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Partial-wave analysis of meson and photon-induced reactions is needed to enable the comparison of
many theoretical approaches to data. In both energy-dependent and independent parametrizations
of partial waves, the selection of the model amplitude is crucial. Principles of the S-matrix are
implemented to different degree in different approaches; but a many times overlooked aspect concerns
the selection of undetermined coefficients and functional forms for fitting, leading to a minimal yet
sufficient parametrization. We present an analysis of low-energy neutral pion photoproduction using
the Least Absolute Shrinkage and Selection Operator (LASSO) in combination with criteria from
information theory and K-fold cross validation. These methods are not yet widely known in the
analysis of excited hadrons but will become relevant in the era of precision spectroscopy. The
principle is first illustrated with synthetic data; then, its feasibility for real data is demonstrated
by analyzing the latest available measurements of differential cross sections (do/df?), photon-beam
asymmetries (X)), and target asymmetry differential cross sections (dor/d = T do/dQ2) in the low-

energy regime.

PACS numbers:

I. INTRODUCTION

The understanding of the strong interaction in the
hadronic energy regime is an important unresolved is-
sue that has regained a lot of attention in the last years
due to the advances in detection techniques, accelerator
technologies, first principle Quantum Chromodynamics
(QCD) analyses, and S-matrix theory amplitude analy-
sis techniques [1-6]. These developments have lead to a
broad effort to build and perform experiments that are
or will be collecting an unprecedented amount of data
on hadron reactions, e.g., BELLEII [7, 8], BESIII [9],
CLASI12 [10], CMS [11], COMPASS [12], ELSA [13, 14],
GlueX [15], J-PARC [16], KLOE2 [17], LHCb [18], MAMI
[19] and PANDA [20].

Partial-wave analysis of hadronic reactions is a pre-
requisite for many theoretical approaches to access in-
formation from the experimental data, especially if the
comparison to hadron resonances is the goal. Narrowing
the focus to photoproduction reactions, their decomposi-
tion into partial waves (multipoles) is usually performed
through an energy-dependent (ED) parametrization of
the amplitude. As long as data are not abundant and
precise enough, it is not yet possible to perform a (trun-
cated partial-wave) complete experiment [21, 22| in the
resonance region. A parametrization in energy is needed
for the determination of resonances, or as a stabilizing
starting point for single-energy (SE) solutions in which
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energy-binned data are fitted independently. For both
ED and SE analyses, the selection of fit parameters is a
fundamental problem that we address in this study for
the case of neutral pion photoproduction in the low en-
ergy region. We use this well-studied reaction as a bench-
mark for various techniques and as a template for future
works because of the well-established theoretical frame-
work and the availability of high-quality data which allow
an (almost) model-independent SE extraction [23, 24].

In the analysis of photoproduction experiments, the
parametrization of the amplitude is chosen according
to the considered energy range. For low-energy neu-
tral pion photoproduction, Heavy Baryon Chiral Per-
turbation Theory (HBChPT) [25-33] and Relativistic
Baryon Chiral Perturbation Theory (RBChPT) [34] pro-
vide effective parametrizations. Both deliver equally
good descriptions of the latest experimental data up to
E, ~ 170 MeV in the laboratory frame [23, 35]. Polyno-
mial parametrizations which incorporate unitarity in the
S wave have also proved to be an excellent description of
the data up to E, ~ 185 MeV where the A(1232) con-
tribution begins to be relevant [23, 36, 37]. ChPT calcu-
lations including isospin breaking have been performed
in Refs. [38-40] and the inclusion of the A(1232) reso-
nance as an explicit degree of freedom in RBChPT al-
lows to extend the agreement between theory and data
up to £, ~ 200 MeV [41, 42]. The RBChPT calculation
in [34] has been extended to include also electroproduc-
tion of charged pions [43].

In an explicit parametrization of partial waves one can-
not incorporate an infinite number (the series has to be
truncated) and we need to determine how many terms
one needs to incorporate in order to provide an accurate,
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yet minimally parameterized, description of the physics
involved. In Refs. [36, 44] it was determined that in the
low-energy neutral pion photoproduction region we need
to incorporate up to D waves and that higher partial
waves can be safely dismissed. Although D waves are
not necessary to describe the experimental data, not in-
cluding them prevents the accurate extraction of the S
wave, which is small since it vanishes in the chiral limit
and provides insight into chiral symmetry breaking [45].
The structure of the observables in terms of the multi-
poles can be found in [36, 46, 47].

Beyond energies in which a systematic treatment is
possible, effective field theory approaches [48-56], K-
matrix parametrizations, or related approaches are used
in [57-59]. At high energies, Regge parametrizations
are very effective [60, 61]. Formulations to provide
amplitudes that cover the entire energy region from
threshold to the highest energies are under develop-
ment [62, 63]. Yet, sometimes partial waves are pa-
rameterized purely phenomenologically in terms of func-
tions that are in agreement with basic S-matrix principles
such as coupled-channel two-body unitarity, the correct
threshold behavior or Fermi-Watson’s theorem [64, 65],
but that are otherwise left free to ensure a high degree
of model independence as in the SAID approach [57].

In general, new high-precision polarization data indeed
lead to more consistent multipole solutions among differ-
ent analysis groups although discrepancies remain [66].
A step towards the goal of matching solutions has been
done recently. Providing the necessary information for
other groups to carry out correlated x? fits of 7N par-
tial waves, the statistical influence of elastic pion-nucleon
scattering has been quantified [67]. This gives a more sta-
tistical foundation for multi-reaction analyses by many
groups in the search for new excited baryons. Comple-
mentary information from hadron beams could also lead
to more consistent solutions among the different partial-
wave analysis approaches [68]. Considerations of which
observables and which precision are necessary to discrim-
inate models are also a necessary step forward to find
definite answers in baryon spectroscopy [69].

The selection of fit parameters in most of these ap-
proaches is important. If the amplitude is under-
parameterized, the quality of the data description is not
satisfactory and the quality of the extracted amplitudes
is difficult to assess. Over-parametrization can result in
limited predictability of the amplitude outside the fit-
ted data range and inflated uncertainties. Furthermore,
problems in the data themselves (incompatibility of data,
systematics, or even statistics) may be interpreted as sig-
nificant physics in over-parameterized fits.

Most notably, in many approaches resonances are in-
troduced in the parametrization as explicit terms, that
will unavoidably improve the fit quality at the cost of
potentially false positive resonance signals [70]. To con-
trol this problem, groups use mass scan techniques in
which, ideally, a minimum of the x? as a function of
the resonance mass appears in more than one analyzed

channel [71]. In the SAID approach, resonances appear
dynamically generated, meaning that poles in the am-
plitude can appear without manual intervention, if re-
quired by data [57]. In Refs. [72, 73], the most proba-
ble resonance content (Bayesian evidence) is determined
considering kaon photoproduction. Bayesian priors have
also been used to restrict the low-energy constants in ef-
fective field theories to natural values and estimate the
truncation errors [74, 75].

If a flexible background with resonance terms on top of
it is provided, the task consists in minimizing the num-
ber of resonances and only accept them as physically sig-
nificant if the background cannot provide a satisfactory
description. The Least Absolute Shrinkage and Selec-
tion Operator (LASSO) [76-78] provides a tool to scan a
plethora of different models, in particular multiple com-
binations of different resonances. Manually, such a scan
would be impossible due to the large number of combina-
tions, but the LASSO provides an automatized, “blind-
folded” technique [79].

Having the above-mentioned extensions for future
work in mind, we concentrate in this study on the ques-
tion of how to select the simplest amplitude for a real-
life example of photoproduction reactions. We choose
low-energy neutral-pion photoproduction, yp — 7°p, for
which data of unprecedented precision exist from the
same experimental setup at MAMI [23, 35], thus minimiz-
ing the potential impact from conflicting data or system-
atic uncertainties. The differential cross section do/dS2,
photon beam asymmetry 3, and target polarization dif-
ferential cross section dor/dQ) = T do/dS2 are analyzed.
The entire presentation is kept as pedagogical as possi-
ble, even quoting textbook formulae for easier reference.
The most relevant references on statistical analysis are
[77, 78, 80].

II. FORMALISM
A. Parametrization

An energy-dependent parametrization is formulated
for both real and imaginary parts of the three P waves,
as well as for the real parts of Fyy and the four D-wave
multipoles,

Re,Im M, =

a imax . 7

qﬂ-o @ wﬂ'o - mm) (1)
l+1 —1

m 10 m .+

Tt =0

where g0 is the center-of-mass momentum of the neutral

pion, w? = m2,4q2,, and a; are the fit parameters. The

quantity M stands for the electric (Fr+) and magnetic
(Mp,+) multipoles, or alternatively, the partial waves P,



P, and P; for the P waves, related to each other by
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The parametrization in energy consists of a factor pro-
viding the correct threshold behavior and a Taylor ex-
pansion in momentum-squared around the neutral pion
threshold. This expansion is theoretically justified by
ChPT calculations [25-32]. In principle, it is preferable
to use a set of polynomials in energy that is orthogonal in
the fitted energy window, which reduces the correlations
among parameters. However, in this particular example
we could not observe any improvement when doing so.

Furthermore, in Eq. (1) for the real parts of the mul-
tipoles, one has ¢ = L, while for the imaginary parts of
the P-wave multipoles, ¢ = 3L + 1=4 as can be obtained
from Watson’s theorem. We do not provide any imagi-
nary parts for the D-waves because, on one hand, they
are extremely small and, on the other end, restricting
them to be real fixes the overall-phase ambiguity. Fit
parameters are generically called a; throughout, and we
omit the indices specifying to which partial wave (real
or imaginary part) they belong. The same applies to
the cut-off i,.x. For the real parts of the P-waves and
D-waves, imax = 4 while for the imaginary parts of the
P-wave, imax = 0. Other factors in Eq. (1) serve to make
all parameters dimensionless and of natural size. For the
S-wave multipole Fyy, a real-valued term of the form of
Eq. (1) with 4max = 4 is supplemented by a term of the
form

i=2 2
L Qr+ a; qr+
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to take into account the 77 n threshold cusp. The term
provides an imaginary part above the 77n threshold and
contributes to the real part of Ey; below it. In total,
there are i, = 46 free fit parameters. The number
of available parameters is simply chosen such that every
multipole can be grossly over-fitted.

B. Criteria from information theory

With this parametrization at hand, we turn to the
LASSO method to select the simplest model [76-78]. The
penalized x7 is defined as follows:

Xz(A) = x*(A) + P(N), (4)
with

Tmax

P(A) = \* Z i - (5)

In practice, one scans an entire range of A\, continuously
minimizing x%. From there, we turn to various criteri-
ons from information theory in order to determine the
optimal A. Note that the power of four in Eq. (5) is sim-
ply chosen to provide a more convenient graphical rep-
resentation of these criteria in the following plots. The
three criteria that we use to find an optimal A are the
Akaike Information Criterion (AIC) [82, 83], a finite sam-
ple size corrected version of the AIC (AICc) [84], and the
Bayesian Information Criterion (BIC) [85]. The three are
defined as

AIC =2k — 2log(L) = 2k + x? ,

2k(k + 1)

n—k—1"

BIC =klog(n) — 2log(L) = klog(n) + x2 ,

AICc =AIC + (6)

where k is the number of parameters which changes dy-
namically as a function of A, n is the number of data
points, and L is the likelihood. We define the number of
degrees of freedom (d.o.f.) for each fit as d.o.f. = n — k.
For all three of the criteria, the optimal value of X is
given by the respective minimum. This is because the
AIC and the BIC take on small values for models with
low test error. Assuming a Gaussian model, the BIC is
proportional to the AIC, however the BIC tends to pe-
nalize models with more parameters due to the factor
log(n) which allows for a more distinct minimum to be
seen and a better indication of which model to use. For a
further comparison between the AIC, AICc and the BIC,
see Refs. [77, 78].

In Fig. 1 we show the different criteria as a function of
the penalty A in a simple simulation of fitting 22 synthetic
data generated from a low-order polynomial with a model
that includes that low-order polynomial as solution and
also allows for over-fitting. One recognizes here a clear
difference between the AIC and the AICc. The correc-
tion for the finite number of data points indeed leads to a
larger AICc at small A, providing a better identification
of the minimum than the AIC. In the case of pion pho-
toproduction considered later, the number of data is so
large, though, that the difference between AIC and AICc
becomes irrelevant.

C. Cross validation

Another method to find a model with minimal
parametrization yet with accurate description of data is
cross validation [76-78]. In short, data are randomly di-
vided into a training set and a validation set. For a given
A, the penalized X2T of the training set is minimized and
the x% of the validation set is determined from that fit
(without refitting). While x2 is clearly a monotonously
increasing function of A, the situation is different for x.
For very large A, x#. is large as well, because the data are
under-fitted. However, as A decreases a point is reached
below which Y% is over-fitted, i.e., non-physical struc-
tures such as statistical fluctuations in the training set



FIG. 1. The AIC, AICc, and BIC criteria for a simple x? fit
to 22 data (see text). All three methods exhibit the minimum
at the same value of X\ indicating the optimal, i.e., simplest
model. The correction term for a finite number of data in the
AICc indeed produces a more pronounced minimum than for
the AIC. The discontinuities occur every time a fit parameter
is set to zero by LASSO.

are described. These fluctuations are different in the val-
idation set, such that the validation x3 becomes larger
again as A decreases further. The minimum in X%/ is then
regarded as the sweet spot for A, i.e., the point where the
fit optimally describes the data without describing fluc-
tuations.

The method has been recently applied in [86] for the
determination of parton distribution functions. Another
example is given in [87]. There, the task consisted in
effectively smoothing a function that is subject to os-
cillations from unphysical finite-volume effects. In that
example, the unphysical effect was not given by fluctu-
ations which demonstrates that LASSO in combination
with cross validation is a method with broader range of
applicability than needed here.

The minimum of X%/ itself carries uncertainties. In
practical terms it is numerically demanding to carry out
the above-mentioned separation of training and valida-
tion sets for all possible combinations of data. An ap-
proximate method is given by K-fold cross validation in
which the (uncorrelated) data are randomly divided in
a few (here: 5) partitions. In five different cross vali-
dation runs, four of the five partitions serve as training
set while the fifth serves as validation set. The differ-
ent outcomes are used to estimate the uncertainty of X%/
at each A. One can then further constrain the search
for the simplest model by selecting the Agpt > Amin that
is compatible within errors with the minimum of x%/ at
A = Amin. In practice, this means to search for the Aqps
at which X% (Aopt) = X% (Amin) + A where A is the un-
certainty of X%/ at A = Apin. This is referred to as the
1-o rule [88, 89].

D. Bootstrap and non-Gaussian uncertainties

Although it is common knowledge, we briefly mention
the bootstrap technique to keep the presentation as peda-
gogical as possible, and we specify the way bootstrapping
is implemented in this study. For a very similar proce-
dure, see Refs. [6, 90]. Once a model is selected, the
propagation of uncertainties from data to results can be
carried out using bootstrap. Here, the results are given
by the multipoles and the cusp parameter at threshold,
Bo (see Sec. IIIB1 for discussion). This resampling tech-
nique allows to trace non-linear uncertainties and is, thus,
in principle, superior to methods using the covariance
matrix. Here, we repeatedly perform complete random
resamplings of all data points according to their uncer-
tainties and then refit each resampled data set. From
each set of the resulting fit parameters, the multipoles
and the cusp parameter 5y are evaluated.

If the resulting distribution, e.g., of a multipole at fixed
energy W, is Gaussian one can just estimate the variance
and determine the final uncertainty by its square root.
If the distribution is very skewed it is more meaningful
to determine the 68% confidence level (CL) interval by
cutting off the 16% largest and 16% smallest values.

This leads to a related comment concerning the fit-
ting of the beam asymmetry ¥ that is one of the con-
sidered observables in this study. Usually, the statistical
uncertainty in polarization observables provided by ex-
periment is treated as Gaussian in partial wave analysis,
as if it originated from the measurement of a cross section
in the limit of many counts. However, these observables
O are ratios of the difference of positive Poisson distri-
butions divided by their sum, i.e., they are restricted to
|O| < 1. Thus, strictly speaking, those uncertainties can-
not be regarded as Gaussian and maximizing the likeli-
hood cannot be achieved by minimizing the x2. The bias
is maximal for |O| = 1. The size of the beam asymmetry
¥ is far from this limit at the low energies considered in
this study and we neglect the bias here.

III. RESULTS
A. LASSO in a Benchmark Model

For a controlled test of the discussed methods, and be-
fore dealing with experimental data, we test our ideas
with synthetic data. In doing so we proceed in the fol-
lowing way:

1. We generate synthetic data from a given set of
multipoles and study to which precision and accuracy we
can reconstruct that known set. To that end we first
build a benchmark model (B-model) which is a reduced
version of the one described by Egs. (1) and (3). We
build it setting all the a; to zero except for: ag and a;
for the real parts of every S and P wave in Eq. (1) and
ap in Eq. (3), totaling 9 parameters, i.e. 2 for each P-
wave multipole and 3 for the S wave. All the imaginary



parts of the P waves are consequently set to zero. No
D waves are included. If we include the D waves from
the Born terms of photoproduction, this model would
correspond to the one used in [23, 24, 35, 37] to analyze
the experimental data. In this way, we keep the B-model
as realistic as possible. The synthetic data are generated
around that solution at the same energies and scattering
angles as the real data and with the same error bars.

2. These synthetic data are then analyzed with the full
46-parameter model as defined in the previous section,
minimizing the penalized x2 = x? + P for different A
according to Eq. (4).

In Fig. 2(a) the total x2 and the contribution from
data alone (x?) is indicated. The difference is given by
the penalty P. Both curves rise as \ increases, and there-
fore, as discussed, one needs additional criteria to de-
termine the optimal value, or range of values, for \. In
Fig. 2(b) the x? per degree of freedom x?/d.o.f. is shown.
It exhibits a minimum at around A = 3 which already
provides an initial impression about where to look for
the simplest model. Yet, note that a simple Pearson’s x?
test at 90% lower CL would rule out all fits up to A = 4
as overfits, such that it is difficult to justify the use of the
x?/d.o.f. itself as a tool to determine the optimal value
for A.

The A-dependence of the fit parameters a; is shown in
Fig. 2(c). We have chosen here a logarithmic scale; on
a linear scale, it becomes obvious that the parameters
effectively approach zero once the penalization is large
enough. Yet, the picture shows that, sometimes, param-
eters that had died out can in principle reappear at larger
values of \. Figure 2(c) suggests that for A > 3 many pa-
rameters are effectively zero and the optimal value for A is
expected in that region. Anticipating the final result, the
figure shows effectively non-zero parameters in red while
effectively zero parameters are shown in gray. The hori-
zontal line indicates the cut-off below which a parameter
is counted as zero. It is remarkable to observe the param-
eters drop by three orders of magnitude because it means
that LASSO is also capable of disentangling the extreme
correlations between parameters present at A = 0, as the
unnaturally large parameter values at A = 0 indicate.

As Fig. 2(d) shows, the AIC(c) and BIC criteria con-
firm this picture quantitatively, with all three considered
criteria exhibiting a minimum at the same A = 3. The
BIC shows the cleanest signal as the region to the left
of the minimum shows the steepest slope. The cross-
validation x3 shown in Fig. 2(e), obtained through 5-
fold validation [77, 78], exhibits a broad, shallow mini-
mum from A = 2.5 through A = 3.5 which does not very
well determine the optimal A\. To have an impression of
what the simplest allowed model according to the 1-o
rule [77, 78] could be, we can continue the upper end of
the error bar, at the optimal A = 3 found before, hori-
zontally until it intersects with the central value of x3 at
A = 3.8. This indicates the simplest model compatible
with cross validation within errors. Combining the find-
ings from the AIC(c), BIC and cross validation, vertical
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lines at A = 3 and A = 3.8 enclose a region of optimal .
If we return now to Fig. 2 (c), it becomes apparent that
in that region the number of effective non-zero param-
eters indeed does not change, meaning that the precise
value of A to choose the simplest model does not matter
as long as it is within that range.

3. Although trivial, the last step consists in setting
all parameters that have been ruled out by LASSO to
exactly zero and refit the model with the remaining pa-
rameters to the synthetic data. In summary, the LASSO
reduces a model with 46 parameters to a simpler one with
10 parameters, remarkably close to the true number of
parameters (9).

1. Discussion

In Fig. 3, the different steps in the model selection pro-
cess are illustrated. The blue lines show the partial waves
used to generate the synthetic data and provide, thus, the
benchmark solution (B-model) to be reproduced. The
over-fit at A = 0 is indicated with the orange lines and
bands. All uncertainty bands have been obtained by
bootstrap as explained in Sec. IID. Clearly, at the cost
of fitting fluctuations, the benchmark solution is missed,
even within the large uncertainties. Note that this is a
46-parameter fit to altogether 1373 data points, meaning
that from these numbers it is per se not obvious that we
have an overfit. However, the x? of this fit (y? = 1232)
is below the lower 95% confidence limit of Pearson’s x?
test at x? = 1243, indicating overfitting.

We stress here the well-known defect of the rule-of-
thumb, that a y?/d.o.f. =~ 1 indicates a good fit. For a
few points, a x?/d.o.f. significantly larger than one might
be perfectly acceptable, while a x?/d.o.f.= 1.1 for a fit
to 10,000 data points is very bad. Pearson’s x? test gives
here a better answer with respect to under-fitting.

Finally, the 46-parameter fit has also greatly reduced
predictability. Here, we have only included data up to a
cut-off of W < 1120 MeV as indicated with the vertical
lines in the figure. As expected, beyond that value, the
fit shows large oscillations and an uncontrolled increase
of the uncertainties (orange bands).

The fit at A = 3 is shown with the brown lines in Fig. 3
(as discussed before, we could have taken any value up
to A = 3.8). Removing all parameters that are effectively
zero and refitting the remaining 10 parameters, the final
solution is indicated with the red lines and uncertainty
bands. It remarkably well reproduces the benchmark so-
lution (blue lines) and even produces reasonable and well-
constrained partial waves beyond the range of fitted data
(indicated with vertical lines).

The one additional parameter of the 10-parameter fit,
compared to the benchmark solution (9 parameters), is
given by a; in Eq. (3). Yet, as Fig. 3 shows, the bench-
mark solution for Im FEy, is rather well reproduced. At
higher energies, the benchmark solution is just slightly
outside the red narrow uncertainty band indicating the
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B-model (D waves are not shown because the result obtained
was identically zero as expected). The blue lines show the
B-model used to generate synthetic data (benchmark solu-
tion). The orange lines and bands show the unconstrained
46-parameter fit with zero penalty A = 0. The brown lines
show the fit at optimal A = 3. Removing the parameters that
are effectively zero and refitting produces the final result in-
dicated with red lines and uncertainty bands. The vertical
lines at W = 1120 MeV indicate the upper limit of fitted
data. Note that for Im P;, all but the unconstrained (orange)
results for A = 0, are identically zero. Also in other cases the
curves lie on top of each other such that only the blue line is
visible. Uncertainties are computed using bootstrap.

68% confidence region.

It is also remarkable that in the simplest model LASSO
is capable of setting all D waves to zero, which are finite
in the over-parametrized model (A = 0) but absent in the
benchmark solution. Furthermore, the imaginary parts
of all P waves are found to vanish (cf. Fig. 3), in agree-
ment with the benchmark solution.

One should note that in the fit to photoproduction
data there is an overall-phase problem that is usually
solved by fixing the phase of one multipole. Here, the full
46-parameter model indeed contains only real D waves
while the phase of all other multipoles are undetermined.
Yet, those D waves are very small (at A = 0) such that
the overall phase problem is in fact not very well fixed.
Part of the wide error bands for the A = 0 case can,



thus, be attributed to a rather uncontrolled variation of
the overall phase, leading to a large reshuffling between
real and imaginary parts and causing the very poorly
determined multipoles.

Finally, one can discuss other goodness-of-fit criteria
beyond Pearson’s x? test. For example, it is common
to find a best fit by combining the x? test —that is
rather restrictive to under-fitting but more tolerant to
over-fitting— with the F' test that determines, for nested
models, if a more complex model leads to a significant
improvement. For that, the x2s of two models with k
(model 1) and m + k (model 2) parameters fitted to n
data points are compared. If the true values of the m
extra parameters of the more complex model vanish, it
can be shown that

y = (X% _X%)/k (7)

X3/(n—m—k)

is F(k,n —m — k) distributed [91]. For the explicit
form of the F-distribution, see, e.g., Ref. [80]. A value
of y beyond a chosen CL limit thus indicates that the
more complex model 2 is significantly better than the
simpler model 1 (which cannot be judged from the x?
values alone). Here, we find that y obtained from the 46-
parameter fit and the optimal (simplest) 10-parameter
fit is y = 1.64 which is below the 90% CL interval end-
ing at y = 2.63, indicating that the overfit is indeed not
significantly better than the simplest fit.

Other common goodness-of-fit-criteria are the
Shapiro-Wilk [92], Anderson-Darling [93, 94], and the
Kolmogorov-Smirnov [94-96] tests. They provide means
to compare a sampled probability distribution against
a theoretically expected one. In particular, they can be
used to test fit residuals against their expected Normal
NJ0,1] distribution. This applies also for weighted data
as considered here as long as the fit residuals are divided
by the respective experimental (statistical) uncertainty.
In particular, these tests are by construction more
sensitive than Pearson’s x2 test because, on one hand,
they are sensitive to the sign of the fit residual and not
only its square, and, more importantly, they test the
entire distribution instead of only the bulk property
given by the sum of individual x2. The p-values of the
three tests are shown in Fig. 4 as a function of .

For all considered values of A the p-values are high;
usually, fits with p > 0.05 are considered acceptable. For
small values of A\ the tests score high although one is in
the region of over-fitting. In the region of optimal A be-
tween A ~ 3 and \ = 4, the p values are also consistently
p > 0.4; however, there is no clear trend that would al-
low one to use these criteria themselves to find an optimal
value for A.

B. LASSO for real data

For the reaction yp — 7°p, precise low-energy data
for the differential cross section do/d€) and photon beam

0.8r B
06" /\

[ — ,‘\/\_/_’ 1

s | \/\/ / ]
£ 04f ot .
& L )
b Shapiro Wilk E

O'Zf Kolmogorov Smirnov ]

L Anderson Darling ]

0.0t . , \ \ =

0 1 2 3 4 5

FIG. 4. Different goodness-of-fit criteria as a function of the
penalty parameter .

asymmetry 3 are available from MAMI [23]; for earlier
measurements see Refs. [97-100]. The target polariza-
tion differential cross section dor/dS) has been measured
recently at MAMI as well [35]. At energies beyond those
considered here, these observables have also been remea-
sured with unprecedented precision [101, 102]. Electro-
production of 7° mesons close to threshold has been re-
cently measured by CLAS [103]. We analyze here the
data from [23, 35] for do/dQ2, ¥, and dor/dQ from the
79p threshold up to W = 1120 MeV.

For the analysis of real data, we have slightly reduced
the model space used for the B-model. Before, the D
waves were kept real to fix the overall-phase ambiguity.
However, this is not effective at low energies where D
waves are extremely small as discussed. Then, for com-
plex S and P waves, the ambiguity reappears at low en-
ergies. We have therefore set all imaginary parts of the P
waves to zero. For the D waves themselves, we have kept
them fixed at the real values given by the Born terms of
photoproduction. This is the same procedure as in [23].
In total, the number of available parameters is 23. Note
that none of these changes have to do with the model
selection methods discussed here. The former are ad-
ditional constraints imposed from other considerations,
because we aim at a result that is comparable with the
analysis of [23].

Performing the LASSO scan as in the case of the B-
model, in combination with the information theory crite-
ria and cross validation, we obtain the results shown in
Fig. 5. The fit is compatible with Pearson’s x? test for
any A shown. The comparison of Fig. 5 with Fig. 2 shows
quite similar features. Again, the BIC delivers the most
pronounced minimum, or minimal plateau. We choose
an optimal A = 2.8 which coincides with the minimum
of the BIC which is also the last point of the plateau.
For the cross validation X3, there is no minimum at all in
this case. Only an upper bound for A can be determined
by proceeding as before for the B-model, i.e., continuing
the upper end of the error bar at A = 2.8 to the right
as indicated (in analogy to the 1-o rule). This leads to
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FIG. 6. S- and P-wave partial waves from the analysis of
real data. Labeling of the curves and uncertainty bands as in
Fig. 3. The simplest model is indicated with the red lines and
bands. The blue circles show the single-energy solution of [23]
for the real parts of S- and P-wave partial waves. The green
triangles indicate the single-energy extraction of Im Eoy from
[35]. Uncertainties are computed using bootstrap.

a maximal value of A = 3.4 that is compatible within er-
rors. As Fig. 5(c) shows, a parameter rises briefly above
the cut-off threshold for values of 2.8 < A < 3.4. We do
not see this as a problem but rather as a feature of the
LASSO method demonstrating that the method indeed
scans a large classes of models, and even rehabilitates pa-
rameters that were found to be zero for smaller A\. From
the discussion it becomes clear that in this case it is not
possible to fix the precise number of parameters without
doubts; yet, we have seen before for the B-model that it is
possible to determine that number approximately. Over-
all, the number of model parameters is reduced from 23
to 13 (in the B-model: from 46 to 10).

1. Discussion

The partial waves are shown in Fig. 6. They share
similar properties as observed for the B-model in Fig. 3.

For the unconstrained, A = 0 case with 23 parameters,
the uncertainty band in the region of fitted data is much
narrower than in the A = 0 case for the B-model. This
may be partly explained by the smaller maximal number
of parameters available; another reason is the discussed
overall-phase ambiguity which is avoided here by allowing
only for real P-wave multipoles.

For the intermediate range of energies, the solutions



and uncertainty bands are sometimes difficult to distin-
guish in Fig. 6. A closer inspection reveals that the uncer-
tainty bands of the 23-parameter fit are still wider than
the ones of the 13-parameter simplest model. We also ob-
serve largely widened error bands for the unconstrained
fit at very low energies and beyond the fitted region (ver-
tical bands) indicating the reduced predictability of the
A = 0 fit. The simplest model (red lines and bands)
shows good qualitative agreement with the SE solution
from [23] for the real parts of the partial waves, although
they do not coincide perfectly. There are differences such
that here we allow for a variation of the cusp parameter at
threshold, 8y = ag m;+1 in Eq. (3), which was held fixed in
[23] and, second, we include here the new dor/dS) data
from [35]. The optimal (simplest) solution is also very
close to the result of [48] (not shown here) that includes
isospin breaking in a similar way as implemented here,
fulfills Fermi-Watson’s theorem and extends up to the
resonance region.

The imaginary part of Epy of the simplest model
agrees well with the SE extraction performed in [35]
(green data points) as Fig. 6 shows. For the cusp pa-
rameter at threshold we obtain By = (2.4140.05) -
1073 m;l. This agrees with the value from [35]: By =

(2.2 4+ 0.2[stat.] & 0.6[syst.]) - 1073 m_}. Note, however,
the very different size of the statistical uncertainty which
comes here from a global fit to all data while in [35] it
was obtained from a two-parameter fit to the SE solu-
tions shown in Fig. 6 with the green triangles. Note that
the systematic uncertainties of 3y are estimated to be 0.6
in the above units [35] which is larger than the statistical
ones. This shows that systematic effects are not negli-
gible, but we have refrained from analyzing these effects
here because the focus of this paper is different. It should
be mentioned that the values for 5y found here and in [35]
are smaller than the value of 8y = 3.35 - 1073 m;i ob-
tained in ChPT calculations [39, 40] using pionic atoms
data.

In Figs. 7, 8, and 9, the experimental data and the best
fit result are shown, corresponding to the 13 parameter fit
indicated with the red lines in Fig. 6. The description of
the data is consistently good. In particular, the inclusion
of the new dor/df) data does not have much influence in
the multipoles other than reducing their uncertainties.

As a concluding remark it should be mentioned that
the AIC and BIC compare the relative quality of models
and are, thus, also applicable in situations in which no
good fit in absolute terms can be achieved (e.g., when the
achievable x? is too large for all models). This robustness
is a relevant aspect in the analysis of photoproduction
data, especially for excited baryons at higher energies.
There, data from different experiments are sometimes
plagued by underestimated systematic uncertainties or
even contradictory (for the selection of consistent data
sets see, e.g., Refs. [104, 105]). Then, no good x? might
be achieved and one has to proceed using relative com-
parisons of models as proposed here.

IV. CONCLUSIONS

The LASSO provides a tool to scan large classes of
models through the ability to set fit parameters to zero.
Together with criteria from information theory and cross
validation, it is possible to select a simplest model with
a minimum of fit parameters. Here, we concentrate on
single-meson photoproduction. The methods are, how-
ever, not restricted to this case and also applicable, e.g.,
in the context of excited meson production experiments
as recently discussed by Guegan, Hardin, Stevens, and
Williams [79].

In the example of pion photoproduction at low en-
ergies, we show that the LASSO in combination with
additional criteria decreases the uncertainties of ex-
tracted multipoles and increases predictability, as ex-
pected. First, a benchmark model (B-model) was consid-
ered to show these properties. The overall-phase prob-
lem was not entirely fixed in that model. Still, LASSO
showed capable of simplifying this partially ill-defined
problem, reducing an initial number of 46 fit parame-
ters to 10 and recovering the known benchmark solution
with remarkable accuracy and precision. In particular,
properties of the benchmark solution such as vanishing
imaginary parts of the P waves and absence of D waves
could be detected. The considered criteria for the deter-
mination of the optimal penalty A —AIC, AICc, and BIC-
consistently exhibit minima at the same value of \. The
1-0 rule in cross validation also defines a whole range of
A to be considered as optimal, and indeed in that range
the number of relevant parameters stays constant.

When moving on to the analysis of real data, similar
observations could be made. The simplest model shows
remarkable agreement with single-energy extractions of
multipoles from other studies. Additionally, these tech-
niques provide more stable and reliable extrapolations of
the models for energies above and below the fitted region.
This feature can be exploited to determine physical ob-
servables at threshold, e.g. the discussed cusp parameter
Bo. Besides their usefulness in the analysis of experi-
mental data, the proposed methods could also be ap-
plied in the analysis of lattice QCD eigenvalues because
the infinite-volume extrapolation of coupled-channel sys-
tems on the lattice necessarily requires an expansion of
the amplitude in energy [106], similar to what has been
discussed here. The discussed techniques also promise
for a systematic and automatic work flow in the analy-
sis of the excited baryon and meson spectra, providing a
perspective towards finding more conclusive answers in
hadron spectroscopy.
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