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We develop a set of kinetic equations for hydrodynamic fluctuations which are equivalent to non-
linear hydrodynamics with noise. The hydro-kinetic equations can be coupled to existing second
order hydrodynamic codes to incorporate the physics of these fluctuations. We first show that the
kinetic response precisely reproduces the renormalization of the shear viscosity and the fractional
power (∝ ω3/2) which characterizes equilibrium correlators of energy and momentum for a static
fluid. Then we use the hydro-kinetic equations to analyze thermal fluctuations for a Bjorken expan-
sion, evaluating the contribution of thermal noise from the earliest moments and at late times. In the
Bjorken case, the solution to the kinetic equations determines the coefficient of the first fractional
power of the gradient expansion (∝ 1/(τT )3/2) for the expanding system. Numerically, we find that
the contribution to the longitudinal pressure from hydrodynamic fluctuations is larger than second
order hydrodynamics for typical medium parameters used to simulate heavy ion collisions.

I. INTRODUCTION

A. Overview

The purpose of the current paper is to develop a set
of kinetic equations for hydrodynamic fluctuations, and
to use these kinetic equations to study corrections to
Bjorken flow arising from thermal fluctuations. The spe-
cific test case of Bjorken flow (which is a hydrodynamic
model for the longitudinal expansion of a nucleus-nucleus
collision [1]) is motivated by the experimental program
of ultra-relativistic heavy-ion collisions at RHIC and the
LHC. Detailed measurements of two particle correlation
functions have provided overwhelming evidence that the
evolution of the excited nuclear material is remarkably
well described by the hydrodynamics of the Quark Gluon
Plasma (QGP) with a small shear viscosity to entropy
ratio of order η/s ∼ 2/4π [2, 3]. The typical relaxation
times of the plasma, while short enough to support hy-
drodynamics, are not vastly smaller than the inverse ex-
pansion rates of the collision. For this reason the gra-
dient expansion underlying the hydrodynamic formalism
has been extended to include first and second order vis-
cous corrections [4], and these corrections systematically
improve the agreement between hydrodynamic simula-
tions and measured two particle correlations [2]. Addi-
tional corrections, which have not been systematically
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included, arise from thermal fluctuations of the local en-
ergy and momentum densities and could be significant
in nucleus-nucleus collision where only ∼ 20000 parti-
cles are produced. This has prompted a keen practical
interest in the heavy ion community in simulating rela-
tivistic hydrodynamics with stochastic noise [5–11]. In
a non-relativistic context such simulations have reached
a fairly mature state [12–14]. For a static fluid, ther-
mal fluctuations give rise through the nonlinearities of
the equations of motion to fractional powers in the fluid
response function at small frequency, GR(ω) ∝ ω3/2. In-
deed, the “long-time tails” first observed in molecular-
dynamics simulations [15–17] are a consequence of this
non-analytic ω3/2 behavior. For Bjorken flow, the same
nonlinear stochastic physics leads to fractional powers in
the gradient expansion for the longitudinal pressure of
the fluid. One of the goals of this manuscript is to com-
pute the coefficient of the first fractional power in this
expansion.

The measured two particle correlations in heavy ion
collisions reflect both the fluctuations in the initial condi-
tions and thermal fluctuations. Thermal fluctuations are
believed to be a small (but conceptually important) cor-
rection to non-fluctuating hydrodynamics [6–8]. In ad-
dition, thermal fluctuations can become significant close
to the QCD critical point [9, 18] and in smaller colliding
systems such as proton-nucleus and proton-proton colli-
sions [7], which show remarkable signs of collectivity [19].

In the current manuscript, rather than simulating non-
linear fluctuating hydrodynamics directly, we will refor-
mulate fluctuating hydrodynamics as non-fluctuating hy-
drodynamics (describing a long wavelength background)
coupled to a set of kinetic equations describing the phase
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space distribution of short wavelength hydrodynamic
fluctuations. For Bjorken flow this set of equations can
be solved to determine the first fractional powers in the
gradient expansion.

B. Hydrodynamics with noise and fractional
powers in the gradient expansion

At finite temperature, real-time dynamics in each
regime of scales has an efficient and systematic descrip-
tion by an effective theory [20]. Hydrodynamics is a long
wavelength effective theory which describes the evolu-
tion of conserved quantities by organizing corrections in
powers of gradients. For the hydrodynamic expansion to
apply we require frequencies under consideration to be
small compared to the microscopic relaxation rates

ε ≡ ωη

(e+ p)c2s
� 1 , (1)

where we have estimated the microscopic relaxation time
with the hydrodynamic parameters, τR ≡ η/(e+p)c2s [21]
and for later convenience defined ε ≡ ωτR.

For definiteness, we follow precedent [4, 22, 23] and
consider a conformal neutral fluid driven from equilib-
rium by a small metric perturbation hxy(ω) of frequency
ω. Within the framework of linear response (see Sect. II
and Ref. [24] for further details), the stress tensor at low
frequency takes the form

δT xy = −hxy(ω)
(
p− iωη +

(
ητπ −

κ

2

)
ω2
)
. (2)

The first term is the prediction of ideal hydrodynamics
δT xy = −phxy; the middle term is the prediction of first
order viscous hydrodynamics [22], where η is the shear
viscosity; finally, the last term is the prediction of second

order hydrodynamics, where τπ and κ are the associated
second order parameters [4].

In writing Eq. (2) we have neglected additional con-
tributions stemming from fluctuations which will be de-
scribed below. Thermal fluctuations can be incorporated
into the hydrodynamic description by including stochas-
tic terms into the equations of motion [25–27]

dµT
µν = 0, Tµν = Tµνideal + Tµνvisc. + Sµν , (3)

where variance of the noise, 〈SµνSρσ〉∼2Tηδ(t − t′), is
determined by the fluctuation dissipation theorem at
temperature T and introduces no new parameters into
the effective theory1. After including these stochastic
terms, the correlators of momentum and energy evolve
to their equilibrium values in the absence of the ex-
ternal force, hxy(ω). Specifically, the equilibrium two
point functions of the energy and momentum densities,
δe(t,x) ≡ T 00(t,x) −

〈
T 00
〉

and gi(t,x) ≡ T 0i respec-
tively, approach the textbook result [25]

〈δe(t,k)δe(t,−k′)〉 =
(e+ p)T

c2s
(2π)3δ3(k − k′), (4a)〈

gi(t,k)gj(t,−k′))
〉

=(e+ p)T δij(2π)3δ3(k − k′),
(4b)

where cs is the speed of sound, and δe(t,k) notates the
spatial Fourier transform of δe(t,x). In the presence of
an external force or a non-trivial expansion these corre-
lations are driven away from equilibrium. The purpose
of hydrodynamics with noise is to describe in detail these
deviations from equilibrium.

Due to the nonlinear character of hydrodynamics the
thermal fluctuations change the evolution of the system.
Indeed, a diagrammatic analysis of the hydrodynamic re-
sponse at one-loop order shows that the stress in the
presence of a weak external field (or the retarded Green
function) is

〈T xy(ω)〉 = −hxy(ω)

p− iωη + (i+ 1)

(
7 +

(
3
2

)3/2)
240π

T

(
ω

γη

)3/2

+O(ω2)

 , (5)

where p, e, and η are renormalized physical quantities
(see Sect. II A and Sect. II B for further discussion of the

1 We follow a standard notation for hydrodynamics summarized
in Ref. [21]. dµ notates a covariant derivative using the “mostly-
plus” metric convention. Tµνideal = (e+p)uµuν+pgµν and Tµνvisc =

−ησµν where σµν = ∆µρ∆νσ(dρuσ + dσuρ − 2
3
gρσdγuγ), with

∆µν = gµν + uµuν . The noise correlator is fully specified in
Eq. (15) of Sect. II.

renormalization), and

γη ≡
η

e+ p
, (6)

is the momentum diffusion coefficient [23, 28]. As em-
phasized and estimated previously, the fractional order
ω3/2 is parametrically larger than second order hydrody-
namics [23]. However, the coefficient of the ω3/2 terms
is vanishingly small in weakly coupled theories and in
strongly coupled theories at large Nc, and therefore sec-
ond order hydrodynamics may be an effective approxima-
tion scheme except at very small frequencies. In the con-
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FIG. 1. The hydro-kinetic description of noise is based on
the separation of scales between the long wavelength hydrody-
namic background (with k ∼ ω/cs), and shorter wavelength

hydrodynamic fluctuations (with k ∼ k∗ ≡
√
ω/γη). The

wavelengths of the hydrodynamic fluctuations are still much
longer than microscopic mean free path. The hydrodynamic
fluctuations are driven out of equilibrium by the expanding
background, and this deviation is the origin of the long-time
tail correction to the stress tensor.

text of holography, the ω3/2 term can only be determined
by performing a one loop calculation in the bulk [29].

In the current paper we will rederive Eq. (5) using
a kinetic description of short wavelength hydrodynamic
fluctuations. For an external driving frequency of order
ω, we identify an important length scale set by equating
the damping rate and the external frequency

γηk
2
∗ ∼ ω , k∗ ∼

(
ω

γη

)1/2

. (7)

We will refer to the k∗ as the dissipative scale below (see
also Ref. [29]). Modes with wavenumbers significantly
larger than the dissipative scale, k � k∗, are damped
and reexcited by the noise on a time scale which is short
compared to period 2π/ω, and this rapid competition
leads to the equilibration of these shorter wavelengths,
i.e. their equal time correlation functions are given by
Eq. (4). By contrast, modes with wavenumbers of or-
der k ∼ k∗ have equal time correlation functions which
deviate from the equilibrium expectation values.

It is notable that the wavenumbers of interest k∗ are
large compared to ω/cs, but still small compared to mi-
croscopic wavenumbers of order the inverse mean free
path 2. Estimating the mean free path as `mfp = csτR,
we see that the strong inequalities

ω

cs
� k∗ �

1

`mfp
, (8)

can be written as

ω

cs
� ω

cs

1√
ε
� ω

cs

1

ε
, (9)

2 The effect of second-order hydrodynamics is suppressed com-
pared to the first-order hydrodynamics as long as the derivative
expansion works, i.e. k � 1/`mfp. The causal property of the
second-order hydrodynamics is gained by modifying the disper-
sions at k ∼ 1/`mfp.

and thus holds whenever hydrodynamics is applicable,
ε � 1. The scale separation illustrated in Fig. 1 can be
used to set up an approximation scheme where modes of
order k∗ on a soft (k ∼ ω/cs) background are treated with
a kinetic or Wentzel-Kramers-Brillouin (WKB) type ap-
proximation scheme. We will develop the appropriate ki-
netic equations in Sect. II. These kinetic equations can be
solved and used to determine how the two point functions
of energy and momentum with wavenumbers of order k∗
deviate from equilibrium when driven by an external per-
turbation. The ω3/2 term in Eq. (5) roughly represents
the contribution of

∫
k2dk∼k3

∗ slightly out of equilibrium
hydro-kinetic modes per volume, with each mode con-
tributing 1

2T of energy to the stress tensor. Note that
the contribution to the stress tensor of modes outside of
the kinetic regime k � k∗ is suppressed by phase space.

Similar kinetic equations can be derived for much more
general flows. We will establish the appropriate kinetic
equations for a Bjorken expansion [1], which is a useful
model for the early stages of a heavy ion collision. The
ideal, first, and second order terms in the gradient ex-
pansions have been given in Refs. [1], [30], and [4, 31]
respectively. For a conformal (non-fluctuating) fluid the
longitudinal pressure during a Bjorken expansion takes
the form

τ2T ηη = p− 4

3

η

τ
+

8

9τ2
(λ1 − ητπ) + . . . . (10)

The expansion rate is ∂µu
µ = 1/τ , and each higher term

in the gradient expansion is suppressed by an integer
power of 1/τT . For Bjorken flow the expansion rate
plays the role of frequency, and the distribution of sound
modes are characterized by a dissipative scale analogous
to Eq. (7) of order3

k∗ ∼
1

(γητ)1/2
. (11)

At this scale the viscous damping rate balances the ex-
pansion rate. These hydrodynamic modes satisfy the in-
equality

1

csτ
� k∗ �

1

`mfp
, (12)

and this strong set of inequalities can be used to deter-
mine a kinetic equation for hydrodynamic modes of order
k∗. The equal time correlation functions for wavenum-
bers of this order deviate from their equilibrium form in
Eq. (4), and the kinetic equations precisely determine the

3 The quantities k∗(τ), γη(τ), s(τ), . . . are all functions of time for
a Bjorken expansion, e.g. for a conformal equation of state and
an ideal expansion, k∗(τ) ∝ τ−2/3, γη ∝ τ1/3, s(τ) ∝ τ−1, etc.
Throughout the paper k∗,γη , s, . . . (without a time argument)
will denote the physical quantity at the final time of considera-
tion. The explicit time argument will be used when needed, e.g.
k∗(τ ′) = k∗(τ/τ ′)−2/3.
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functional dependence of this deviation. Finally, these
modes contribute to the longitudinal pressure and deter-
mine first fractional power in the longitudinal pressure of
a conformal fluid (analogous to Eq. (5)). In Sect. III we
will establish that this nonlinear correction to the longi-
tudinal component of the stress tensor is〈

τ2T ηη
〉

e+ p
=
[ p

e+ p
− 4

3

γη
τ

+
1.08318

s (4πγητ)3/2
+

O
(

1

(τT )2

)]
. (13)

Noise also contributes to transverse momentum fluctua-
tions, and this contributes at quadratic order to 〈T ττ 〉
as we discuss in Sect. III. Thus, a complete description
of a Bjorken expansion with noise must also reexamine
the relationship between the background energy density
e, and the one point function 〈T ττ 〉.

An outline of the paper is as follows. In Sect. II we
consider a static fluid perturbed by an external gravi-
tational perturbation. The purpose of this section is to
introduce the kinetic equations, and to reproduce the re-
sults of the diagrammatic analysis of Refs. [23, 28] using
the hydro-kinetic theory adopted here. In Sect. III B we
linearize the hydrodynamic equations of motion to de-
termine the appropriate kinetic equations for a Bjorken
expansion. In Sect. III C and III D we determine the so-
lutions to the kinetic theory and use these solutions to
evaluate the contribution of hydrodynamic modes to the
stress tensor. We give an intuitive physical interpretation
of the main results of the paper in Sect. III E. Finally we
conclude with results and discussion in Sect. IV.

II. HYDRODYNAMIC FLUCTUATIONS IN A
STATIC FLUID

We will first derive the kinetic equations for hy-
drodynamic fluctuations in homogeneous flat space in
Sect. II A. The purpose here is to introduce notation, and
to discuss the kinetic approximations in the simplest con-
text. Then in Sect. II B we will perturb the system with a
gravitational field and derive the appropriate kinetic the-
ory in this case. We then use this hydro-kinetic theory to

reproduce the results of loop calculations [23, 28] for the
renormalization of the shear viscosity and the long-time
tails which characterize the hydrodynamic response due
to nonlinear noise effects.

A. Relaxation equations for hydrodynamic
fluctuations

To illustrate the approximations that follow and to in-
troduce notation, we first will derive kinetic equations
for the two point functions for energy and momentum
density perturbations around a static homogeneous back-
ground. The basics of the techniques adopted in our
analysis is reviewed in [32, 33]. The (bare) background
quantities of the hydrodynamic effective theory, such as
the energy density, pressure, and shear viscosity (e0(Λ),
p0(Λ), and η0(Λ) respectively) are calculated by inte-
grating out fluctuations above a scale Λ, i.e. by exclud-
ing the contributions of hydrodynamic fluctuations with
wavenumber k < Λ to the stress tensor. This is impor-
tant because modes with k < Λ will not be in equilibrium
when the system is perturbed by a driving force. The
relation between the bare parameters and the physical
quantities (which may be computed in infinite volume
with lattice QCD for instance) is discussed in Sect. II B
and in Ref. [23], where η0(Λ) is referred to as ηcl(pmax).

To derive a relaxation equation for the two point func-
tions we linearize the equations of stochastic hydrody-
namics and study the eigenmodes of the system. The
correlations between eigenmodes with vastly different fre-
quencies are neglected in a kinetic (or coarse graining)
approximation. For the constant background e0 = const,
and to linear order in field perturbations and stochastic
fluctuations, the equations of motion (Eq. (3)) become

∂tδe+ ikig
i = 0, (14a)

∂tgi + ikiδp+ γηk
2gi +

1

3
γηkikjg

j = −ξi, (14b)

where γη ≡ η0/(e0 + p0) is computed with bare quanti-

ties, and −ξi is the stochastic force, −ikjSji(t,k). Here

Sji(t,k) are spatial components of the noise tensor with
equilibrium correlation given by [26]

〈Sµν(t1,k)Sαβ(t2,−k′)〉 = 2Tη0

[(
∆µα∆νβ + ∆µβ∆να

)
− 2

3
∆µν∆αβ

]
(2π)3δ3(k − k′)δ(t1 − t2). (15)

It is convenient to combine Eq. (14) into a single matrix
equation for an amalgamated field φa = (csδe, gj)

∂tφa(t,k) = −iLabφb −Dabφb − ξa, (16)

where ideal and dissipative terms are

Lab =

(
0 cskj
cski 0

)
, Dab = γη

(
0 0
0 k2δij + 1

3kikj

)
,

(17)
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and the stochastic noise ξa satisfies correlation equation

〈ξa(t1,k)ξb(t2,−k′)〉 = 2T (e0 + p0)Dab(2π)3

× δ3(k − k′)δ(t1 − t2). (18)

At the dissipative scale the acoustic matrix L ∼ csk∗
originating from ideal equations of motion dominates
over the competing dissipation D and fluctuation ξa
terms. Lab has four eigenmodes: two longitudinal sound
modes with λ± = ±cs|k| and two transverse zero modes
(λT1 = λT2 = 0). Since L drives evolution of φa, it will
be convenient to analyze the dynamics in terms of eigen-
modes of Lab: 4

(e±)a =
1√
2

(
1

±k̂

)
, (eT1

)a =

(
0
~T1

)
, (eT2

)a =

(
0
~T2

)
,

(19)

where k̂ = k/|k|, and ~T1 and ~T2 are two orthonormal

spatial vectors perpendicular to k̂

k̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), (20a)

~T1 = (− sinϕ, cosϕ, 0), (20b)

~T2 = (cos θ cosϕ, cos θ sinϕ,− sin θ). (20c)

Now we will derive a relaxation equation for the two
point correlation function of hydrodynamic fluctuations
by defining a density matrix Nab(t,k)

〈φa(t,k)φb(t,−k′)〉 ≡ Nab(t,k)(2π)3δ3(k − k′), (21)

and analyzing the time evolution of Nab(t,k).
The analysis is most transparent in the eigenbasis,

φA ≡ φa (eA)a with A = +,−, T1, T2, and below we will
determine the equation of motion for NAB ≡ 〈φAφB〉
where A,B = +,−, T1, T2. We note that the positive
and negative sound modes φ+ and φ− are related since
the hydrodynamic fields are real, φ∗−(k, t) = φ+(−k, t).

Using the equations of motion for φA we calculate the
infinitesimal change of NAB(t + dt) − NAB(t), and use
the equal time correlator for the noise (Eq. (18)) to find
a differential equation for NAB

∂tN = −i[L, N ]− {D, N}+ 2T (e0 + p0)D, (22)

where [X,Y ] ≡ XY − Y X, {X,Y } ≡ XY + Y X, and
[L, N ]AB = (λA−λB)NAB . We are interested in the evo-
lution of two point correlation functions over time scales
much larger than acoustic oscillations, ∆t � 1/(csk∗).
On these timescales the off-diagonal matrix elements of
the density matrix, N+T1 for example, rapidly oscillate
reflecting the large difference in eigenvalues, λ+ − λT1 ∼
csk∗. In a coarse graining approximation the contribu-
tions of these off-diagonal matrix elements to physical

4 Another reason why analysis in terms of eigenmodes of Lab is
convenient is that they form a real and orthonormal basis and
the projection onto each mode is easily handled.

quantities can be neglected when averaged over times
long compared to 1/(csk∗). This reasoning does not ap-
ply to the diffusive modes A,B = T1, T2 where both
eigenvalues are zero, but rotational symmetry in the
transverse xy-plane requires NT1T2 to vanish5.

With these approximations, the non-trivial relaxation
equations of two point correlation functions in Eq. (22)
are

∂tN±±(t,k) = −4

3
γηk

2(N±± −N0), (23a)

∂tNT1T1
(t,k) = −2γηk

2(NT1T1
−N0), (23b)

∂tNT2T2
(t,k) = −2γηk

2(NT2T2
−N0), (23c)

where

N0 = T (e0 + p0) (24)

is the equilibrium value for NAA (c.f. Eq. (4)). In the
absence of external perturbations, two point correlation
functions relaxes to their equilibrium values. The next
step towards general kinetic equations is to study how
equal time correlations are driven out of equilibrium by
the presence of external fields.

B. Linear response to gravitational perturbations

In this section we will study the evolution of two point
energy and momentum correlators in the presence of time
varying gravitational field. We determine the kinetic
equations in the time dependent background, and use
these equations to reproduce the modifications of the re-
tarded Green function (Eq. (5)) due to thermal fluctua-
tions, which were previously found by a one-loop calcu-
lation [23, 28].

A straightforward way of introducing an external
source to equations of motion is to study fluctuating hy-
drodynamics in the presence of a small metric perturba-
tion, gµν = ηµν + hµν . The Green function records the
response of Tµν to the metric perturbation

δ 〈Tµν(ω)〉 = −1

2
Gµν,αβR (ω)hαβ(ω). (25)

For a constant homogeneous background with time de-
pendent metric perturbation hij(t), symmetry constrains
the form of the retarded Green function

Gij,klR (ω) = G̊R(ω) (δikδjl + δilδjk − 2

3
δijδkl)+

GR(ω) δijδkl, (26)

5 Rotational symmetry in the transverse xy-plane requires that
〈gigj〉 ∼ Aδij +Bk̂ik̂j , where i, j = x, y. Such a tensor structure
has vanishing T1T2 projection.
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and therefore we can obtain the Green function in Eq. (5),

i.e. G̊R(ω), by considering a diagonal traceless metric
perturbation, hij(t) = h(t) diag (1, 1,−2).

In the presence of metric perturbations and thermal
fluctuations, the energy momentum tensor is

δ
〈
T ij(t)

〉
= −p0h

ij − η0∂th
ij +

〈
gi(t,x)gj(t,x)

〉
e0 + p0

, (27)

where the nonlinear term stems from the constitutive re-
lation of ideal hydrodynamics, T ij = p0δ

ij+(e0+p0)uiuj .
The averaged squared momentum,

〈
gi(t,x)gj(t,x)

〉
, is

related to the two-point functions of gi in k space as

〈
gi(t,x)gj(t,x)

〉
=

∫
d3k

(2π)3
N ij(t,k). (28)

In this integral, the equilibrium value of N ij and its first
viscous correction will renormalize p0 and η0 (see below),
while the finite remainder will determine the first frac-
tional power in the stress tensor correlator ∝ ω3/2.

Studying the hydrodynamic equations in Eq. (3), and
neglecting metric perturbations of the dissipative terms,
we find that the linearized equations of motion are iden-
tical to flat background Eq. (14), but now there is a dif-
ference between covariant and contravariant indices

∂tδe+ ikig
i = 0, (29a)

∂tgi + ikiδp+ γηk
2gi +

1

3
γηkikjg

j = −ξi. (29b)

To avoid this complication, we use a vielbein formal-
ism and scale the spatial components of momentum and
wavenumber by

√
gij , i.e. gi and kj are replaced by

Gı̂ = (1 +
1

2
hij)g

j , (30a)

Kı̂ = (1− 1

2
hij)kj , (30b)

where now the position of hatted indices is unimportant.
Analogously to Eq. (16), we obtain a matrix equation for
φa = (csδe,Gı̂)

∂tφa(t,k) = −iLabφb −Dabφb − ξa − Pabφb, (31)

with an additional metric dependent source term

Pab =

(
0 0
0 1

2∂0hîĵ

)
, (32)

which drives the hydrodynamic fluctuations away from
equilibrium. The eigenbasis of L (see Eq. (19)) is now

defined with respect to the time dependent vector ~K(t),
but remains orthonormal at all times. Furthermore, the
metric perturbation preserves rotational symmetry in the
transverse xy-plane, and this guarantees that the T1 and
T2 modes are not mixed by the time-dependent perturba-
tion. Thus, the only non-trivial diagonal components of

the symmetrized energy and momentum two point func-
tions are

∂tN±± = −4

3
γηK

2(N±± −N0)

− 1

2
∂th (sin2 θK − 2 cos2 θK)N±±, (33a)

∂tNT1T1 = −2γηK
2(NT1T1 −N0)− ∂thNT1T1 , (33b)

∂tNT2T2
= −2γηK

2(NT2T2
−N0)

− ∂th (cos2 θK − 2 sin2 θK)NT2T2
. (33c)

We can find a perturbative solution to these equations
for a small periodic metric perturbation, e.g.

NT2T2(ω,k) ' N0

(
2πδ(ω)+

iωh(ω)(cos2 θK−2 sin2 θK)

−iω + 2γηK2

)
.

(34)
To find the correction to the energy momentum tensor
due to the nonlinear momentum fluctuations in Eq. (27),
we need to perform the k space integral in Eq. (28)

〈φa(x)φb(x)〉 =

∫
d3K

(2π)3
Nab(τ,k),

=

∫
K2dKd cos θKdϕK

(2π)3

× (eA)aNAB(τ,k)(eB)b . (35)

Note, care should be taken when transforming the ze-
roth order value NAA = N0 to original unhatted basis
as it produces terms linear in metric perturbation. The
modification of the response function G̊R(ω) due to the
momentum fluctuations (i.e. the last term in Eq. (27)) is

G̊R(ω) = −1

6
(δT xx + δT yy − 2δT zz)/h(ω),

⊃ −T
6

∫
d3K

(2π)3

(
−6 + iω

(sin2 θK − 2 cos2 θK)2

−iω + 4
3γηK

2

+ iω
1 + (cos2 θK − 2 sin2 θK)2

−iω + 2γηK2

)
. (36)

Performing K-space integral with UV cutoff, Kmax = Λ,
and adding the remaining terms in Eq. (27), we find

G̊R(ω) =

(
p0 +

Λ3

6π2
T

)
−i
(
η0 +

Λ

γη

17

120π2
T

)
ω

+ (1 + i)
1

γ
3/2
η

( 3
2 )3/2 + 7

240π
Tω3/2, (37)

in agreement with previous work [23, 28]. The first
two terms in Eq. (37) are the renormalized pressure
(p ≡ p0(Λ) + O(TΛ3)) and shear viscosity (η ≡ η0(Λ) +
O(ΛT 2)) as discussed previously [23]. In general, Λ �
1/`mfp

<∼ T holds and the renormalization only slightly
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shifts the quantities in the thermodynamic limit (Λ→ 0).
Further discussion of the renormalization of these quanti-
ties is given in the next section when the expanding case
is presented.

The last term is the finite nonlinear modification of
the medium response, and agrees with loop calculations
in equilibrium. The kinetic approach outlined in this
section has the advantage that it can be readily applied
to more general backgrounds, and we will exploit this
advantage to calculate the analogous correction for a
Bjorken expansion in the next section. In contrast to
the linear response described here, the deviation from
equilibrium in the expanding case is of order unity. Con-
sequently, computing the first fractional power in an ex-
panding system with the diagrammatic formalism would
require an extensive resummation, which would invari-
ably reproduce kinetic calculation described in the next
section [34].

III. HYDRODYNAMIC FLUCTUATIONS FOR
A BJORKEN EXPANSION

In this section we will derive the kinetic evolution equa-
tions for hydrodynamic fluctuations during a Bjorken ex-
pansion. We consider a neutral conformal fluid, for which
c2s = 1/3, ζ = 0, and µB = 0. In Bjorken coordinates the
energy and momentum conservation laws are

∂µT
µν +

1

τ
T τν + ΓνµβT

µβ = 0, (38)

with Γτηη = τ and Γητη = Γηητ = 1/τ [21]. For hydro-
dynamics without noise the background flow fields are
independent of transverse coordinates and rapidity and
satisfy

d(τT ττ )

dτ
= −τ2T ηη, (39)

d(τT τi)

dτ
= 0, (40)

where roman indices, i, j . . ., run over transverse coordi-
nates x, y. The transverse momentum T τi is constant,
and can be chosen to be zero. In hydrodynamics T ττ

and τ2T ηη are related by constitutive equations

T ττ = e, (41)

τ2T ηη = c2se−
4η

3τ
. (42)

Note that in τ2T ηη the viscous correction is of order ε =
η/(e + p)τ � 1 smaller than the ideal part, and the

solution is approximately e(τ) = e(τ0) · (τ0/τ)1+c2s [1 +
O(ε)].

We will consider the evolution of linearized fluctuations
on top of this background. The effect of these fluctua-
tions on the background evolution can then be included

as a correction after the two point functions are known,
i.e.

d〈〈T ττ 〉〉
dτ

= −〈〈T
ττ 〉〉+ 〈〈τ2T ηη〉〉

τ
, (43)

where the constitutive relations take the form

〈〈T ττ 〉〉 = e+
〈〈~G2〉〉
e+ p

, (44)

〈〈τ2T ηη〉〉 = c2se−
4η

3τ
+
〈〈(Gẑ)2〉〉
e+ p

. (45)

Here and below e(τ) is the average rest frame energy den-

sity6; ~G is the momentum density ~G = (T τx, T τy, τT τη),
and all quantities are renormalized as explained more
completely below.

There are two sorts of fluctuations to consider: fluctu-
ations in the initial conditions (which are long range in
rapidity), and hydrodynamic fluctuations stemming from
thermal noise (which are short range in rapidity). The
average over the initial conditions and noise are denoted
with 〈. . .〉τ0 and 〈. . .〉 respectively, while the average over
both fluctuations is denoted with the double brackets
〈〈. . .〉〉. Since the transverse momentum per rapidity is
conserved for boost invariant fields, approximately boost
invariant initial fluctuations in τT τi remain important
at late times. In Sect. III A we study initial transverse
momentum fluctuations, while in remainder of the paper
we complete our study of thermal fluctuations during a
Bjorken expansion.

A. A Bjorken expansion with initial transverse
momentum fluctuations

After the initial passage of two large nuclei in a spe-
cific event, each rapidity interval contains a finite amount
of transverse momentum, although the event-averaged
transverse momentum per rapidity is zero. This ini-
tial transverse momentum is spread over a large rapidity
range by the subsequent re-scatterings in the initial state.
Ultimately, this dynamical process can be described by
(transverse) momentum diffusion in rapidity, and can be
modeled with hydrodynamics and noise – see Sect. III D.
Here we will determine how long-range transverse mo-
mentum fluctuations in the initial state influence the evo-
lution of the background energy density at late times.

6 e(τ) notates the average rest frame energy density and does
not fluctuate; 〈〈T ττ 〉〉 is the average energy density. In general,
the rest frame energy density e+ δe in a finite volume would be
estimated from sample estimate of T ττ and ~G through the (ideal)

constitutive equations, e+δe ' T ττ− ~G2

(1+c2s)T
ττ . Thus e is given

by Eq. (44), and δe ' δT ττ − δ( ~G2/T ττ )/(1 + c2s) ' δT ττ .
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As a model for the initial conditions in the x, y plane,
we take Gaussian statistics for the initial transverse mo-
mentum fluctuations〈

τ0g
i
⊥(τ0, ~x⊥) τ0g

j
⊥(τ0, ~y⊥)

〉
τ0

= χggτ0 δ
ijδ2(~x⊥ − ~y⊥),

(46)

where gi⊥(τ, ~x⊥) ≡ T τi is approximately independent of
rapidity, so that each (large) rapidity interval is approx-
imately boost invariant. Integrating over the transverse
area A, the total transverse momentum per rapidity,

dpx

dη
≡
∫
A
d2x⊥ τ0g

x
⊥(τ0, ~x⊥), (47)

fluctuates from event to event with a scaled variance of

χggτ0 ≡
〈 1

A

(
dpx

dη

)2 〉
τ0
. (48)

To find out how this fluctuating initial condition
changes the evolution of the system, we linearize the
equations of motion of viscous hydrodynamics and
Fourier transform with respect to the transverse coor-
dinates

~g⊥(τ,~k⊥) ≡
∫
d2x⊥e

i~k⊥·~x⊥ ~g⊥(τ, ~x⊥). (49)

The full equations of motion are given in the next section,
see Eq. (56). Decomposing the transverse momentum
fluctuation into longitudinal and transverse pieces

gi⊥(τ,~k⊥) = giL(~k⊥) + giT (~k⊥), (50)

with k̂i⊥g
i
T = 0 and giL = k̂i⊥k̂

j
⊥g

j
⊥, we find that the trans-

verse piece obeys a two dimensional diffusion equation

∂τ (τgiT ) + γηk
2
⊥(τgiT ) = 0, (51)

with initial conditions specified by Eq. (46)〈
τ0g

i
T (τ0,~k⊥) τ0g

j
T (τ0,−~k′⊥)

〉
τ0

=

χggτ0 (δij − k̂ik̂j) (2π)2δ2(~k⊥ − ~k′⊥). (52)

Solving the diffusion equation with a time dependent dif-

fusion constant γη ∝ τ c
2
s , we see that the variance at a

specified space time point due to the fluctuating initial
conditions is7〈

τgi⊥(τ, ~x⊥)τgj⊥(τ, ~x⊥)
〉
τ0

= δij
χggτ0

12πγητ
. (53)

7 Here we are neglecting the longitudinal contribution, 〈gLgL〉,
which decreases more rapidly than 1/τ at late times.

Thus, we see that a fluctuating initial conditions con-
tributes quadratically to the average stress tensor〈

τ2T ηη
〉
τ0

e+ p
=

p

e+ p
− 4γη

3τ
, (54a)

〈T xx〉τ0
e+ p

=
p

e+ p
+

2γη
3τ

+

[
χggτ0

τ2(e+ p)2

]
1

12πγητ
,

(54b)

〈T yy〉τ0 = 〈T xx〉τ0 , (54c)

〈T ττ 〉τ0 = 〈T xx〉τ0 + 〈T yy〉τ0 +
〈
τ2T ηη

〉
τ0
, (54d)

where p = c2se.

B. Kinetic equations of hydrodynamic fluctuations

To derive the kinetic equations we will follow the strat-
egy of Sect. II A, and expand all fluctuations in Fourier
modes conjugate to transverse coordinates and rapidity,
e.g.

δe(τ,k) ≡
∫
dη d2x⊥ e

i~k⊥·~x⊥+iκη δe(τ, x⊥, η). (55)

The linearized equations of motion of all hydrodynamic
fields around the Bjorken background read

0 =

(
∂

∂τ
+

1 + c2s
τ

)
δe+ i~k⊥ · ~g⊥ + iκgη + ξτ , (56a)

~0⊥ =

(
∂

∂τ
+

1

τ

)
~g⊥ + c2si

~k⊥δe+ γη

(
k2
⊥ +

κ2

τ2

)
~g⊥

+
1

3
γη~k⊥

(
~k⊥ · ~g⊥ + κgη

)
+ ~ξ⊥, (56b)

0 =

(
∂

∂τ
+

3

τ

)
gη +

c2siκ

τ2
δe+ γη

(
k2
⊥ +

κ2

τ2

)
gη

+
1

3τ2
γηκ

(
~k⊥ · ~g⊥ + κgη

)
+ ξη. (56c)

where (gx⊥, g
y
⊥, g

η) = (T τx, T τy, T τη). As in Sect. II A
and II B the hydrodynamic parameters in these equations
(such as γη) are constructed from the bare parameters,
e0(Λ), p0(Λ), η0(Λ) and evolve according to ideal hydro-

dynamics, e0(τ) = e0(τ0)(τ0/τ)1+c2s . We also neglected
variation in viscosity δη/τ � δp, δe, which is smaller by a
factor ε = η0/((e0+p0)c2sτ)� 1 for conformal fluid. Note
also that the temporal noise component ξτ is smaller than
ξi⊥ and τξη by a factor 1/(k∗τ) ∼ ε1/2 and the former
can be neglected.

Following the procedure outlined in Sect. II we rewrite
Eqs. (56) in a compact matrix notation. We define
~G = (Gx̂, Gŷ, Gẑ) ≡ (~g⊥, τgη) and ~K = (Kx̂,Kŷ,Kẑ) ≡
(~k⊥, κ/τ), so that equation of motion for φa ≡ (csδe, ~G)
is

∂τφa(τ,k) = −iLabφb −Dabφb − ξa − Pabφb, (57)
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L =

(
0 cs ~K

cs ~K 0

)
, D = γη

(
0 0
0 K2δı̂̂ + 1

3Kı̂K̂

)
,

(58)

P =
1

τ

1 + c2s
1

1
2

 , (59)

with noise correlator

〈ξa(τ,k)ξb(τ
′,−k)〉 =

2T (e0 + p0)

τ
Dab(2π)3

× δ3(k − k′)δ(τ − τ ′). (60)

Here δ3(k − k′) ≡ δ2(~k⊥ − ~k′⊥)δ(κ − κ′) and the factor
of 1/τ stems from the Jacobian of the coordinate system

δ4(x− x′)/
√
g(x).

The kinetic equation for the two-point functions

〈φa(τ,k)φb(τ,−k′)〉 ≡ Nab(τ,k)(2π)3δ3(k − k′), (61)

is obtained similarly to Sect. II

∂τN(τ,k) = −i[L, N ]−{D, N}+ 2T (e0 + p0)

τ
D−{P, N}.

(62)
The eigenvectors of L are of the same form as before,
Eq. (19),

(e±)a=
1√
2

(
1

±K̂

)
, (eT1

)a=

(
0
~T1

)
, (eT2

)a =

(
0
~T2

)
.

(63)

However, now the wavenumber vector ~K is time depen-
dent

K̂ ≡ (~k⊥, κ/τ)√
k2
⊥ + (κ/τ)2

, (64a)

≡(sin θK cosϕK , sin θK sinϕK , cos θK) , (64b)

The azimuthal angle ϕK is independent of time due to
the residual rotational symmetry of the background in
xy-plane. Following the same arguments as in Sect. II, we
arrive at the kinetic equations for diagonal components

∂τN±± =− 4

3
γηK

2

[
N±± −

T (e0 + p0)

τ

]
− 1

τ

(
2 + c2s + cos2 θK

)
N±±, (65a)

∂τNT1T1 =− 2γηK
2

[
NT1T1 −

T (e0 + p0)

τ

]
− 2

τ
NT1T1

,

(65b)

∂τNT2T2
=− 2γηK

2

[
NT2T2

− T (e0 + p0)

τ

]
− 2

τ

(
1 + sin2 θK

)
NT2T2

. (65c)

The first terms on the right hand side describe relaxation
of NAA toward local equilibrium T (e0 + p0)/τ , and the
second terms drive NAA out of equilibrium through the
interaction with the background flow.

We derived these equations relying on the scale sep-
aration given in Eq. (12). The off-diagonal components
between gapped modes (such as between the ± and T1

and T2 modes) are ignored because they rapidly rotate as
discussed in Sect. II A. Note that the transverse mode φT1

is so chosen that it does not mix with the other modes.
This is possible because of the residual rotational symme-
try in the xy-plane in the Bjorken expansion. Therefore
the kinetic equation for NT1T1

, Eq. (65b), holds without
the scale separation in Eq. (12) and is applicable for all
wavenumbers k from to zero to 1/`mfp.

C. Nonlinear fluctuations in the energy momentum
tensor

Now let us investigate the solution of the kinetic equa-
tions close to the cutoff and isolate the UV divergent
contribution. Solving Eq. (65) in series of 1/(γηK

2τ) we
obtain an asymptotic solution for large K/k∗

N±±(τ,k)

T (e0 + p0)/τ
= 1 +

c2s − cos2 θK
4
3γηK

2τ
+ . . . , (66a)

NT1T1(τ,k)

T (e0 + p0)/τ
= 1 +

c2s
γηK2τ

+ . . . , (66b)

NT2T2(τ,k)

T (e0 + p0)/τ
= 1 +

c2s − sin2 θK
γηK2τ

+ . . . , (66c)

where we used ∂τ [T (e0 + p0)] ' −(1 + 2c2s)[T (e0 + p0)]/τ
which is adequate for the desired accuracy of the present
analysis. For a given K2γητ = (K/k∗)2 and θK at final
time τ , we can solve Eq. (65) numerically and find a
steady state solution at late time τ � τ0. We compare
this steady state solution to the asymptotic form Eq. (66)
in Fig. 2.

Eq. (66) is analogous to the ideal and first viscous
correction to the thermal distribution function, f0 + δf ,
which are used in heavy ion phenomenology and in deter-
mining the shear viscosity [21]. At large K/k∗ the distri-
bution NAA attains its equilibrium value, T (e0 + p0)/τ ,
up to viscous corrections of order τR/τ , where τR is
a typical relaxation time for a mode of momentum K,
τR ∼ 1/γηK

2.

The energy-momentum tensor averaged over fluctua-
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FIG. 2. Steady state solutions of Eq. (65) for the two point
energy-momentum correlation functions during a Bjorken ex-
pansion at late times, τ � τ0. The correlations are plotted as
a function of K[γητ ]1/2 for final time angle cos θK = 0.1. For
comparison leading order viscous solutions in 1/(γηK

2τ) are
also shown, Eq. (66). The differences of the steady state so-
lutions from their asymptotic forms induces finite corrections
to energy-momentum tensor, Eq. (74).

tions is given by

〈T ττ 〉 = e0 +
〈~G2〉
e0 + p0

, (67a)

〈T xx〉 = p0 +
2η0

3τ
+
〈(Gx̂)2〉
e0 + p0

, (67b)

〈T yy〉 = p0 +
2η0

3τ
+
〈(Gŷ)2〉
e0 + p0

, (67c)

〈τ2T ηη〉 = p0 −
4η0

3τ
+
〈(Gẑ)2〉
e0 + p0

. (67d)

Calculating Nab(τ,k) = [(eA)aNAB(eB)b] from the ki-
netic theory, we determine 〈φa(τ,k)φb(τ,−k)〉 with φa =(
csδe, ~G

)
in Fourier space, yielding

〈φa(x)φb(x)〉 =

∫
d2k⊥dκ
(2π)3

Nab(τ,k),

= τ

∫
K2dKd cos θKdϕK

(2π)3

× (eA)aNAB(τ,k)(eB)b . (68)

Note that the momentum integral is done in final time

variables, ~K(τ). As shown below, the integration in
Fourier space is divergent in the ultraviolet. There-
fore, we regulate the integral by introducing a cutoff at

| ~K| ∼ Λ. In turn, the background quantities such as e0

and η0 must be renormalized and depend on Λ so that
the total result is independent of Λ. The choice of Λ is

arbitrary as long as k∗ � Λ � 1/`mfp so that the non-

linear contribution with | ~K| ∼ Λ is independent of the
background flow.

The integration in Eq. (68) includes the soft fluctua-
tions for which the kinetic equation may not be applica-
ble. However, this contribution is suppressed by phase
space and the kinetic result can be extrapolated into this
regime with negligible errors.

Combining Eqs. (66), (67) and (68), the energy mo-
mentum tensor is obtained as

〈T ττ 〉 = e0 + 3T

∫ Λ

0

K2dK

2π2
+ ∆T ττ , (69a)

〈T xx〉 = p0 +
2η0

3τ
+ T

∫ Λ

0

K2dK

2π2
(69b)

+
17

90

T (e0 + p0)

η0τ

∫ Λ

0

dK

2π2
+ ∆T xx,

〈T yy〉 = p0 +
2η0

3τ
+ T

∫ Λ

0

K2dK

2π2
(69c)

+
17

90

T (e0 + p0)

η0τ

∫ Λ

0

dK

2π2
+ ∆T yy,

〈τ2T ηη〉 = p0 −
4η0

3τ
+ T

∫ Λ

0

K2dK

2π2
(69d)

− 17

45

T (e0 + p0)

η0τ

∫ Λ

0

dK

2π2
+ τ2∆T ηη,

where the finite contributions ∆T ττ , ∆T xx, ∆T yy, and
τ2∆T ηη are discussed in the next section. By compar-
ing terms with the same explicit τ dependence, the ul-
traviolet divergences are absorbed into the renormalized
hydrodynamic variables

e = e0(Λ) +
TΛ3

2π2
, (70a)

p = p0(Λ) +
TΛ3

6π2
, (70b)

η = η0(Λ) +
17Λ

120π2

T (e0(Λ) + p0(Λ))

η0(Λ)
. (70c)

Note that we do not assign a cut-off dependence to the
temperature. The coefficients of the cubic and linear
renormalizations of the pressure and shear viscosity are
independent of the background expansion, and match the
static fluid results of Sect. II B. Here e, p, and η are
physical quantities at a given temperature T in an infi-
nite volume. Using the physical quantities, the energy-
momentum tensor is given as

〈T ττ (τ)〉 = e+ ∆T ττ , (71a)

〈T xx(τ)〉 = p+
2η

3τ
+ ∆T xx, (71b)

〈T yy(τ)〉 = p+
2η

3τ
+ ∆T yy, (71c)

〈τ2T ηη(τ)〉 = p− 4η

3τ
+ τ2∆T ηη. (71d)
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If the two-point functions of the fluctuations were com-
pletely determined by the first two terms in Eq. (66),
their contributions would be completely absorbed by the
renormalization of the background flow parameters such
as p0(Λ) and η0(Λ). However, the kinetic equations yield
residual contributions, since the full solution deviates
from its asymptotic form for K ∼ k∗ as seen from Fig. 2.
The purpose of hydrodynamics with noise is to capture
this contribution.

Physically, the parameters e0(Λ), p0(Λ), and η0(Λ) in
fluctuating hydrodynamics reflect the equilibrium prop-
erties of modes above a cutoff Λ, which have been already
integrated out. Equivalently, these parameters are deter-
mined by modes contained in a cell of size a ∼ 2π/Λ.
For example, p0(Λ) is the partial pressure from equili-
brated modes above the cutoff (inside a cell), while the
partial pressure from the modes below the cutoff (larger
than a cell size) is determined dynamically with fluctuat-
ing hydrodynamics. The second terms on the right hand
sides of Eq. (70) are the contributions to each quantity
from the modes below the cutoff, when all of these long
wavelength modes are in perfect equilibrium in infinite
volume.

D. Out of equilibrium noise contributions to
energy momentum tensor

In this section we determine the residual contributions
to the energy momentum tensor, ∆Tµν , in Eq. (71) after
the hydrodynamic parameters have been renormalized.
We evaluate the precise numerical factors of the long-
time tail terms for a Bjorken expansion (which is the
main result of this paper), and identify additional contri-

butions from the noise at early times. The mathematical
procedure is somewhat involved, so here we outline the
calculation and present results, delegating the technical
details to the Appendix A.

To find the full out of equilibrium correlators we need
to solve Eq. (65), which can be written in the following
general form

∂τNAA(τ,k) = f(τ,k)NAA(τ,k) + g(τ,k), (72)

where f(τ,k) has contributions from both the dissipa-
tive and external forcing terms, and g(τ,k) is the inho-
mogeneous term coming from the equilibrium correlation
functions. A formal solution of Eq. (72) is given by

NAA(τ,k) = NAA(τ0,k)e
∫ τ
τ0
dτ ′f(τ ′,k)

+

∫ τ

τ0

dτ ′′g(τ ′′,k)e
∫ τ′′
τ0

dτ ′f(τ ′,k)
. (73)

The first term describes the evolution of the initial cor-
relation density matrix NAA(τ0,k) to final time τ . The
second term in Eq. (73) is the contribution from thermal
fluctuations. As we will see, only the NT1T1 contribu-
tion is sensitive to the initial conditions and the thermal
fluctuations at early times. For the T1T1 correlator we
will take the initial conditions described by Eq. (52) in
Sect. III A, τ2

0NT1,T1
(τ0,k) = χggτ0 2πδ(κ).

Substituting the formal solution for NAA in Eq. (67)
and Eq. (68) we can determine the stress tensor at time
τ � τ0. The integral

∫
d3k in Eq. (68) diverges, but

after subtracting Λ3 and Λ divergences discussed in the
previous section, we finally obtain the finite correction to
energy momentum tensor ∆Tµν . Writing Eq. (71) in full

〈〈τ2T ηη(τ)〉〉
e+ p

=
p

e+ p
− 4γη

3τ
+

1.08318

s (4πγητ)3/2
, (74a)

〈〈T xx(τ)〉〉
e+ p

=
p

e+ p
+

2γη
3τ

+

[
χggτ0 +δχggτ0
τ2(e+ p)2

]
1

(12πγητ)
− 0.273836

s (4πγητ)3/2
, (74b)

〈〈T yy〉〉 = 〈〈T xx〉〉, (74c)

〈〈T ττ 〉〉 = 〈〈T xx〉〉+ 〈〈T yy〉〉+ 〈〈τ2T ηη〉〉. (74d)

The coefficients 1.08318 and −0.273836 of the long-time
tails, 1/(γητ)3/2 are obtained by numerical integration as
explained in Appendix A. The term χggτ0 + δχggτ0 records
the initial variance in transverse momentum in a given
rapidity slice (see Eq. (46) and Eq. (48)) together with
the thermal contribution

χggτ0 +δχggτ0 =

〈
1

A

(
dpx

dη

)2
〉
τ0

+

(
T (e+ p)τ0√

12πγη/τ0

)
τ0

, (75)

where the brackets (. . .)τ0 indicate that all contained

quantities are to be evaluated at the initial time, τ0. We
will provide an intuitive discussion of the result in the
next section.
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E. Qualitative discussion of Eq. (74)

1. Long time tails: 1/(γητ)3/2

Examining Eq. (74) we see two groups of terms. The
first group is proportional to 1/(γητ)3/2 and is indepen-
dent of initial conditions. By contrast, the second group
is proportional to 1/(γητ), and depends on the initial
transverse momentum fluctuations through the parame-
ter χggτ0 + δχggτ0 (see Sect. III A). We will first describe the

terms proportional to the fractional power 1/(γητ)3/2,
known as the long-time tails.

Squared fluctuations in equilibrium are of order
〈δe(~x)δe(~y)〉eq/e

2 ∼ 〈vi(~x)vj(~y)〉eq ∼ s−1δ(~x− ~y), where
s is the entropy density (see Eq. (4)). Thus a fluctuation

with wavenumber k is suppressed by
√
k3/s. The sup-

pression factor k3/s is roughly the inverse of the degrees
of freedom inside a box of volume ∆V ∼ (1/k)3, which
must be a huge number for local thermodynamics to ap-
ply. This is why the linear analysis of the hydrodynamic
fluctuations is justified.

The energy momentum tensor in viscous hydrodynam-
ics is expanded in powers of gradients, leading to correc-
tions in powers of ε ≡ η/(e + p)τ � 1. In addition, as
discussed in Sect. I B the fluctuations with wavenumber
of order | ~K| ∼ k∗ ∼ 1/(γητ)1/2 dominate the nonlinear
noise correction to the stress tensor, which is suppressed
by s∆V ≡ s/k3

∗ � 1. This correction to the longitudi-
nal pressure reflects the equipartition of energy, with 1

2T
of energy per mode, and the number of non-equilibrium
modes per volume ∼ k3

∗. To summarize, the reasoning in
this paragraph leads to the following parametric estimate
for the longitudinal stress

〈τ2T ηη〉
e+ p

∼
[

1

4
+

η

(e+ p)τ
+

1

s(γητ)3/2
+ · · ·

]
, (76)

which is reflected by Eq. (74).

2. Transverse momentum diffusion in rapidity: 1/γητ

Additional corrections to the stress in Eq. (74) de-
crease as 1/γητ , in contrast to the long time tails. As
described in Sect. III A, long range (in rapidity) ini-
tial transverse momentum fluctuations correct the mean
transverse pressures, T xx and T yy, by a term propor-
tional to χggτ0 /γητ (see Eq. (74b)). Hydrodynamic noise
in the initial state adjusts this correction by adding to
the long range fluctuations of transverse momentum (see
Eqs. (74b) and (75)). The goal of this section is to explain
this process qualitatively, and to quantitatively explain
the adjustment, χggτ0 → χggτ0 + δχggτ0 .

Formally, the NT1T1
correlation function is sensitive

to the noise at the initial time τ0, which arises from a

restricted region of ~K-space integration, k⊥ ∼ k∗ and
κ/τ ∼ k∗(τ0)(τ0/τ) ∼ k∗(τ0/τ)1/3 � k∗. In this region
the longitudinal momentum κ/τ0 reflects the dissipative

scale k∗(τ0) at the initial time τ0, while the transverse
momenta reflect the dissipative scale at final time τ .

The dynamics in this phase space region is the follow-
ing. During the initial moments, thermal fluctuations
lead to a local fluctuation of transverse momentum in a
given rapidity slice for each cell in the transverse plane〈

(τ0∆gx⊥)2
〉
∼
(
T (e+ p) τ0
∆η (∆x⊥)2

)
τ0

. (77)

Here (as before) the brackets (. . .)τ0 indicate that all con-
tained quantities should be evaluated at τ0. During an
initial time of order τ0, the momentum per rapidity dif-
fuses to a finite longitudinal width [5] (see below)

∆η → ση(τ0) ≡
√

6γη(τ0)/τ0. (78)

The process is diffusive because the transverse momen-
tum per rapidity is conserved. The rapidity width is finite
because the longitudinal expansion shuts off the diffusion
process. ση(τ0) is broader than the rapidity width of sub-
sequent interest, which is of order ση(τ). Thus, after an
initial transient, the transverse momentum per rapidity
may be considered approximately constant in time and
rapidity, though localized in this transverse plane

〈
(τ∆gx⊥)2

〉
∼

(
T (e+ p) τ0√

γη/τ0

)
τ0

1

(∆x⊥)2
. (79)

At much later times these transverse momentum fluctu-
ations diffuse transversely (as described in Sect. III A)
leading to a correction of order

〈T xx〉
e+ p

∼ 1

τ2(e+ p)2

(
T (e+ p)τ0√

γη/τ0

)
τ0

1

γητ
, (80)

which qualitatively reproduces the correction in
Eq. (74b).

Now we will briefly sketch this reasoning with equa-
tions. At the early time moments τ ∼ τ0, the wave vec-

tor is predominantly longitudinal ~K ' (~0⊥, κ/τ) and the
transverse momentum correlator〈
gi⊥(τ,k)gj⊥(τ,−k′)

〉
≡ N ij(k, τ)(2π)3δ3(k− k′), (81)

can be reconstructed from NT1T1
and NT2T2

N ij(τ,k) =
∑

A∈T1,T2

eiAe
j
ANAA(τ,k), (82)

since ~T1 and ~T2 form a basis for the transverse plane. In
this limit, the equations of motion for NT1T1

and NT2T2

(see Eq. (65b) and Eq. (65c)) are the same, and N ij sat-
isfies a one dimensional diffusion equation with a source
at early times(

∂τ + 2γη

(κ
τ

)2
)

(τ2N ij) = 2γη

(κ
τ

)2

T (e+ p)τδij .

(83)
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The lhs of Eq. (83) represents the diffusion of transverse
momentum in rapidity, while the rhs represents the ther-
mal transverse momentum fluctuations at the earliest
moments, which act as a source. The source for the fluc-
tuations, 2Tη (κ/τ)2, is a rapidly decreasing function of
time, and is dominant for times of order τ0.

The Green function propagating data from τ ′ to τ for
the lhs of Eq. (83) is

Gij(τη~x⊥|τ ′η′~x′⊥)=
e−(η−η′)2/(12γη(τ ′)/τ ′)√

12πγη(τ ′)/τ ′
δijδ2(~x⊥ − ~x′⊥),

(84)

for τ � τ ′. Thus, a fluctuation localized in rapid-
ity at time τ0 will diffuse to a finite rapidity width of
ση(τ0) =

√
6γη(τ0)/τ0 at late times8 [5, 35]. This is a

small rapidity width in absolute units (since γη(τ0)/τ0 �
1 when hydrodynamics is a good approximation), but
much broader than the rapidity width of interest at the
final time, γη(τ0)/τ0 � γη(τ)/τ .

Returning to Eq. (83), we solve the equation, and de-
termine the transverse momentum correlation function
(in the same rapidity slice) at an intermediate time τ ′

which is large compared to τ0 but much much less than
the final time τ , τ0 � τ ′ � τ

τ ′2
〈
gi⊥(τ ′, η, ~x⊥)gj⊥(τ ′, η, ~y⊥)

〉
=∫

dκd2k⊥
(2π)3

ei
~k⊥·(~x⊥−~y⊥) τ ′2N ij(τ ′, κ) . (86)

Implementing these steps we find

τ ′2
〈
gi⊥(τ ′, η, ~x⊥)gj⊥(τ ′, η, ~y⊥)

〉
=(

T (e+ p))τ0√
12πγη/τ0

)
τ0

δijδ2(~x⊥ − ~y⊥). (87)

This has the same form as the initial conditions described
in Sect. III A, and fluctuations at the earliest moments
simply increase the variance of long range transverse mo-
mentum fluctuations by a constant amount

δχggτ0 =

(
T (e+ p)τ0√

12πγη/τ0

)
τ0

, (88)

reproducing Eq. (75). In a sense, this constant shift
simply finalizes the thermalization process described at

8 In Refs. [5, 35] the authors consider an initial distribution which
is Gaussian in rapidity of width σ0. During the expansion the
width is broadened by the diffusion process

σ2
0 → σ2

0 + 6
γη(τ0)

τ0
. (85)

These authors considered constant η/(e+ p) and found a factor
of 4 rather than 6 in Eq. (85).

the start of Sect. III A. The correction δχggτ0 scales as

τ
−1/3
0 and is therefore small compared to the first term

in Eq. (75) if τ0 is large compared to a typical thermal-
ization time.

IV. RESULTS AND DISCUSSION

In this paper we determined a set of kinetic equations
which describe the evolution of hydrodynamic fluctua-
tions during a Bjorken expansion. We used these equa-
tions to find the first fractional power correction to the
longitudinal pressure, ∝ 1/(τT )3/2, at late times. The
evolution equations can be extended to much more gen-
eral flows, and ultimately coupled to existing hydrody-
namic codes.

The kinetic equations for hydrodynamic fluctuations
are a WKB (or rotating wave) type approximation of the
full stochastic hydrodynamic evolution equations. This
approximation is justified because the relevant hydrody-
namic modes have wavenumbers of order

k∗ ∼
√
e+ p

ητ
, (89)

which is large compared to the inverse expansion rate,
1/τ . For example, the kinetic equation for the sound

mode with wavenumber ~K = (~k⊥, κ/τ) interacting with
the Bjorken background takes the form of a relaxation
type equation

∂τN++(τ,k) = −4

3
γηK

2

[
N++ −

T (e0 + p0)

τ

]
− 1

τ

(
2 + c2s + cos θK

)
N++ . (90)

N++(τ,k) are short wavelength (symmetrized) two point
functions of conserved stress tensor components, φ+ ≡
(csδe + K̂ · ~G)/

√
2 in an evolving Bjorken hydrody-

namic background (see Sect. III and Eq. (65) for the
remaining modes). At high wavenumbers K � k∗, the
distribution function N++ reaches its equilibrium form
T (e0 + p0)/τ , up to first viscous corrections which may
be found by solving Eq. (90) order by order at large K/k∗
(see Eq. (66a)). This asymptotic form is responsible for
the renormalization of the pressure and shear viscosity.
For wavenumbers of order k∗ the hydrodynamic fluctu-
ations are not in equilibrium at all, but reach a non-
equilibrium steady state at late times. A graph of this
non-equilibrium steady state is given in Fig. 2.

The deviation of hydrodynamic fluctuations from equi-
librium has consequences for the evolution of the system.
Indeed, the longitudinal pressure τ2T ηη receives a cor-
rection from the unequilibrated modes〈

τ2T ηη
〉

e+ p
=
[ p

e+ p
− 4

3

γη
τ

+
1.08318

s (4πγητ)3/2

+
(λ1 − ητπ)

e+ p

8

9τ2

]
, (91)
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where we have repeated Eq. (74a) for convenience. The
correction to the pressure ∼T/(γητ)3/2 is of order ∼Tk3

∗,
reflecting the number of modes of order k∗ and the en-
ergy per mode, 1

2T . In contrast to all previous analyses
of long-time tails [23, 28], the hydrodynamic fluctuations
in the expanding case are not close to equilibrium, and a
one loop expansion around equilibrium is not an appro-
priate approximation scheme. Our kinetic description
effectively resums all diagrams contributing at the same
order in the presence of expansion [34].

Formally, the noise correction is lower order than the
correction due to second order hydrodynamics, which is
proportional to a particular combination of second or-
der parameters, λ1 − ητπ. To quantify the importance
of thermal fluctuations in practice, we take representa-
tive numbers for the entropy from the lattice [36, 37],
estimates for the second order hydrodynamic coefficients
based on weakly and strongly coupled plasmas [4, 31, 38],
and an estimate for τT at τ ∼ 3.5 fm based on hydrody-
namic simulations9

T 3

s
' 1

13.5
, (92a)

(λ1 − ητπ)

e+ p
'− 0.8

(
η

e+ p

)2

, (92b)

τT ' 4.5 . (92c)

Then, for η/s ' 1/4π, Eq. (91) evaluates to〈
τ2T ηη

〉
e+ p

=
1

4

[
1.− 0.092

(
4.5

τT

)
+ 0.034

(
4.5

τT

)3/2

− 0.00085

(
4.5

τT

)2 ]
, (93)

while for η/s = 2/4π, we find〈
τ2T ηη

〉
e+ p

=
1

4

[
1.− 0.185

(
4.5

τT

)
+ 0.013

(
4.5

τT

)3/2

− 0.0034

(
4.5

τT

)2 ]
. (94)

For the smaller shear viscosity, Eq. (93), the nonlinear
noise contribution completely dominates over the second
order hydro contribution. For the larger shear viscos-
ity, Eq. (94), the noise remains three times larger than
second order hydro, but this contribution is only ∼ 10%
of the first order viscous term. Finally, for η/s ∼ 3/4π
the noise and second order hydro contributions become
comparable.

9 We take an estimate for the (approximately constant) average
entropy in the transverse plane from a recent LHC simulation
for PbPb collisions at

√
s = 2.76 TeV/nucleon, 〈τos(τo)〉 '

4.0 GeV2 [39]. We take a time of τ ∼ 3.5 fm (which is the time
at which the elliptic flow develops [21]), where T ' 250 MeV.

The evolution of the average energy density of the sys-
tem obeys

d〈〈T ττ 〉〉
dτ

= −〈〈T
ττ 〉〉+ 〈〈τ2T ηη〉〉

τ
, (95)

where the double brackets notate an average over (long
range in rapidity) initial conditions and thermal noise10.
To close the system of equations, the relationship be-
tween average energy density 〈〈T ττ 〉〉 and the average rest
frame energy density e(τ) must be specified, and this re-
lation is given in Eq. (74). T ττ , T xx, and T yy are sen-
sitive to hydrodynamic noise at the earliest moments in
addition to the long-time tails. In these cases thermal
noise in the initial state adds to the long-range rapid-
ity correlation functions of transverse momentum, which
are already present without noise. This result is encap-
sulated by Eq. (75) and is discussed in Sect. III A and
Sect. III E 2.

Although the analysis of hydrodynamic fluctuations in
this paper was limited to conformal neutral fluids and a
Bjorken expansion, the techniques developed here can be
applied to much more general flows. A next step is to gen-
eralize the kinetic equations in Eq. (65) to an arbitrary
expansion, and to couple such generalized equations to
existing second order hydrodynamic codes. In addition,
it will be phenomenologically important to extend this
work to non-conformal systems with net baryon num-
ber. Near the QCD critical point the noise will continue
to grow without bound, leading to a critical renormal-
ization of the bulk viscosity. In an expanding system
these fluctuations will not be fully equilibrated. We be-
lieve the formalism set up in this paper provides the first
steps towards quantitatively analyzing this rich dynami-
cal regime.
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Appendix A: Computation of finite residual
contributions

In this appendix we provide the details of the com-
putation sketched in Sect. III D for the residual out of
equilibrium noise contribution to the energy momentum
tensor for a Bjorken background. Let us scale the corre-
lation density matrix by the equilibrium value:

RAA(τ,k) ≡ NAA(τ,k)

T (e0 + p0)/τ
. (A1)

The kinetic equations of motion Eq. (65) written for rel-
ative density matrix RAA are

∂τR±± = −4

3
γηK

2 (R±± − 1) +
c2s − cos2 θK

τ
R±±,

(A2)

∂τRT1T1
= −2γηK

2 (RT1T1
− 1) +

2c2s
τ
RT1T1

, (A3)

∂τRT2T2
= −2γηK

2 (RT2T2
− 1) +

2(c2s − sin2 θK)

τ
RT2T2

.

(A4)

Using dimensionless variables t ≡ τ ′/τ and ~r ≡ ~K/k∗
with ~K = (~k⊥, κ/τ) and k∗ = 1/(γητ)1/2 defined at τ ,
the Green functions for the homogeneous parts are

G±±(τ ′, τ ;k) =
1

tc
2
s

1√
A(t, θK)

exp

[
−4

3
r2B(t, θK)

]
,

(A5)

GT1T1(τ ′, τ ;k) =
1

t2c
2
s

exp
[
−2r2B(t, θK)

]
, (A6)

GT2T2(τ ′, τ ;k) = t2−2c2sA(t, θK) exp
[
−2r2B(t, θK)

]
,

(A7)

where

A(t, θK) ≡ sin2 θK +
cos2 θK
t2

, (A8)

B(t, θK) ≡ sin2 θK
1 + c2s

(
1− t1+c2s

)
+

cos2 θK
1− c2s

(
1

t1−c2s
− 1

)
.

(A9)

With these Green functions, RAA due to thermal fluc-
tuations (in contrast to initial fluctuations discussed in
Sect. III A) is given by

R++(τ,k) =

∫ τ

τ0

dτ ′
4

3
γη(τ ′)

(
k2
⊥ +

κ2

τ ′2

)
G++(τ ′, τ ;k),

(A10)

and similarly for the other modes (change 4/3 to 2 for
the transverse modes). Since the asymptotic solution of
RAA for large K is known, we define the remainder of

RAA as:

R
(r)
±±(τ,k) ≡ R±±(τ,k)−

(
1 +

c2s − cos2 θK
4
3γηK

2τ

)
, (A11)

R
(r)
T1T1

(τ,k) ≡ RT1T1
(τ,k)−

(
1 +

c2s
γηK2τ

)
, (A12)

R
(r)
T2T2

(τ,k) ≡ RT2T2
(τ,k)−

(
1 +

c2s − sin2 θK
γηK2τ

)
.

(A13)

Using R
(r)
AA the residual contribution to the energy-

momentum tensor is calculated from Eq. (67a) and
Eq. (68) as

∆T xx = T

∫
d3K

(2π)3


R

(r)
++ +R

(r)
−−

2
sin2 θK cos2 ϕK

+R
(r)
T1T1

sin2 ϕK

+R
(r)
T2T2

cos2 θK cos2 ϕK

 ,
(A14)

∆T yy = T

∫
d3K

(2π)3


R

(r)
++ +R

(r)
−−

2
sin2 θK sin2 ϕK

+R
(r)
T1T1

cos2 ϕK

+R
(r)
T2T2

cos2 θK sin2 ϕK

 ,
(A15)

τ2∆T ηη = T

∫
d3K

(2π)3

 R
(r)
++ +R

(r)
−−

2
cos2 θK

+R
(r)
T2T2

sin2 θK

 , (A16)

∆T ττ = ∆T xx + ∆T yy + τ2∆T ηη. (A17)

Substituting the subtracted solution R
(r)
AA into (A14)-

(A17) and performing r integration with a Gaussian cut-
off exp[−r2k2

∗/Λ
2], we get[

τ2∆T ηη(τ)
]

T (τ)k3∗
=

3
√
π

8

∫ 1

−1

d(cos θK)

4π2

∫ 1

τ0/τ→0

dt

×

(
4
3 cos2 θK

√
A(t, θK)[

4
3B(t, θK) + k2∗/Λ2

]5/2 +
2t2−c

2
s0 sin2 θKA(t, θK)2

[2B(t, θK) + k2∗/Λ2]
5/2

)
−
[
O(Λ3) +O(Λ)

]
, (A18)

[∆T xx(τ) + ∆T yy(τ)]

T (τ)k3∗
=

3
√
π

8

∫ 1

−1

d(cos θK)

4π2

∫ 1

τ0/τ

dt

×

(
4
3 sin2 θK

√
A(t, θK)[

4
3B(t, θK) + k2∗/Λ2

]5/2
+

2t2−c
2
s cos2 θKA(t, θK)2 + 2t−c

2
sA(t, θK)

[2B(t, θK) + k2∗/Λ2]
5/2

)
−
[
O(Λ3) +O(Λ)

]
(A19)
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R
(r)
AA (4π)−3/2

∫
d3rR

(r)
AA (4π)−3/2

∫
d3r cos2 θKR

(r)
AA

R
(r)
±± −0.439511 0.021281

R
(r)
T1T1

− π

3
√
6
≈ −0.427517 −0.467513

R
(r)
T2T2

1.402539 0.340636

TABLE I. Numerical values of finite pieces of regularized

R
(r)
AA integrals for energy momentum tensor corrections. For

the special case of
∫
d3rR

(r)
T1T1

the remaining one dimensional
time integral can be done analytically.

The ultraviolet divergent terms O(Λ3,Λ) are from the
asymptotic form of RAA at large K in (A11)-(A13). Near
t = 1, B(t, θK) ' 1 − t and the cutoff Λ regulates the
divergence in time integral. To isolate the divergences,
we perform the partial integration twice and pick up

cubic and linear divergences from the surface terms at
t = 1. The resultant divergences are precisely canceled
by O(Λ3,Λ) terms.

After subtracting the ultraviolet divergences at t = 1
and doing cos θK integral analytically, the remaining time

integration has to be done numerically. R
(r)
T1T1

mode
contribution to T xx and T yy is divergent in the limit
τ � τ0. Since the analytic behavior of the integrand
around t ∼ 0 is known, we can explicitly subtract the
part sensitive to early times from the integrand to ex-

tract remaining finite pieces for R
(r)
T1T1

mode. Numerical
integration results necessary to find finite stress tensor
corrections in Eqs. (A14)-(A16) are summarized in Table
I. Summing contributions from the different modes to the
longitudinal and transverse components of energy mo-
mentum tensor gives the numerical coefficients 1.08318
and −0.273836 as seen in Eq. (74).
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