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In simulations of high energy heavy ion collisions that employ viscous hydrodynamics, single
particle distributions are distorted from their thermal equilibrium form due to gradients in the flow
velocity. These are closely related to the formulas for the shear and bulk viscosities in the quasi-
particle approximation. Distorted single particle distributions are now commonly used to calculate
the emission of photons and dilepton pairs, and in the late stage to calculate the conversion of a
continuous fluid to individual particles. We show how distortions of the single particle distribution
functions due to both shear and bulk viscous effects can be done rigorously in the quasi-particle
approximation and illustrate it with the linear σ model at finite temperature.

I. INTRODUCTION

A standard theoretical calculation of a high energy
heavy ion collision at the Relativistic Heavy Ion Collider
(RHIC) or Large Hadron Collider (LHC) proceeds as fol-
lows. A model is chosen for a description of the state of
matter soon after impact, typically after a few tenths to
one fm/c in proper time. This provides the initial condi-
tion for the subsequent hydrodynamic evolution. When
the system becomes sufficiently dilute, typically when
the local temperature falls to somewhere in the range
120 < T < 150 MeV, the continuous fluid is converted
into individual hadrons using the so-called Cooper-Frye
formula. Sometimes this is the final predicted spectrum
of hadrons, and sometimes this is followed by an after-
burner which allows the hadrons to scatter until they
ultimately fly off to the detectors. For a good overview
of the field see the proceedings of the series of Quark
Matter meetings, the most recent ones being [1, 2].

Departures from the local equilibrium distribution f eqa
for particle species a with momentum p are expressed in
terms of the function φa as

fa = f eqa (1 + φa) . (1)

In the local rest frame

φa = −Aa∇ · v + Cap
ipj
(
∂ivj + ∂jvi + 2

3δij∇ · v
)

= −Aa∇ · v + 2Cap
ipj
(
∂ivj + 1

3δij∇ · v
)
. (2)

The local fluid velocity v depends on space and time
while the two scalar functions Aa and Ca depend on the
momentum of the particle. (Note that here and through-
out we assume zero baryon chemical potential.) The
functions Aa are associated with bulk viscosity and the
functions Ca are associated with shear viscosity. The out
of equilibrium distribution functions are frequently used
nowadays to calculate a number of observables, such as
hadron spectra and elliptic flow [3] and photon and dilep-
ton production [4]. The lowest order approximation is to
assume that Ca is independent of momentum and parti-
cle species [5] and was introduced into the field of heavy

ion collisions in [3]. For independent particles it results
in the expression

Ca =
η/s

2T 3
, (3)

where η is the shear viscosity and s is the entropy density.
One also assumes all Aa = 0. An exploratory study
to go beyond the assumption that Ca is independent of
momentum and particle species was reported in [6]. The
effects of Aa 6= 0 on photon production was reported in
[7] under the simplying assumptions of equal relaxation
times for all particles.

In this paper we study more accurate expressions for
the functions Aa and Ca, especially their dependence on
momentum and on particle species. This is particularly
important if one wants to learn more about the transport
properties of high temperature matter from experimen-
tal data as mentioned above. Our study is limited to
quasi-particle models; the linear σ model is used to illus-
trate the magnitude of numerical departures from eq. (3)
and from Aa = 0. Results for resonance gas models, use
of the more sophisticated Chapman-Enskog approxima-
tion, and inclusion of chemical potentials are postponed
to future work. Section II studies shear effects, section
III studies bulk effects, and conclusions are presented in
section IV. Throughout the paper we use the notation,
derivations, and results of [8].

II. SHEAR VISCOSITY

In quasi-particle models, which may include mean
fields affecting the effective, temperature-dependent
masses m̄a(T ), the shear viscosity is expressed in terms
of the functions Ca as

η =
2

15

∑
a

∫
d3p

(2π)3
|p|4

Ea
f eqa (Ea/T )Ca(Ea) (4)

where Ea =
√
p2 + m̄2

a(T ). In quasi-particle models
there is a mean field but the expression for the en-



2

0 5 10 15 20

p/T

0

5

10

15

20

25

30

τ
T

π T = 120 MeV

σ m
σ
 = 600 MeV

0 5 10 15 20

p/T

0

1

2

3

4

5

6

7

8

9

10

τ
T

π T = 120 MeV

σ m
σ
 = 900 MeV

0 5 10 15

p/T

0

5

10

15

20

τ
T

π T = 150 MeV

σ m
σ
 = 600 MeV

0 5 10 15

p/T

0

1

2

3

4

5

6

τ
T

π T = 150 MeV

σ m
σ
 = 900 MeV

FIG. 1. Relaxation times τπ and τσ in the linear σ model for the indicated values of the vacuum σ mass and temperature.

tropy density has the same form as for non-interacting
particles, with vacuum masses replaced by temperature-
dependent masses. Specifically, the pressure is P =
P0 − V and the energy density is ε = ε0 + V , where the
subscript 0 refers to free particle formulas with vacuum
masses replaced by temperature-dependent masses, and
V is the potential energy density. Thus Ts = P + ε =
P0 + ε0 = Ts0. If one assumes that all Ca ≡ C are
independent of species and momentum, then it can be
factored out of the integral with the result that

η = 2T 3sC , (5)

which is the same as eq. (3).
In the momentum-dependent relaxation time approxi-

mation, we have

Ca =
τa(Ea)

2TEa
, (6)

where τa(Ea) is the relaxation time for particles of species
a. From eqs. (4) and (6) one sees that the particle species
a will make a significant contribution to the shear viscos-
ity if it has a large relaxation time and has a small mass.

Physically it means that such a particle can transport en-
ergy and momentum over a large distance and that they
are relatively abundant.

As an illustration we use the linear σ model as in [8].
Figure 1 shows the relaxation times for the pion and σ
meson for mσ = 600 and 900 MeV, and for T = 120 and
150 MeV, as functions of the momentum. The pion has
a shorter relaxation time which is not surprising. The
relaxation times increase with momentum which is not
surprising either.

Figure 2 shows the resulting functions Cπ and Cσ as
well as η/s, which is calculated in the σ model. The main
points are (i) that Cσ is significantly larger than Cπ, and
(ii) they both depend on momentum. They are certainly
not constants which are equal to each other. Despite the
fact that Cσ > Cπ the shear viscosity is almost entirely
determined by the pion because the σ contribution is
exponentially suppressed by the Boltzman factor. It is
easy to imagine from Fig. 2 that integrating 2T 3Cπ with
the weighting in eq. (4) would give essentially the same
result as integrating the momentum-independent η/s.
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FIG. 2. The shear functions Cπ and Cσ in the linear σ model for the indicated values of the vacuum σ mass and temperature.

III. BULK VISCOSITY

The expression for the bulk viscosity is

ζ =
1

3

∑
a

∫
d3p

(2π)3
|p|2

Ea
f eqa (Ea/T )Aa(Ea) . (7)

The Chapman-Enskog equation, which is an integral
equation that determines the Aa in quasi-particle models,
does not have a unique solution. Starting with one set of
solutions Aa(Ea) we can generate an infinite number of
other solutions by making the shift Aa(Ea)→ A′

a(Ea) =
Aa(Ea)−bEa, where b is an arbitrary constant. This con-
stant is associated with energy conservation. Among the
infinite number of solutions Aa(Ea) one must choose that
one which satisfies the Landa-Lifshitz condition, which
means that v represents the velocity of energy flow. (The
Eckart condition means that v represents the velocity of
baryon flow, which is obviously undefined if the system
has zero net baryon number.) This requirement is some-
times called the condition of fit. If one has a particular

solution Apar
a (Ea) then the condition of fit is∑

a

∫
d3p

(2π)3Ea
f eqa

[
E2
a − T 2 dm̄

2
a

dT 2

]
[Apar
a (Ea)− bEa] = 0 .

(8)
With some manipulation the constant b can be shown to
be

b =
v2s
T 2s

∑
a

∫
d3p

(2π)3Ea
f eqa

[
E2
a − T 2 dm̄

2
a

dT 2

]
Apar
a (Ea) ,

(9)
where vs is the speed of sound. If Apar

a (Ea) satisfies the
condition of fit then b = 0. In general though

ζ =
1

3

∑
a

∫
d3p

(2π)3Ea
f eqa A

par
a (Ea)

×
[
|p|2 − 3v2s

(
E2
a − T 2 dm̄

2
a

dT 2

)]
. (10)

A particular, approximate, solution in the relaxation
time approximation is

Apar
a (Ea) =

τa(Ea)

3TEa

[
|p|2 − 3v2s

(
E2
a − T 2 dm̄

2
a

dT 2

)]
.

(11)
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FIG. 3. The bulk functions Aπ and Aσ in the linear σ model for the indicated values of the vacuum σ mass and temperature.

Substitution of eq. (11) into eq. (10) guarantees that
the bulk viscosity is positive; see also [9, 10]. In the
relaxation time approximation the function that should
appear in eq. (2) is the one which satisfies the condition
of fit

Aa(Ea) =
τa(Ea)

3TEa

[
|p|2 − 3v2s

(
E2
a − T 2 dm̄

2
a

dT 2

)]
− bEa .

(12)
In the first approximation one expects that the bulk

viscosity is very small except near a phase transition or
rapid crossover [11]. Thus the default Aa = 0 as men-
tioned earlier.

In the next approximation one might consider all Aa
to be equal and independent of momentum, just as in the
shear case. Substitution into eq. (7) yields

A =
ζ

P0
. (13)

However, this does not satisfy the condition of fit. Sub-
stitution into eq. (10) leads instead to

A =
ζ

P0 − v2s(ε0 + TdV/dT )
. (14)

The denominator is in general very close to zero, and
could be positive or negative or even vanish at some tem-
perature. For a nonrelativistic gas with V = 0 it is nega-
tive. To our knowledge this approximation has not been
used in the literature.

Reference [7] assumed that all particles had the same
momentum-independent relaxation time τR. Let us also
assume that the masses are temperature-independent.
Then it is easily shown that b = 0 so that

Aa(Ea) =
τR

3TEa

[
|p|2 − 3v2sE

2
a

]
. (15)

This expression is on the right track since the condition
of fit is satisfied, but it is generally invalid (b is not zero)
when either of the assumptions are not met.

Figure 3 shows Aπ and Aσ as functions of momentum
in the linear σ model for the same combinations of mσ

and T as in previous figures. The dependence on momen-
tum is quite strong. Enforcing the condition of fit (b 6= 0)
results in only a minor modification of the numerical re-
sults. This feature may not hold in more realistic models
when a single species, in this case the pion, does not
dominate the behavior of the viscosities.
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IV. CONCLUSION

In this paper we studied the applicability of the oft-
used approximation embodied in eq. (3) to high energy
heavy ion collisions. For illustrative purposes we used the
linear σ model with only pions and σ mesons. We showed
how the shear functions Ca depend on momentum, and
that their magnitudes vary from one particle species to
another by factors of 2 or 3. We also showed that the bulk
functions Aa have a strong dependence on momentum,
and differ even more widely among particle species than
the shear functions. Use of eq. (3) along with Aa = 0 is
a rough first approximation to the physics, but for pre-
cision studies one must go beyond that. For precision
one should calculate the shear and bulk functions using
the same particle species and same interactions which
are used in the equation of state at the time of conver-
sion from fluid to hadrons, and which are coded in the
hadronic cascade (if an afterburner is used).

In future work we intend to compare results obtained
from the Chapman-Enskog integral equations with those
in the relaxation time approximation. A comparison of

those approaches was performed in [12] for elastic π − π
collisions using various forms of the cross section, but
only the resulting shear viscosities were calculated and
the departure functions were not presented. In [13] a res-
onance gas was considered with K-matrix cross sections,
but again the focus was on the shear viscosity without
presenting the corresponding departure functions. Ref-
erence [14] calculated the departure function of pions to
second order in gradients of the flow velocity with an
energy-independent relaxation time determined by the
ratio η/s. Of course, one should include the usual list of
all hadrons and resonances, with or without the inclusion
of mean fields. (The papers cited above did not include
mean fields nor did they include the effects of bulk vis-
cosity.) Finally, nonzero chemical potentials can readily
be accomodated as in [15].
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