]. The shear modulus de-
scribes how the neutron-star crust elastically deforms un-
der shear stress, i.e., it describes the stiffness of the crust
lattice under shear deformations. These deformations
lead to the formation of shear oscillations, which travel
through the crust with the shear velocity vS and have
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a frequency that depends on vS and the crust parame-
ters. Giant flares trigger starquakes that cause crustal
shear deformations and lead to shear oscillations in the
crust [13]. These shear oscillations can in principle mod-
ulate the surface emission and then be observed as QPOs.
However, QPOs are not simply crustal oscillation modes
because the global magnetic field couples the neutron
star’s crust and core and leads to the formation of global
oscillation modes [14, 15]. The global magnetic field,
thus, plays an important role for the correct description
of QPO oscillation spectra.

Because the restoring force in the crustal lattice is the
Coulomb interaction, the shear modulus depends on the
charge number Z of the lattice ions and their density ni.
While for the outer crust these are well understood, the
composition and structure of the inner crust are not well
constrained. Furthermore, additional effects in the inner
crust are thought to be crucial for the correct description
of crustal shear modes, like neutron superfluidity [16–19],
entrainment of neutrons with the crust lattice [20], or the
appearance of pasta phases [21–23], but these effects are
not completely understood.

This ignorance of crustal properties will also reflect in
the crustal shear spectra. So far, no oscillation model,
neither crustal nor global, is able to describe all observed
QPO frequencies, see, e.g., Ref. [24]. On the other hand,
none of these models include systematic uncertainties. In
this paper, I estimate the effects of nuclear-physics uncer-
tainties on the spectrum of crustal shear modes. These
uncertainties may be sizeable and originate from various
sources, e.g., the inner-crust EOS, the crust structure
and composition, or neutron entrainment.

This paper is structured as follows: In Sec. II I will
determine models for the inner-crust EOS within the
Wigner-Seitz approximation, based on realistic interac-
tions with systematic theoretical uncertainties. I use
these EOSs in Sec. III to determine the shear modulus
and the shear velocities of the neutron-star inner crust.
Finally, in Secs. IV and V, I calculate the frequencies of
the fundamental crustal shear oscillations as well as of
the first radial overtone with nuclear-physics uncertain-
ties with the goal of identifying the largest sources of
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uncertainty. I summarize and give an outlook in Sec. VI.

II. INNER-CRUST EQUATION OF STATE

I use a Gibbs construction within the Wigner-Seitz ap-
proximation to determine an inner-crust EOS consistent
with realistic models of the nuclear interactions. For the
outer crust, I will use the model by Baym, Pethick, and
Sutherland (BPS) of Ref. [25] with the sequence of nu-
clei as calculated in Ref. [26]. Since the shear spectrum is
largely insensitive to the outer-crust EOS and the exact
neutron drip density [24], this choice will not affect our
main results.

To describe the nuclear interactions in the inner crust,
I will use two different parametrizations. First, I use
an empirical parametrization suggested in Ref. [4] fit
to realistic interactions from chiral effective field the-
ory (EFT) [27, 28]. Chiral EFT is a systematically
improveable framework to describe low-energy hadronic
interactions, and is directly connected to the symme-
tries of quantum chromodynamics. It naturally includes
both two-body and many-body forces, which are key for
the correct description of nuclei and nuclear matter, see
Ref. [29] and references therein. Due to its systematics,
chiral EFT allows for systematic uncertainty estimates,
which enables one to investigate the effects of uncertain-
ties in the nuclear interactions on the crustal shear spec-
trum. Chiral EFT has been very successfully used in
calculations of nuclear matter [30–42] and nuclei [43–55],
and was also used to study neutron-star properties [4, 56].

Second, I will explore the simpler parametrization sug-
gested in Ref. [57], where the parameters were fit in
Ref. [58] both to phenomenological interactions of the
Argonne + Urbana/Illinois type as well as to a set of
chiral EFT interactions.

A. Inner crust from chiral EFT interactions

In the Wigner-Seitz approximation, one considers a
spherical Wigner-Seitz cell of pure neutron matter, phase
I, with radius RW and volume VW . In its center, I as-
sume a nucleus in form of a spherical drop of asymmetric
nuclear matter, phase II, with radius R0, volume V0, and
proton number Z. The proton density is constant inside
the nucleus, nCp (r) = e np Θ(r −R0) = eZ/V0 Θ(r −R0).
A relativistic electron gas is equally distributed in the
Wigner-Seitz cell. The whole system is considered at
T = 0.

For the two phases to be stable, the following two con-
ditions need to be fulfilled: First, the pressure P (n, x) =
n2∂(E/A)/∂n in both phases has to be equal, P (n, x) =
P I(nn, 0) = P II(n, x), with the neutron number density
in phase I, nn, and the baryon number density n and
proton fraction x = np/n in phase II. Second, the neu-
tron chemical potential, µn = µp+µel, has to be equal in
both phases. Since the Wigner-Seitz cell is immersed in a

uniform electron gas, the equilibrium conditions are not
affected by the presence of electrons, and one can include
their contributions later.

The neutron and proton chemical potentials µn and µp
are given by

µp(n, x) = n
∂
(
E
A

)
∂n

+
∂
(
E
A

)
∂x

(1− x) +
E

A
+mp , (1)

µn(n, x) = n
∂
(
E
A

)
∂n

−
∂
(
E
A

)
∂x

x+
E

A
+mn , (2)

with the neutron and proton masses mn and mp, respec-
tively. The pressure and chemical potential can be de-
rived easily from the energy per particle E/A, given in
phase I by

E

A
(nn, 0) =

Enuc

A
(nn, 0) , (3)

and in phase II by

E

A
(n, x) =

Enuc

A
(n, x) +

EC

A
(n, x) +

ES

A
(n, x) . (4)

The term Enuc takes into account the kinetic energy of
the nucleons as well as the nuclear interaction energy, EC

is the Coulomb energy, and ES the surface energy of the
nuclear drop.

I first make use of the parametrization of Ref. [4], given
by

Enuc

A
(n, x) = T0

(
3

5

(
x

5
3 + (1− x)

5
3

)(2n

n0

) 2
3

(5)

− [(2α− 4αL)x(1− x) + αL] · n
n0

+ [(2η − 4ηL)x(1− x) + ηL] ·
(
n

n0

)γ)
,

where n0 is the nuclear saturation density, n0 =
0.16 fm−3, T0 = (3π2n0/2)2/3~2/(2mN ) is the Fermi en-
ergy of symmetric nuclear matter at saturation density,
and γ = 4/3. The parameters α, αL, η, and ηL are
determined from fits to the empirical saturation point,
Enuc

A (n0, 0.5) = −16 MeV, and P nuc(n0, 0.5) = 0, and to
the neutron-matter results of Ref. [30] from chiral EFT.
The full parameter range can be found in Ref. [4] and al-
lows one to quantify the uncertainties of modern nuclear
interactions.

This parametrization leads to an incompressibility pa-
rameter K = 236 MeV and a skewness parameter K ′ =
−384 MeV. The symmetry energy Sv and its density de-
pendence at saturation density, L, defined via

Sv(n) =
1

8

∂2

∂x2
E

A
(n, x)

∣∣∣∣
x=1/2

, (6)

L = 3n0
∂

∂n
SV (n)

∣∣∣∣
n0

, (7)
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FIG. 1. Proton chemical potential as a function of the neu-
tron chemical potential. The different bands show the un-
certainties due to different sources: the variation of the sur-
face parameters (red band), of Z (green band), and of the
neutron-matter EOS (blue band). As one can see, the uncer-
tainties are dominated by the blue band (which overlaps the
red and green bands almost always completely). I also show
the results obtained by using a simpler parametrization for
the nuclear interaction (dashed bands), see Sec. II B.

range from Sv = (29.7 − 33.2) MeV and L = (32.5 −
57) MeV, respectively. These ranges are in excel-
lent agreement with experimental constraints, see, e.g.,
Ref. [59], which rule out much larger values of L.
Moreover, the parametrization of Eq. (5) is in remark-
able agreement with explicit asymmetric-matter calcu-
lations [4, 35] and, thus, can be used with confidence
to describe both neutron as well as asymmetric nuclear
matter.

The Coulomb energy per particle of a nucleus with
uniformly distributed protons is given by

EC

A
(n, x) =

3

5
αFS ~c

(
4π

3

) 1
3

Z
2
3 n

1
3x

4
3 , (8)

with the fine structure constant αFS. This form is anal-
ogous to the Coulomb term in the phenomenological
Bethe-Weizsaecker mass formula.

The surface energy ES is the product of surface area
and surface tension σ(x),

ES

A
(n, x) =

1

A
σ(x) · 4πR2

0 = σ(x) ·
(

36πx

Zn2

) 1
3

. (9)

I follow Ref. [60] and expand the surface tension in the
neutron excess β = (1− 2x),

σ(x) = σ0(1− σβ(1− 2x)2 + · · · ) , (10)
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FIG. 2. Electron chemical potential as a function of the neu-
tron chemical potential, where the bands are obtained as in
Fig. 1.

where σβ is the symmetry parameter of the surface ten-
sion. Because the surface tension measures the energy
needed to support the surface against the lower density
in the outer phase, it has to vanish for x → 0 in the
neutron-star inner crust (because in this case both phases
are identical). Then, one can modify the surface tension,

σ(x) = σ0
16 + b

1
x3 + b+ 1

(1−x)3
, (11)

where b = 96/σβ − 16. To determine the surface param-
eters σ0 and σβ , I fit the binding energies of Eq. (4) with
the surface tension as defined in Eq. (10) to the exper-
imentally measured masses from Ref. [61]. From σβ I
determine b, and use the surface tension of Eq. (11) for
the inner crust of the neutron star.

I account for uncertainties in the modeling and the
fitting procedure and vary both σ0 and b within a 10%
uncertainty. This uncertainty estimate is large enough to
bring the binding energies of Eq. (4) into agreement with
experimental values for all nuclei.

In addition to the nucleonic contributions to the sys-
tem, I consider a free relativistic electron gas with con-
stant electron density nel in the Wigner-Seitz cell. The
electron energy density is given by [7],

εel(nel) =
m4
elc

8

8π2~3c3
(
xr(2x

2
r + 1)(x2r + 1)

1
2 (12)

− ln(xr + (x2r + 1)
1
2 )
)
,

with xr = ~kF /(melc) = (3π2nel)
1/3 ~c/mel and the

electron mass mel = 0.511 MeV. For the free elec-
tron gas, this leads to an electron chemical potential of
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FIG. 3. Radii of the nucleus R0 (dotted, lower bands) and of
the Wigner-Seitz cell RW (filled, upper bands) as a function
of baryon density. The bands are determined as in Fig. 1. I
also show results by Douchin and Haensel [62] (orange points)
and RW from the calculation by Chamel and Haensel [7] (grey
points).

µfree
el =

(
~2c2(3π2nel)

2/3 +m2
elc

4
) 1

2 and an electron pres-
sure, Pel(nel) = nel∂εel/∂nel − εel.

The contribution of the electrons to the Coulomb en-
ergy is given by two terms. The first one is the lattice
energy [7],

εCL (nel) = − 9

10
αFS~c

(
4π

3

) 1
3

Z
2
3n

4
3

el , (13)

and describes the electron Coulomb energy assuming
point-like nuclei. The second term corrects for the finite
size of the nuclei, and is given by [7],

εC,corr
L (nel) = −1

3
εCL (nel)w

2
3 , (14)

where w = V0

VW
is the volume fraction of the nucleus in the

Wigner-Seitz cell. One can rewrite the electron Coulomb
contribution in terms of n and x and include it in EC in
Eq.(8), which leads to

EC

N
(n, x) =

3

5
αFS~c

(
4π

3

) 1
3

Z
2
3 n

1
3x

4
3 (15)

×
(

1− 3

2
w

1
3 +

1

2
w

)
.

To obtain the radii of the nucleus and the Wigner-Seitz
cell, one first needs to determine the proton number Z
of the nuclei. Z can be obtained by minimizing the en-
ergy inside the Wigner Seitz cell, which is complicated
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FIG. 4. Nucleon numbers of the nucleus, A0, (dotted, lower
bands) and of the Wigner-Seitz cell, AW , (filled, upper bands)
as a function of baryon density. The bands are determined
as in Fig. 1. I also show results by Douchin and Haensel [62]
(orange points) and AW from the calculation by Chamel and
Haensel [7] (grey points).

as shell effects have to be considered. As a simplifica-
tion, I assume that nuclei in the neutron-star crust favor
configurations with closed proton shells [63] and choose
Z = 40. To account for uncertainties associated with
this assumption, I vary Z in a range Z = 28− 50, which
includes the two neighboring shell closures, and overlaps
with various determinations, see Ref. [7].

For each neutron density nn, the equilibrium condi-
tions constrain density and proton fraction in the nu-
clear phase. By varying nn, and thus, fixing the pressure
and the neutron chemical potential, one can determine
the composition and density of the nucleus as well as the
electron chemical potential µel = µn − µp and, thus, the
electron density. In Figs. 1 and 2, I show the proton and
electron chemical potentials µp and µe as functions of
µn. In addition to the nuclear-physics uncertainties from
the neutron-matter EOS (blue band), I show the uncer-
tainties due to the Z variation (green band) and due to
variation of the surface parameters (red band).

The main uncertainty in the chemical potentials stems
from the variation of the neutron-matter EOS. This is
to be expected, because pressure and chemical potentials
are mostly set by the bulk EOS. The Z variation has only
a small effect and can be neglected even at low densities
(low neutron chemical potential). Z primarily impacts
the Coulomb energy, which is the smallest contribution
to the energy at all densities and rapidly decreases with
increasing density. The uncertainty in the surface pa-
rameters is considerable only at low densities. At higher
densities, σ(x) (and, thus, the surface energy) decreases
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and its uncertainty can be neglected.
With known Z and proton density inside the nu-

cleus, one can determine the volume of the nucleus,
V0 = Z/np = Z/(nx). To determine the size of the
Wigner-Seitz cell, VW , I enforce charge neutrality, Q =
0 = V0np − VWnel, and obtain VW = Z/nel. The radii
R0 and RW are plotted in Fig. 3, and the nucleon num-
bers A0 and AW inside the nucleus and the Wigner-Seitz
cell, respectively, are shown in Fig. 4, with similar uncer-
tainty bands as before. It is clear that the choice of the
proton number Z has the largest impact on these num-
bers. I compare my calculation to the results of Ref. [62]
and with AW and RW obtained in Ref. [63] and find very
good agreement.

Although I calculate all crustal properties up to the
density at which the Gibbs construction breaks down, I
need to determine the crust-core transition density, ncc,
to calculate the shear spectrum. The crust-core transi-
tion density is the density at which the Gibbs free en-
ergy of the crustal lattice becomes larger than that of
uniform nuclear matter in β equilibrium. For my crust
model I find that the transition density ranges from
0.074 − 0.090 fm−3. The exact value of the crust-core
transition density in principle influences the QPO fre-
quencies calculated in Secs. IV and V, because it impacts
the crust thickness ∆R. While the fundamental mode
frequencies, which mainly scale with the neutron-star ra-
dius, are almost independent of the exact transition den-
sity, the overtones depend on the its exact value [24, 64].
However, since I later also vary the crust thickness in a
sizable range, any additional uncertainty in the transition
density will be accounted for.

Having determined all parameters of the Wigner-Seitz
cell, one can model the crust as a Coulomb lattice of
Wigner-Seitz cells, with the density of nuclei, ni, given by
ni = (4/3πR3

W )−1. At higher densities in the inner crust,
though, matter may form nuclear pasta phases, and the
Wigner-Seitz approximation will fail. I do not consider
these phases in this work, which may be an additional
source of uncertainty, see, e.g., Ref. [21–23]. While the
appearance of nuclear pasta phases will not affect the
equilibrium conditions (pressure and neutron chemical
potential at a certain nn will be unchanged), it may affect
the composition, energy density, and shear properties at
higher densities in the inner crust. The elastic properties
of these phases are still unknown [23] and their impact
needs to be studied in future work.

B. Inner crust from a simple parametrization

I also explore a simpler parametrization for the en-
ergy per particle and start from the four-parameter
parametrization for pure neutron matter, given by [57]

E

N
(n, 0) = a

(
n

n0

)α
+ b

(
n

n0

)β
, (16)

where the parameters a and α describe the low-density
equation of state, while the parameters b and β deter-
mine the higher-density part of the EOS. I consider the
parameter range given in Ref. [58], which includes fits
of these four parameters both to phenomenological inter-
actions of the Argonne and Urbana/Illinois type as well
as to selected chiral neutron matter EOSs. This simple
parametrization leads to a similar neutron-matter EOS
compared to the empirical parametrization used before.

To describe the energy in the nuclear cluster, I expand
the energy per particle for asymmetric matter around
symmetric nuclear matter,

E

A
(n, x) =

E

A
(n, x = 0.5) + Sv(n)(1− 2x)2 + ... (17)

= −16 MeV +
1

2

∂2EA
∂n2

(n− n0)2

+
1

6

∂3EA
∂n3

(n− n0)3 + ...

+ Sv(n)(1− 2x)2 + ... ,

where I have expanded around the saturation point. I
choose the incompressibility and skewness parameters

K = 9n20
∂2EA
∂n2

= 236 MeV , (18)

K ′ = 27n30
∂3EA
∂n3

= −384 MeV ,

consistent with the values for the previous parametriza-
tion, and approximate the symmetry energy as Sv(n) =
E
N (n, 0) − E

A (n, x = 0.5). For the Coulomb energy, one
use the same form as before. For the simple model, to
further reduce the number of parameters, I choose the
surface energy to be ES/A = 2EC/A [65].

The results for this simpler model are shown in each
plot as a black-dashed band. For the proton chemical po-
tentials in Fig. 1 (electron chemical potentials in Fig. 2),
the results for the simple parametrization lie at the up-
per (lower) boundary of the results for the empirical
parametrization. At low densities, the two parametriza-
tions start to diverge, due to the simplified modeling of
the surface energy. At higher densities, the simple model
leads to higher (lower) proton (electron) chemical poten-
tials due to the inclusion of fits to the Argonne+Urbana
interactions, which give higher neutron-matter pressure
than chiral models.

These effects are reflected in the radii and nucleon
numbers in Figs. 4 and 3. A higher proton chemical po-
tential for the same neutron chemical potential leads to
a higher proton density in the nucleus. Thus, for proton
chemical potentials at the upper boundary of the empiri-
cal parametrization (and a constant Z) one would expect
radii and nucleon numbers at the lower boundary. Sim-
ilarly, for slightly lower electron chemical potentials one
would expect slightly larger radii and nucleon numbers
inside the Wigner-Seitz cell.



6

0 0.02 0.04 0.06 0.08 0.1

nB  [fm
-3]

0

0.1

0.2

0.3

0.4

0.5

0.6

P
 [

M
eV

 f
m

-3
]

Crust EOS
Simple parametrization

BPS EOS
DH EOS

FIG. 5. Inner-crust EOS (pressure as a function of baryon
density) for the inner-crust model of this work. The uncer-
tainty band for P (nB) solely originates in the uncertainty of
the neutron-matter EOS. I also show the BPS EOS [25] and
the EOS by Douchin and Haensel [62].

C. Equation of State

As described in Sec. II A, for every input neutron den-
sity nn in the neutron-matter phase one can determine
the energy density in the Wigner-Seitz cell,

εW = w · nE
A

(n, x) (19)

+ (1− w) · nn
E

A
(nn, 0) + εel(nel) ,

as well as the baryon density nB = w ·n+(1−w)·nn, and
the total pressure P = PI + Pel = PII + Pel. One, thus,
can obtain the EOS of the inner crust, P = P (ε) or P =
P (nB), with theoretical uncertainties. The inner-crust
EOS is plotted in Fig. 5 and agrees well with the BPS
EOSs [25] and the EOS by Douchin and Haensel [62].

The only source of uncertainty for the inner-crust EOS
is the neutron-matter EOS. This is intuitive because for a
given input density in the neutron-matter phase, nn, the
pressure is set independently of Z or the surface parame-
ters. At the same time, the baryon density is determined
primarily by the neutron-matter density: Variation of
the surface and Coulomb energies, by variation of Z and
the surface parameters, is only relevant at low densities,
where the neutron-matter phase dominates the volume of
the Wigner-Seitz cell. The main effect of the Z variation
is a change of the volumes of the Wigner-Seitz cell and
the nucleus by the same factor and, thus, these volume
changes do not affect the energy or baryon density.

When calculating the equation of state with the simple
parametrization, one finds very good agreement with the
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FIG. 6. Shear modulus as a function of mass density, where
the uncertainty bands are obtained as in Fig. 1.

empirical parametrization, see Fig. 5. This is expected,
as both models describe the neutron-matter EOS simi-
larly as well as the empirical saturation point.

III. SHEAR MODULUS AND SHEAR
VELOCITIES

The shear modulus for a body-centered cubic Coulomb
lattice in the neutron-star crust is given by Ref. [66]

µ =
0.1194

1 + 0.595(Γ0/Γ)2
ni(Ze)

2

a
. (20)

Here, ni is the density of nuclei, and a = (3/(4πni))
1/3.

The parameter Γ = (Ze)2/akBT with temparature T
and the Boltzmann constant kB is the ratio of Coulomb
and thermal energy. The upper bundary of the crust is
defined as Γ0 = 173 [67]. Assuming T = 0 and including
electron screening effects [68], µ is given by

µ = 0.1194
(

1− 0.010Z
2
3

) ni(Ze)2
a

. (21)

I use this form for the shear modulus throughout the
whole crust and neglect possible effects of nuclear pasta
phases on µ, which could be sizeable [21–23].

Using the properties of the Wigner-Seitz cell, ni =
1/VW , and a = RW , I obtain the shear modulus in the
neutron-star inner crust and show the results in Fig. 6.
Since the shear modulus is purely geometrical and only
depends on RW , the uncertainties in the EOS and in Z
are dominant. Using the simple parametrization, we find
very good agreement at higher densities. For lower densi-
ties, at the top of the inner crust, both parametrizations
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start do disagree, which is a direct consequence of the
higher RW , see Fig. 3.

The shear velocities in the crust follow from the shear
modulus, vS = (µ/ρc)

1
2 , with ρC being the dynamical

mass density (which is the mass density of nucleons mov-
ing with the lattice). When neglecting the effects of neu-
tron superfluidity, the dynamical mass density equals the
total mass density, ρC = ρ [24]. Neutron superfluidity,
however, plays an important role in neutron star mod-
elling [16] because free superfluid neutrons typically do
not add to the dynamical mass density. They are un-
locked from the movement of the lattice and do not af-
fect the shear properties of the crust. This effect can
reduce ρC considerably compared to ρ [16], leading to
larger shear velocities [19].

In reality, the unbound superfluid neutrons, however,
still interact with the lattice due to Bragg scattering,
which can effectively lock a considerable portion of them
in the lattice (entrained neutrons). Reference [20] found
that up to 90% of unbound neutrons could be entrained
with the lattice, and, thus, only a small fraction of neu-
trons would be effectively free (conduction neutrons).
The density of entrained neutrons, nentn , the density of
all unbound neutrons, nubn , and the density of conduc-
tion neutrons, ncn, are related,

nentn = nubn − ncn = nubn

(
1− ncn

nubn

)
= nubn ·Re , (22)

where I define Re as the fraction unbound neutrons that
are entrained. I use the density-dependent values for en-
trainment from Ref. [20], which were determined using
Skyrme potentials. Because these values are model de-
pendent and not consistently derived for the chiral inter-
actions I use throughout this work, I will associate large
uncertainties with them. I will vary Re starting from
no entrainment at all, ncn/n

ub
n = 1, Re = 0, up to full

entrainment of all neutrons, ncn/n
ub
n = 0, Re = 1. The

latter case is equivalent to setting ρC = ρ as in Ref. [24].
This range of variation of Re is the same as in Ref. [19].
While it appears to be large, the values for Re calculated
in Ref. [20] themselves vary between 0.3 and 0.9 in the
density range relevant for the neutron-star inner crust.
Furthermore, Ref. [68] suggested a sizable correction fac-
tor of ≈ 0.4 to these values.

The variation in Re leads to a variation of shear ve-
locities, with the minimum obtained for Re = 1 and the
maximum for Re = 0. Please note that the shear mod-
ulus defined in Eq. (21) is purely geometrical and, thus,
does not depend on entrainment.

In Fig. 7, I show the shear velocities for the values of
Re from Ref. [20] (blue band). In addition to the uncer-
tainty bands from Z variation (green band) and variation
of the surface parameters (red band), I show the varia-
tion with Re (light-red band) and present a combined
uncertainty band (grey band). I find that the variation
of the entrainment parameter has the major impact on
the shear velocities: They vary within a factor of two in
the density regime of interest when varying Re = 0 − 1.

The range of shear velocities agrees very well with the
range found in Ref. [19] for L = 73, which is close to the
maximal L found for chiral interactions. Entrainment,
thus, will also have a large impact on the shear spectra,
which I discuss in the next sections.

For the simple parametrization and Re values from
Ref. [20], we find good agreement of both parametriza-
tions, which was expected based on the shear moduli. We
also compare our results to the calculation of Ref. [24]
(turqoise band), which was obtained using Re = 1. The
shear properties of the crust are sensitive to the symme-
try energy, Sv, and its density dependence parameter,
L. In particular, the shear velocities are anticorrelated
with the L parameter. Because the chiral interactions
have smaller L values compared to some of the Skyrme
models used in Ref. [24], the shear velocities for chiral
interactions lie at the upper boundary of the band in
Ref. [24]. Considering this, both results are in very good
agreement.

IV. FREQUENCIES OF THE FUNDAMENTAL
CRUSTAL SHEAR MODE

Magnetars may provide a possibility of obtaining
neutron-star shear properties by investigating giant
gamma-ray bursts. These bursts are triggered when the
very strong magnetic fields of the magnetars decay over
time and create unstable field-line configurations. Since
the field lines are pinned to the magnetar’s crust, unsta-
ble configurations may exert stress on the crust, which,
at a certain point, ruptures and allows the magnetic field
to reconfigure [69]. While the crust rupturing produces
neutron starquakes, the field-line reconfigurations create
currents which dissipate and produce giant gamma-ray
bursts [13].

Three such giant bursts have been detected so far. In
their afterglow, in addition to the modulation associated
with the magnetar’s rotation, several quasi-periodic os-
cillations (QPOs) in the frequency range from 18-1800
Hz were observed [8–12]. These oscillations have been
interpreted as torsional shear modes of the crust [13].
Crustal shear modes have lower excitation energies com-
pared to other vibrational modes and their excitation
is plausible considering typical energy releases in giant
flares [69, 71]. Furthermore, models of torsional shear
modes are in qualitative agreement with many of the ob-
served QPO frequencies and their scaling behavior.

If this interpretation were correct, QPOs could be used
to infer crustal shear properties as well as to put con-
straints on the mass-radius relation of neutron stars.
The latter is possible because different oscillation modes
have different dependencies on neutron star radius, crust
thickness, and mass [72]. A description of QPOs solely
from crustal properties makes use of the free-slip bound-
ary condition, meaning that crust and core can be treated
independently. Because the strong magnetic fields in
the magnetars couple crust and core, this approximation
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FIG. 7. Shear velocities as a function of density. In addition
to the uncertainty bands from Fig. 1, I show the uncertainty
in the entrainment parameter Re (light-red band) as well as
the combined total uncertainty (grey band). I compare my
results with the velocity band from Ref. [24] (SW09), which
used various Skyrme interactions as input.

seems to be inaccurate in general [14, 15], and QPOs are
most likely global oscillation modes.

Initial studies of global magnetar oscillations [73, 74]
found that all crustal modes will couple with and trans-
fer energy to the neutron-star core on a very short time
scale, creating Alfvén continua. Further studies [75, 76]
found that the appearing spectrum is very rich. There
may appear continua of global oscillation modes with
strong signals at their endpoints. Moreover, the star may
permit discrete core Alfvén modes, which are possible
probes of the neutron-star core. Lastly, discrete strong
crust-dominated modes may appear, which can be very
close to the pure crustal modes. If these crust-dominated
modes lie within the continua, they will be absorbed and
disappear from the spectrum. If these modes, instead,
lie in the gaps between the continua, they will be very
strong. In more recent studies of global magneto-elastic
oscillations for different magnetic field geometries and
strengths, however, it was found that no crust-dominated
shear modes will survive in the QPO spectra [15, 23, 77–
79]. The authors excluded crustal shear oscillations as an
explanation of observed magnetar QPOs. Magnetic-field
effects, thus, complicate the correct identification of ob-
served QPO frequencies in terms of different oscillation
modes, which is a challenging and open problem.

Although crustal shear oscillations may not be suffi-
cient to explain the observed QPO frequencies, in this
work I will assume that at least some QPO frequencies
can be described by pure crustal oscillation modes (which
may be close to global crust-dominated shear modes).
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FIG. 8. Frequencies of the fundamental (n = 0, l = 2)
shear mode for the shear velocities of Fig. 7. All bands in-
clude a variation of the total neutron-star mass from M =
1.00 − 1.97M� as described in the text. In addition, I show
the frequency range when varying the neutron-star radius ac-
cording to the uncertainties from Ref. [70] (light-blue band)
and the frequencies when correcting Re by the suggested fac-
tor by Kobyakov and Pethick [68] (KP13, brown band). I
compare with the results of Ref. [24] (SW09) and with ob-
served QPO frequencies from SGR 1806-20 (black lines) and
SGR 1900+14 (purple lines).

Then the fundamental frequency is found to be compa-
rable in size to the lowest observed QPO frequencies: 18,
26, and 29 Hz for the hyperflare SGR 1806-20 [11], and 28
Hz for SGR 1900+14 [9]. For example, in Ref. [24], the
calculated fundamental shear mode frequencies ranged
from 7−22 Hz and were compatible with the 18 Hz QPO.
In Ref. [64], the fundamental shear mode was matched
both with the 18 Hz QPO or the 28 Hz QPO, based on
the employed EOS model.

In this section, I calculate the frequency of the funda-
mental crustal shear mode (n = 0, l = 2) with free-slip
boundary conditions based on the results for the inner-
crust shear properties. Because I treat crust and core
separately, I can parametrize the core by its mass and
radius and solve the Tolman-Oppenheimer-Volkoff equa-
tions starting at the crust-core boundary. I will vary the
core mass MC so that the total neutron-star mass ranges
from M = 1.00 − 1.97M�, but I expect the mass varia-
tion to have only a small effect on the frequencies of the
n = 0 modes [24]. For each core mass, I choose the cor-
responding core radius RC in such a way that the total
neutron-star radius coincides with the mean value of the
mass-radius band of Ref. [4]. This band was obtained
using the same chiral interactions as used in this work
and, thus, is consistent with my approach. It was con-
strained only by causality and the observation of 2M�
neutron stars. To include the uncertainty in the mass-
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radius band, I will vary the neutron-star radii within its
boundaries. Doing this, I obtain a neutron-star crust
thickness of 0.64 − 1.37 km for a typical 1.4M� neutron
star for the crust EOS of this work, in very good agree-
ment with the findings of Ref. [80].

I use the Newtonian perturbation model employed in
Ref. [71] with the l scaling of Ref. [24], leading to the
perturbation equation for toroidal shear modes,

(µξ′)′

ρC
+ v2Aξ

′′ +

(
ω2

(
1 +

v2A
c2

)
− (l2 + l − 2)µ

ρCR2

)
ξ = 0 ,

(23)

where ξ is the displacement, which has only a horizon-
tal component, primes correspond to derivatives with re-
spect to the vertical direction, vA = B/(4πρC)1/2 is the
Alfvén speed with the magnetic field B, ω = 2πf the fre-
quency of the shear mode, and R the neutron-star radius.
I vary B = 1014 − 1015G, but for the fundamental mode
the influence of the magnetic field is negligible and one
recovers the same frequencies when using B = 0. The
first radial overtone, however, changes for field strengths
above 1015G [64, 71, 75, 81].

I solve the perturbation equation (23) with the follow-
ing boundary conditions. At the ocean/crust interface,
at densities of ≈ 5 · 107g cm−3, I assume no horizontal
shear stress or traction, ξ′(R) = 0. I then vary the fre-
quency ω until I find a solution with no horizontal shear
stress or traction at the crust-core boundary, ξ′(RC) = 0
(because crust and core are decoupled). I finally correct
the obtained frequency for gravitational redshift,

fobs = femit

√
1− rS

R
, (24)

with the Schwarzschild radius rS = 2GM/c2. The ob-
tained frequencies will depend on the crust thickness ∆R,
the neutron-star mass M and radius R.

I present the results for the fundamental crustal shear
mode in Fig. 8. I show bands for all considered sources
of uncertainty (each band also includes the EOS uncer-
tainties and the mass variation), and compare with the
lowest observed QPO frequencies as well as with the re-
sults of Ref. [24]. The latter range from 7 − 22 Hz and
include a neutron-star mass variation from 1.2−1.97M�.
These results are only compatible with the 18 Hz QPO
from SGR 1806-20. When setting Re = 1, as in Ref. [24],
I obtain frequencies of 16.2−23.5 Hz for a mass variation
in the same range. Both calculations, thus, are in very
good agreement, and consistent with the shear speeds of
Fig. 7. Furthermore, these results also agree very well
with the calculation of Ref. [81] for the fundamental os-
cillation mode.

Considering superfluid neutrons and entrainment ef-
fects, the dynamical mass density decreases and the shear
velocities increase. This also leads to an increase of the
fundamental frequencies. For a higher entrainment coeffi-
cient Re the frequencies are lower, while less entrainment
leads to higher frequencies. Using the Re values from

Ref. [20], I obtain a frequency band of 18.3− 28.1 Hz for
a mass variation of M = 1.00−1.97M� (blue band), ap-
proximately 10% higher than for neglecting entrainment.
This is consistent with the findings of Ref. [17]. Roughly
50% of the uncertainty stems from the mass variation,
and ≈ 50% from the uncertainty in the crust EOS.

I show the dependence of the fundamental frequency
on the different neutron star masses in the lower panel of
Fig. 9. For the lightest neutron star I obtain a frequency
range of 22.9−28.1 Hz, and for the heaviest neutron star
I obtain a range of 18.3− 22.6 Hz: Lower mass stars will
have slightly higher shear frequencies. These frequencies
are compatible with the observed 28− 29 Hz QPOs for a
neutron-star mass around 1.0M�. For a typical 1.4M�
neutron star, I find a frequency range of 20.8− 25.6 Hz,
in very good agreement with the findings of Ref. [19] for
the L range of chiral interactions . I also show the un-
certainty due to radius variation for same-mass neutron
stars (light-blue band). This band reflects the uncer-
tainty of the core EOS. For each individual neutron star,
the uncertainties due the crust EOS and the core EOS
are of similar size. Including the radius variation, the un-
certainty band for the fundamental shear mode grows to
16.5− 32.2 Hz, see also Fig. 8. This range is compatible
with the 28 Hz QPO for stars with masses M ≤ 1.4M�
and with the 18 Hz QPO for heavy neutron stars with
M ≥ 1.6M�.

Contrary to the EOS uncertainties, the uncertainties in
the crust modeling affect the frequency range only mod-
estly. Compared to the original band (without radius
variation, 18.3− 28.1 Hz), the effect due to different sur-
face parameters is almost negligible, and the range in-
creases to 18.0 − 28.4 Hz. The variation of the proton
number of the crust nuclei, Z, increases the uncertainty
range mildly to 16.3 − 29.9 Hz. This behavior is consis-
tent with the shear velocities of Fig. 7. The variation of
Re has a sizable impact on the results, which is already
clear from the shear velocities. A variation of Re from
full to no entrainment leads to an uncertainty band of
16.2 − 42.9 Hz. Entrainment, thus, is a major source of
uncertainty, in addition to the EOS uncertainty.

The blue frequency band (using Re values of Ref. [20])
is only compatible with any observed QPO frequency for
very light or very heavy neutron stars. Reference [68] sug-
gested that lattice vibrations can reduce Re, and, in the
relevant density regime, the authors found a correction
factor of ≈ 0.4. Multiplying Re by a constant correction
factor of this magnitude (which is a good approxima-
tion in the density range between n = 0.01− 0.06 fm−3)
leads to a frequency band of 23.5 − 34.6 Hz, which is
in very good agreement with the observed 28 − 29 Hz
QPO frequencies for all neutron-star masses. Additional
effects may influence the fraction of entrained neutrons,
e.g., neutron pairing, and a better understanding of neu-
tron entrainment is a necessary condition for obtaining
neutron-star properties from asteroseismology.

Combining all sources of uncertainty, I find the low-
est fundamental pure crustal shear frequency, which is
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FIG. 9. Lower panel: Frequencies of the n = 0, l = 2 funda-
mental shear mode for Re from Ref. [20] and various neutron-
star masses (blue band). I also show the uncertainties from
radius variation (light-blue band), and compare to the low-
est observed QPO frequencies from SGR 1806-20 (black lines)
and SGR 1900+14 (purple line). Upper panel: The same for
the n = 1 first radial overtone compared to the observed 626
Hz QPO.

consistent with current nuclear-physics constraints, to be
13.1 Hz, while the highest frequency is 52.3 Hz. Cur-
rent uncertainties lead to a sizable frequency range. This
range may additionally increase if nuclear pasta phases
are considered [22, 23]. For the frequency of the funda-
mental mode, e.g., Ref. [23] found a reduction of up to
40% when pasta phases are included, while the effect is
weaker for higher-frequency shear modes. Nevertheless,
if one were to match an observed QPO frequency with
the fundamental crustal shear mode, then based on our
calculations an identification with the 28 − 29 Hz QPO
seems to be likely.

Finally, for the simple parametrization and the same
parameters chosen to obtain the blue band, we find a
frequency range of 19.6 − 26.7 Hz, see Fig. 8. The
two parametrizations are in excellent agreement because
the fundamental mode frequency is mainly sensitive
to the shear velocities at higher densities, where both
parametrizations agree.

V. HIGHER SHEAR MODES

In addition to the lowest observed QPO frequencies of
18− 29 Hz, several other frequencies up to 1800 Hz have
been observed. A large number of them, with frequencies
up to ≈ 160 Hz, may be identified with higher-l overtones
of the fundamental n = 0 mode, while the QPO at 624
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FIG. 10. Frequencies of the n = 0 modes for 2 ≤ l ≤ 16 for
Re from Ref. [20]. For each l, I show the frequencies obtained
for a 1.00M� neutron star (left boundary) up to a 1.97M�
neutron star (right boundary). I compare with observed QPO
frequencies from SGR 1806-20 (black lines) and SGR 1900+14
(purple lines).

Hz was identified as the first radial n = 1 overtone. How-
ever, for the latter, this identification is not clear because
crustal shear modes at such high frequencies are strongly
damped, see, e.g., Ref. [76].

In Fig. 10, I show the observed frequencies up to 160
Hz from Refs. [8, 9, 11, 12] and compare these to cal-
culated pure crustal oscillation frequencies for n = 0
and 2 ≤ l ≤ 16. For each oscillation mode, I show
the frequency variation for different masses ranging from
1.0 − 1.97M�, similar to Fig. 9. For every given mass,
every observed frequency above 60 Hz could be matched
with a certain crustal shear mode within nuclear physics
uncertainties. One finds gaps only between the lowest
shear modes with l = 2, 3, 4, 5. At higher frequencies,
due to the larger uncertainties, bands for different modes
start to overlap and could be identified with the same
observed QPO frequency. A possible mode assignment,
thus, is ambiguous. The results are in good agreement
with the results of Ref. [19] for the chiral range of L val-
ues and with the results for torsional crustal shear modes
including entrainment of Ref. [23].

Nevertheless, if one were to match observed QPO fre-
quencies with pure crustal modes and identify the 28−29
Hz QPO mode as the fundamental n = 0, l = 2 frequency,
then both sources SGR 1806-20 and SGR 1900+14 seem
to be lower-mass neutron stars with M < 1.4M�, with
SGR 1900+14 being heavier than SGR 1806-20. The ob-
served QPOs below 100 Hz then could be identified with
l = 4 and l = 6 modes, while the QPO at 37 Hz does not
seem to correspond to any crustal oscillation mode. The
parameter Re, though, will have a strong impact on all
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calculated frequencies, and a possible reduction of Re, as
suggested by Ref. [68], will move all bands up, as shown
in the previous section.

I now turn to the n = 1 radial overtone. In Fig. 9,
I show results for the n = 1 overtone for different neu-
tron stars with masses ranging from 1.0 − 1.97M�. For
a 1.0M� neutron star, I obtain a frequency range of
660−727 Hz, while for the 1.97M� neutron star I obtain
a range of 1305− 1443 Hz. The mass dependence of the
first radial overtone can easily be understood because this
mode strongly depends on the crust thickness. Heavier
neutron stars have thinner crusts than lower-mass neu-
tron stars and thinner crusts require higher frequencies
to fulfill the boundary conditions. If the observed 624 Hz
QPO is identified with the first radial overtone, this sug-
gests that SGR 1806-20 is a lower-mass neutron star,
which is consistent with the previous results for the n = 0
shear modes.

I also show the uncertainties when varying the neutron-
star radius, as before. This has a sizable effect on the first
radial overtone and lowering the radius for a 1.0M� neu-
tron star can increase the frequency up to 1017 Hz. In-
creasing the radius can decrease the frequency to 500 Hz.
This can again be understood in terms of crust thickness:
For a neutron star of a given mass, smaller (larger) radii
lead to thinner (thicker) crusts. For the heaviest neutron
star, I find a total frequency range of 876−2436 Hz when
varying the radius.

These results lead to a total uncertainty band for the
first radial overtone of 500 − 2436 Hz originating only
in the EOS and mass uncertainty. When additionally
varying Re, the uncertainty increases to 454 − 4136 Hz.
This illustrates that QPOs can in principle be a powerful
tool to infer properties of neutron stars and/or constrain
the EOS of nuclear matter but within current uncertain-
ties a mode identification is not possible. Considering
global oscillation modes is likely to increase the uncer-
tainty which makes mode identification even more dif-
ficult. Additional information is needed to make robust
predictions. An improved determination of Re with small
uncertainties would be a very useful first step.

VI. SUMMARY AND OUTLOOK

In this paper I have studied the influence of different
sources of uncertainty on the spectrum of shear modes in
the neutron-star inner crust. To capture the uncertain-
ties in the nuclear interactions I used parametrizations
for the energy per particle of nuclear matter, which were
fit to chiral EFT calculations of pure neutron matter and
the empirical saturation point. Using these interactions,
I modeled the inner-crust in the Wigner-Seitz approxima-
tion and studied the impact of uncertainties in the crust
composition and the surface energy parameters. While
the uncertainty in the crust composition has the largest
impact on the geometry of the Wigner-Seitz cell, the un-
certainty in the inner-crust EOS is dominated by the nu-

clear interactions.

Using the inner-crust model, I determined the shear
modulus and shear velocities in the neutron star crust
with uncertainties. For the shear modulus I found that
the main uncertainty stems from the crust composition
at low densities and from the neutron-matter EOS at
higher densities. For the shear velocities, the main source
of uncertainty is neutron entrainment, which leads to a
variation up to factor of two in the neutron-star crust.

Using free-slip boundary conditions, I calculated the
frequencies of the fundamental crustal shear modes and
compared the calculation to observed QPO frequencies.
I obtained fundamental frequencies ranging from 18− 28
Hz, with a total uncertainty band of 13−52 Hz. I identi-
fied three major sources of uncertainty: First the EOS of
nuclear matter up to saturation density, which sets the
inner-crust EOS, second the EOS above saturation den-
sity, which enters the calculation via the radius variation,
and third, the entrainment factor. The effect of the un-
certainties in the crust composition and surface param-
eters on the shear-mode frequencies, instead, are small.
Both an improved description of the EOS with reduced
theoretical uncertainties and a better determination of
the entrainment factor are necessary to reliably model
crustal shear oscillations. Corrections to the value of en-
trainment, as suggested in Ref. [68], lower the number
of neutrons locked in the lattice and lead to an increase
of the calulated fundamental frequencies to 24 − 35 Hz.
If the fundamental QPO frequencies can be described
in terms of crustal shear modes, an identification of the
fundamental shear mode with the 28−29 Hz QPO, thus,
seems to be likely.

I also performed calculations of oscillation modes with
n = 0 and 2 ≤ l ≤ 16 as well as of the n = 1, l = 2
mode. These calculations are very dependent on the
neutron-star parameters, but show that every observed
QPO frequency could be described by at least one crustal
shear mode within uncertainties. While QPOs in princi-
ple could be used to infer neutron-star properties, current
uncertainties are quite sizable and hinder the clear identi-
fication of modes, which, in turn, impedes the extraction
of robust constraints. The computation of shear modes
in the neutron-star crust would mostly benefit from a
reduction of a) the uncertainty of the EOS of neutron
matter at densities below and above saturation density,
and b) a determination of the entrainment factor with
robust theoretical uncertainties. In addition, the influ-
ence of nuclear pasta phases has to be investigated in
detail. Together with a global neutron-star oscillation
model, which properly includes the effects of the strong
magnetic fields, these improvements would allow compar-
isons with observed frequencies to reliably identify modes
and infer properties of neutron stars. On the other hand,
additional information on the QPO sources, e.g., masses,
would allow to put constraints on the EOS or the en-
trainment factor.



12

ACKNOWLEDGMENTS

The author thanks Sanjay Reddy and Achim Schwenk
for valuable input and feedback on the manuscript. The
author also thanks Nicolas Chamel, Christian Drischler,

Dmitry Kobyakov, and Anna Watts for useful discus-
sions. This work was supported by the National Science
Foundation under Grant No. PHY-1430152 (JINA Cen-
ter for the Evolution of the Elements) and by the US
DOE Grant No. DE-FG02-00ER41132.

[1] P. Demorest, T. Pennucci, S. Ransom, M. Roberts, and
J. Hessels, Nature 467, 1081 (2010), arXiv:1010.5788
[astro-ph.HE].

[2] J. Antoniadis, P. C. Freire, N. Wex, T. M. Tauris, R. S.
Lynch, et al., Science 340, 6131 (2013), arXiv:1304.6875
[astro-ph.HE].

[3] J. M. Lattimer, Gen. Rel. Grav. 46, 1713 (2014).
[4] K. Hebeler, J. M. Lattimer, C. J. Pethick,

and A. Schwenk, Astrophys. J. 773, 11 (2013),
arXiv:1303.4662 [astro-ph.SR].

[5] A. L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016),
arXiv:1602.01081 [astro-ph.HE].

[6] A. S. Schneider, C. J. Horowitz, J. Hughto, and D. K.
Berry, Phys. Rev. C88, 065807 (2013), arXiv:1307.1678
[nucl-th].

[7] N. Chamel and P. Haensel, Living Rev. Rel. 11, 10
(2008), arXiv:0812.3955 [astro-ph].

[8] G. Israel, T. Belloni, L. Stella, Y. Rephaeli, D. Gru-
ber, et al., Astrophys. J. 628, L53 (2005), arXiv:astro-
ph/0505255 [astro-ph].

[9] T. E. Strohmayer and A. L. Watts, Astrophys. J. 632,
L111 (2005), arXiv:astro-ph/0508206 [astro-ph].

[10] A. L. Watts and T. E. Strohmayer, Astrophys. J. 637,
L117 (2006), arXiv:astro-ph/0512630 [astro-ph].

[11] T. E. Strohmayer and A. L. Watts, Astrophys. J. 653,
593 (2006), arXiv:astro-ph/0608463 [astro-ph].

[12] V. Hambaryan, R. Neuhaeuser, and K. D. Kokkotas,
Astron. Astrophys. 528, A45 (2011), arXiv:1012.5654
[astro-ph.SR].

[13] R. C. Duncan, Astrophys. J. 498, L45 (1998),
arXiv:astro-ph/9803060 [astro-ph].

[14] Y. Levin, Mon. Not. Roy. Astron. Soc. 368, L35 (2006),
arXiv:astro-ph/0601020 [astro-ph].

[15] M. Gabler, P. Cerda-Duran, J. A. Font, E. Muller, and
N. Stergioulas, Mon. Not. Roy. Astron. Soc. 410, 37
(2011), arXiv:1007.0856 [astro-ph.HE].

[16] N. Andersson, K. Glampedakis, and L. Samuels-
son, Mon. Not. Roy. Astron. Soc. 396, 894 (2009),
arXiv:0812.2417 [astro-ph].

[17] L. Samuelsson and N. Andersson, Class. Quant. Grav.
26, 155016 (2009), arXiv:0903.2437 [astro-ph.SR].

[18] A. Passamonti and N. Andersson, Mon. Not. Roy. Astron.
Soc. 419, 638 (2012), arXiv:1105.4787 [astro-ph.SR].

[19] H. Sotani, K. Nakazato, K. Iida, and K. Oyamatsu, Mon.
Not. Roy. Astron. Soc. 434, 2060 (2013), arXiv:1303.4500
[astro-ph.HE].

[20] N. Chamel, Phys. Rev. C85, 035801 (2012),
arXiv:1203.0119 [nucl-th].

[21] M. Gearheart, W. G. Newton, J. Hooker, and B.-
A. Li, Mon. Not. Roy. Astron. Soc. 418, 2343 (2011),
arXiv:1106.4875 [astro-ph.SR].

[22] H. Sotani, Mon. Not. Roy. Astron. Soc. 417, L70 (2011),
arXiv:1106.2621 [astro-ph.HE].

[23] A. Passamonti and J. A. Pons, (2016), arXiv:1606.02132

[astro-ph.HE].
[24] A. W. Steiner and A. L. Watts, Phys. Rev. Lett. 103,

181101 (2009), arXiv:0902.1683 [astro-ph.HE].
[25] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J.

170, 299 (1971).
[26] S. B. Ruester, M. Hempel, and J. Schaffner-Bielich,

Phys. Rev. C73, 035804 (2006), arXiv:astro-ph/0509325
[astro-ph].

[27] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev.
Mod. Phys. 81, 1773 (2009), arXiv:0811.1338 [nucl-th].

[28] R. Machleidt and D. R. Entem, Phys. Rept. 503, 1
(2011), arXiv:1105.2919 [nucl-th].

[29] K. Hebeler, J. D. Holt, J. Menendez, and
A. Schwenk, Ann. Rev. Nucl. Part. Sci. 65, 457 (2015),
arXiv:1508.06893 [nucl-th].

[30] K. Hebeler and A. Schwenk, Phys. Rev. C82, 014314
(2010), arXiv:0911.0483 [nucl-th].

[31] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga,
and A. Schwenk, Phys. Rev. C83, 031301 (2011),
arXiv:1012.3381 [nucl-th].

[32] J. W. Holt, N. Kaiser, and W. Weise, Phys. Rev. C87,
014338 (2013), arXiv:1209.5296 [nucl-th].
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[56] T. Krüger, I. Tews, K. Hebeler, and A. Schwenk, Phys.
Rev. C88, 025802 (2013), arXiv:1304.2212 [nucl-th].

[57] S. Gandolfi, J. Carlson, and S. Reddy, Phys. Rev. C85,
032801 (2012), arXiv:1101.1921 [nucl-th].

[58] J. M. Lattimer and M. Prakash, (2015),
arXiv:1512.07820 [astro-ph.SR].

[59] J. M. Lattimer and Y. Lim, Astrophys. J. 771, 51 (2013),
arXiv:1203.4286 [nucl-th].

[60] A. W. Steiner, Phys. Rev. C77, 035805 (2008),
arXiv:0711.1812 [nucl-th].

[61] G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev,
M. MacCormick, and X. Xu, Nucl. Data Sheets 120,
1 (2014).

[62] F. Douchin and P. Haensel, Astron. Astrophys. 380, 151
(2001), arXiv:astro-ph/0111092 [astro-ph].

[63] J. W. Negele and D. Vautherin, Nucl. Phys. A207, 298
(1973).

[64] A. T. Deibel, A. W. Steiner, and E. F. Brown, Phys. Rev.

C90, 025802 (2014), arXiv:1303.3270 [astro-ph.HE].
[65] D. G. Ravenhall, C. J. Pethick, and J. R. Wilson, Phys.

Rev. Lett. 50, 2066 (1983).
[66] T. Strohmayer, H. M. van Horn, S. Ogata, H. Iyetomi,

and S. Ichimaru, ApJ. 375, 679 (1991).
[67] R. T. Farouki and S. Hamaguchi, Phys. Rev. E47, 4330

(1993).
[68] D. Kobyakov and C. J. Pethick, Phys. Rev. C87, 055803

(2013), arXiv:1303.1315 [nucl-th].
[69] S. K. Lander, N. Andersson, D. Antonopoulou, and A. L.

Watts, Mon. Not. Roy. Astron. Soc. 449, 2047 (2015),
arXiv:1412.5852 [astro-ph.HE].

[70] K. Hebeler, J. M. Lattimer, C. J. Pethick, and
A. Schwenk, Phys. Rev. Lett. 105, 161102 (2010),
arXiv:1007.1746 [nucl-th].

[71] A. L. Piro, Astrophys. J. 634, L153 (2005), arXiv:astro-
ph/0510578 [astro-ph].

[72] L. Samuelsson and N. Andersson, Mon. Not. Roy. Astron.
Soc. 374, 256 (2007), arXiv:astro-ph/0609265 [astro-ph].

[73] K. Glampedakis, L. Samuelsson, and N. Anders-
son, Mon. Not. Roy. Astron. Soc. 371, L74 (2006),
arXiv:astro-ph/0605461 [astro-ph].

[74] Y. Levin, Mon. Not. Roy. Astron. Soc. 377, 159 (2007),
arXiv:astro-ph/0612725 [astro-ph].

[75] A. Colaiuda and K. D. Kokkotas, Mon. Not. Roy. Astron.
Soc. 414, 3014 (2011), arXiv:1012.3103 [gr-qc].

[76] M. van Hoven and Y. Levin, Mon. Not. Roy. Astron. Soc.
410, 1036 (2011), arXiv:1006.0348 [astro-ph.HE].

[77] M. Gabler, P. C. Duran, N. Stergioulas, J. A. Font, and
E. Muller, Mon. Not. Roy. Astron. Soc. 421, 2054 (2012),
arXiv:1109.6233 [astro-ph.HE].

[78] M. Gabler, P. Cerda-Duran, J. A. Font, E. Muller, and
N. Stergioulas, Mon. Not. Roy. Astron. Soc. 430, 1811
(2013), arXiv:1208.6443 [astro-ph.SR].

[79] M. Gabler, P. Cerd-Durn, N. Stergioulas, J. A. Font, and
E. Mller, Mon. Not. Roy. Astron. Soc. 460, 4242 (2016),
arXiv:1605.07638 [astro-ph.HE].

[80] A. W. Steiner, S. Gandolfi, F. J. Fattoyev, and
W. G. Newton, Phys. Rev. C91, 015804 (2015),
arXiv:1403.7546 [nucl-th].

[81] H. Sotani, K. D. Kokkotas, and N. Stergioulas, Mon.
Not. Roy. Astron. Soc. 375, 261 (2007), arXiv:astro-
ph/0608626 [astro-ph].


