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Collective behaviour has been observed in hadronic measurements of high multiplicity proton+lead
collisions at the Large Hadron Collider (LHC), as well as in (proton, deuteron, helium-3)+gold col-
lisions at the Relativistic Heavy-Ion Collider (RHIC). To better understand the evolution dynamics
and the properties of the matter created in these small systems, a systematic study of the soft
hadronic observables together with electromagnetic radiation from these collisions is performed, us-
ing a hydrodynamic framework. Quantitative agreement is found between theoretical calculations
and existing experimental hadronic observables. The validity of the fluid dynamical description
is estimated by calculating Knudsen and inverse Reynolds numbers. Sizeable thermal yields are
predicted for low pT photons. Further predictions of higher order charged hadron anisotropic flow
coefficients and of thermal photon enhancement are proposed.

PACS numbers: 12.38.Mh, 47.75.+f, 47.10.ad, 11.25.Hf

I. INTRODUCTION

High energy nucleus-nucleus collision experiments con-
ducted at the Relativistic Heavy-ion Collider (RHIC) and
the Large Hadron Collider (LHC) probe QCD (Quantum
Chromodynamics) under extreme conditions and create
a novel state of matter: the quark-gluon plasma (QGP).
This QGP has been found to be strongly-coupled and
to exhibit striking collective behaviour. Relativistic hy-
drodynamics has been a successful effective theory which
provides a quantitative description of this collectivity. In
fact, a program of quantitative comparison between the-
ory and experiment now offers the genuine prospect of
being able to even extract transport properties of the
QGP, as well as to set strong constraints on properties
of the initial state [1].

More specifically, some recent measurements have
shown evidence of collectivity in the high multiplicity
events of small collision systems such as p+Pb, (p, d,
3He)+Au collisions, at RHIC and LHC energies [2–7].
These measurements suggest the creation of hot and
strongly-coupled QGP droplets within a reaction zone of
merely a few fm in size, suggesting that the mechanism
responsible for the rapid approach to local equilibrium of
plasma produced in heavy ion collisions may also operate
in such collisions. Because the hydrodynamic description
relies on well-separated distance/time scales between mi-
croscopic and macroscopic physics, the dynamics of these
small collision systems appears to challenge the very va-
lidity of the fluid dynamical approach. The origin of these
collective features is therefore actively investigated, and
one would like to elucidate whether they are inherited
from properties of the initial state [8–11], or appear dur-
ing the collective expansion [12–18].

In order to unveil the dynamics in these small sys-
tems, one must investigate multiple aspects of experi-
mental observables within a consistent framework. A
complete slate of measurements could include hadronic
anisotropic flow [17–19], the mass ordering of identified

particle v2 [5, 20], particle interferometry [21, 22], as well
as penetrating probes such as QCD jets [23] and direct
real and virtual photons [24]. This last observable, radi-
ated throughout the dynamical evolution of the hot ex-
panding medium and suffering from negligible final state
interactions, is a particularly valuable probe since the
local properties of the fluid at the photon’s production
point can be directly carried to the detectors. Current
experiments are able to isolate low-energy direct pho-
tons pT . 1 GeV. Those photons are thus penetrating
and soft: they enjoy a unique status among all the ob-
servables measured in hadronic collisions.

In this paper, we build on previous work [24] by per-
forming detailed comparisons with various hadronic mea-
surements of high multiplicity p+Pb collisions at 5.02
TeV. A microscopic transport stage is employed to de-
scribe the out-of-equilibrium dynamics of the collision
systems in the dilute hadronic phase. Its effect on
hadronic observables in small systems is quantified. Sys-
tematic studies of hadronic and direct photon observables
in (p, d, 3He)+Au collisions at the top RHIC energy are
also presented within the same theoretical framework.

The rest of the paper is organized as follows. A descrip-
tion of the components of the hydrodynamical modelling,
together with the choice of parameters, appear in Sec. II.
A variety of collective signals involving soft hadronic ob-
servables are compared with existing experimental mea-
surements in Sec. III. In Sec. IV, direct photon produc-
tion from the small collision systems is studied in detail.
The electromagnetic tomography and the viscous correc-
tions to photon observables are discussed. Final remarks
and conclusions appear in Sec. V.

II. HYDRODYNAMIC MODELLING

In this work, all the collision systems are numerically
simulated using an hydrodynamics + hadronic cascade
framework [25]. Fluctuating initial conditions in the
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transverse plane are generated using the Monte-Carlo-
Glauber (MC-Glauber) model. The nucleon spatial con-
figurations inside the heavy nuclei are sampled consid-
ering realistic repulsive 2-body nucleon-nucleon correla-
tions [26]. For the light nuclei, the spatial topography
of the deuteron’s two-nucleon system is obtained from
sampling the Hulthen wavefunction [27], and fluctuating
3He configurations come from results of Green’s function
Monte Carlo calculations using the AV18+UIX model in-
teraction [28]. Multiplicity fluctuations in every binary
collision are randomly-sampled from a Γ-distribution at
the wounded nucleon positions. The shape and scale
parameters in the Γ-distribution are chosen to repro-
duce the multiplicity distribution measured in pp col-
lisions at the same collision energy [25]. The inclusion
of such multiplicity fluctuation was shown to be essen-
tial to reproduce the measured high multiplicity tail of
the charged hadron yield distributions in small colli-
sion systems [17, 19, 25, 29]. In order to simulate ef-
ficiently high multiplicity events, centrality selection is
determined by sorting minimum bias events according to
their initial total entropy at mid-rapidity, dS/dηs|ηs=0,
where ηs = 1

2 log t+z
t−z is the space-time rapidity. Trigger-

ing on initial total entropy of the system was shown to
be a good approximation to determining centrality ac-
cording to final charged hadron multiplicity, as done in
experiments [30].

Starting from τ0 = 0.6 fm/c, an individual fluctuating
entropy density profile is then evolved using a (2+1)D
viscous hydrodynamics, VISH2+1, with a lattice-QCD
based equation of state (EoS), s95p-v1.2 [31]. The effect
of the longitudinal dynamics of the system is also investi-
gated using (3+1)D viscous hydrodynamics [32]. Second
order non-linear terms are included in the evolution of
the shear stress tensor [33],

τππ̇
〈µν〉 + πµν =2ησµν − δπππµνθ + φ7π

〈µ
α π

ν〉α

−τπππ〈µα σν〉α. (1)

The transport coefficients, τπ, δππ, φ7, and τππ are fixed
using formulae derived from the Boltzmann equation
near the conformal limit [34]. An effective specific shear
viscosity η/s = 0.08 is chosen for the collisions at the top
RHIC energy and a slightly larger value η/s = 0.10 is
used for p+Pb collisions at 5.02 TeV. With these choices
of η/s, the simulated results can reproduce the measured
charged hadron anisotropic flow coefficients, v2,3, in cen-
tral collisions fairly well, as will be shown in Figs. 5
and 6. The hydrodynamic description is switched to a
microscopic hadronic cascade, UrQMD v3.4 [35, 36], at
Tsw = 155 MeV as the collision system becomes more
dilute and out-of-equilibrium.

The equation of state (EoS) s95p-v1.2, fitted to lat-
tice calculations at high temperature is matched in the
confinement region to a hadron resonance gas which com-
prises the same hadronic content implemented in UrQMD

v3.4 1. In this way, the total energy of system is ensured
to remain the same during the conversion from fluid cells
into hadrons. The value of Tsw is fixed to reproduce the
correct p to π ratio measured in 0−20% d+Au collisions
[37].

At the end of hadronic scatterings and resonance de-
cays, the particle spectra and flow observables of stable
particles are analyzed.

The anisotropic flow coefficients of particle of interests
are evaluated using the scalar-product method [38],

vn{SP} =
〈vn(pT )vrefn cos[n(Ψn(pT )−Ψref

n )]〉√
〈(vrefn )2〉

. (2)

For hadronic flow, we choose vn of charged hadrons in-
tegrated from pT = 0.3 to 3 GeV as the reference flow
vector for p+Pb collisions at 5.02 TeV to compare with
the CMS data [3]. The vrefn is set to vchn integrated from
pT = 0.2 to 2 GeV for (p, d, 3He)+Au collisions at the
top RHIC energy, in line with PHENIX measurements.

To accumulate enough statistics for the hadronic and
direct photon observables, we evolve 300 fluctuating
events through hydrodynamics for every centrality class
presented in this paper. Then 2000 hadronic cascade
runs are simulated for each hydrodynamic event. Finally,
these 2000 “oversampled” events from the same hydrody-
namic event are combined in the hadronic flow analysis.

III. COLLECTIVITY IN SMALL SYSTEMS

In this section, the collective behavior of hadronic ob-
servables is explored, for small collision systems at RHIC
and LHC energies.

A. Prelude: The effect of broken longitudinal
boost-invariance

Light-heavy nuclei collisions are asymmetric: boost-
invariance in the longitudinal direction is explicitly bro-
ken. This study starts by quantifying the effects of
longitudinal boost-non-invariance in small systems on
hadronic and photon flow observables, at mid-rapidity.

To model these collisions in three dimensions, we ex-
tend the MC-Glauber initial energy density profiles in the
longitudinal direction with the following envelope func-

1 There are 305 hadronic species in total, up to 2.25 GeV in their
mass, included in the hadron resonance gas phase in s95p-v1.2
and UrQMD v3.4. Please see http://urqmd.org/itypes.html

for details.

http://urqmd.org/itypes.html
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FIG. 1. (Color online) Pseudorapidity dependence of charged hadron multiplicity for central p+Pb collisions at 5.02 TeV (panel
(a)) and d+Au collisions at 200 GeV (panel (b)) for (2 + 1)D and (3 + 1)D hydrodynamics, compared with ATLAS [39] and
STAR [40] measurements. The shaded bands represent statistical uncertainty.
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FIG. 2. (Color online) Charged hadron anisotropic flow coefficients v2,3{2} as a function of particle’s pseudorapidity in central
p+Pb collisions at 5.02 TeV (panel (a)) and d+Au collisions at 200 GeV (panel (b)) for (2 + 1)D (points) and (3 + 1)D (lines)
hydrodynamics. The shaded bands represent statistical uncertainty.

tions [17]:

e(x⊥, η) = fL(η)

N left
part∑
i=1

exp

(
− (x⊥ − xi)

2

2σ2

)
+ fR(η)

Nright
part∑
i=1

exp

(
− (x⊥ − xi)

2

2σ2

) , (3)

where the envelope function fL,R(η) is given by

fL,R(η) =

(
1± η

ηmax

)
×
[
θ(|η| − η0) exp

(
− (η − η0)2

2σ2
η

)
+ θ(η0 − |η|)

]
(4)

Here, ηmax = ybeam, the beam rapidity. The parame-
ters, η0 and ση, are fixed such that the measured pseudo-

rapidity dependence of charged hadron multiplicity is re-
produced.

The full (3+1)D hydrodynamic equations are solved
with MUSIC [32]. The transport parameters in the hydro-
dynamic simulation and transition to the hadronic cas-
cade are the same as those in the (2+1)D simulations.

Figs. 1 and 2 show the pseudo-rapidity dependence of
charged hadrons multiplicity and their anisotropic flow
coefficients in central p+Pb collisions at 5.02 TeV and
central d+Au collisions at 200 GeV. The η-dependence
in charged hadron yields is quite strong in these highly
asymmetric collision systems. The results from boost-
invariant simulations are indicated as the green dashed
lines, within a pseudo-rapidity |η| < 1 interval. Although
dN ch/dη is a symmetric function in η for the (2+1)D sim-
ulations, the integrated dN ch/dη||η|<0.5 still agrees well
with the full (3+1)D simulations.



4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT (GeV)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

d
N
/
(2
π
d
yp

T
d
p
T
) 

(G
e
V
−

2
)

0-20% d+Au @ RHIC
|y| < 0.5

(a)

π +  (3+1)D

K +  (3+1)D

p (3+1)D

π +  (2+1)D

K +  (2+1)D

p (2+1)D

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT (GeV)

0.00

0.04

0.08

0.12

0.16

0.20

v
ch n

{ S
P
} 0-5% d+Au

@ 200 GeV

|η|< 0. 5

(b)

(3+1)D v2

(3+1)D v3

(2+1)D v2

(2+1)D v3

FIG. 3. (Color online) Comparisons of mid-rapidity identified particle spectra and charged hadron pT -differential v2,3{SP}(pT )
between (2+1)D simulations assuming longitudinal boost-invariance and full (3+1)D calculations for central d+Au collisions
at 200 GeV. The shaded bands represent statistical uncertainty.
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FIG. 4. (Color online) Comparisons of direct photon spectra and anisotropic flow coefficients at y = 0 between (2+1)D
simulations assuming longitudinal boost-invariance and full (3+1)D calculations for d+Au collisions at 200 GeV. The shaded
bands represent statistical uncertainty.

Fig. 2 compares the pseudo-rapidity dependence of
charged hadron vn of (2+1)D and (3+1)D simulations,
in both central p+Pb collisions and central d+Au col-
lisions. The momentum anisotropy is relatively flat in
the mid-rapidity region, |η| < 1 and the (2+1)D results
(indicated by the circle and triangle markers) agree quite
well with the full (3+1)D simulations.

Fig. 3 features the pT -differential particle spectra and
charged hadron vn(pT ), as obtained with (2+1)D and
(3+1)D simulations at mid-rapidity. The hadronic ob-
servables computed with (2+1)D simulations serve as
a good approximation to the (3+1)D results at mid-
rapidity, even in these highly asymmetric systems.

We postpone a discussion of photon observables un-
til Section IV, but it suffices to say here that thermal
photons are sensitive to the entire evolution history of
the medium than hadronic observables. In Figs. 4, the

thermal photon spectra and the anisotropic flow coeffi-
cients are shown, for (2+1)D and (3+1)D simulations, for
photons at mid-rapidity. Calculations show that boost-
invariance is still a very good approximation for thermal
photon production at mid-rapidity in d+Au collisions
at RHIC. We verified that similar results were found in
p+Pb collisions at LHC energy.

B. Hadronic flow observables

As shown in the previous subsection, boost-invariance
is still a good approximation for mid-rapidity observables
in asymmetric systems. We shall thus henceforth con-
duct our systematic study using boost-invariant condi-
tions. All hadronic flow observables are computed for
pseudo-rapidity |η| < 0.5.
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FIG. 5. (Color online) Identified particle averaged transverse momentum (a), and charged hadron anisotropic flow coefficients
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Collision system dNch

dη

∣∣
|η|<0.5

〈pT 〉(π+) (GeV) 〈pT 〉(K+) (GeV) 〈pT 〉(p) (GeV) vch
2 {2} vch

3 {2}

0-5% p+Au @ 200 GeV 11.8(1) 0.52(1) 0.72(2) 0.98(3) 0.037(1) 0.0091(3)

0-5% d+Au @ 200 GeV 17.7(1) 0.50(1) 0.70(1) 0.95(2) 0.054(1) 0.0114(4)

0-5% 3He+Au @ 200 GeV 22.9(1) 0.49(1) 0.69(1) 0.93(2) 0.059(1) 0.0116(4)

TABLE I. Integrated observables of hadronic particle production and their anisotropic flow coefficients in (p, d, 3He)+Au
collisions at 200 GeV. The statistical uncertainty on the last digit is indicated in parentheses.

We start our comparisons with integrated hadronic ob-
servables. Because it is difficult to estimate the number
of particle tracks detected in the CMS experiments with
our theoretical model, we use the conversion table (Table
1) in Ref. [3] to map our calculations in different central-
ity bins to the experimental measurements. As shown in
Fig. 5, quantitative agreement is achieved between our
hydrodynamic simulations, the measured identified par-
ticle averaged transverse momentum (〈pT 〉) and charged
hadron anisotropic flow coefficients, v2,3{2} in top 20%
p+Pb collisions at 5.02 TeV. The proton 〈pT 〉 appears
slightly underestimated but nevertheless falls within ex-
perimental uncertainties. The multiplicity dependence of
these global observables is well reproduced by our ap-
proach. Our hybrid results start to overestimate the
charged hadron v2{2} by about 15% in the lower mul-
tiplicity events. We expect the particle production from
initial state scatterings to be more important in these low
multiplicity events. Modelling these collisions require us
to study the interplay between initial and final state pro-
duction mechanisms. We leave this for future work.

The effect of the hadronic afterburner is also high-
lighted in the same figures, with the solid lines includ-
ing the effect of hadronic rescattering with UrQMD, and
the dashed line including only hadronic decays, but no
rescattering. The proton 〈pT 〉 is found to have a small
but visible increase with the additional hadronic scatter-

ing, but the actual increase is much smaller than in the
case of Au+Au and Pb+Pb collisions [41]. The trans-
port phase helps the small system to further develop a
few percent of anisotropic flow. This effect is more pro-
nounced in peripheral bins, where the fireball lifetime is
too short to convert all the system’s spatial eccentric-
ity into momentum anisotropy during the hydrodynamic
stage.

Predictions of the integrated hadronic observables in
0−5% (p, d, 3He)+Au collisions at 200 GeV are summa-
rized in Table I for future comparison. With respect to
p+Pb collisions at 5.02 TeV, the identified particle mean
〈pT 〉 are about 20% smaller at the top RHIC energy. This
is because the system lifetime is about 20% shorter com-
pared to the collisions at LHC energy. This limits the
development of radial flow during the hydrodynamic evo-
lution. Moreover, the pressure gradients are also smaller
at 200 GeV, which translates into a smaller expansion
rate. These two factors yield anisotropic flow coefficients
about 50% smaller in p+Au collisions at RHIC than in
p+Pb collisions at 5.02 TeV. The elliptic flow coefficients
in d+Au and 3He+Au collisions, on the other hand, are
comparable with the v2{2} in p+Pb collisions because of
larger initial eccentricities in these systems.

Now, we take a closer look at pT -differential observ-
ables. The charged hadron anisotropic flow coefficients,
v2,3{SP}(pT ), are compared with experimental measure-
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ments in Fig. 6 and Fig. 7 for small collision systems at
RHIC and LHC energies, respectively. At the top RHIC
energy, our hybrid approach with η/s = 0.08 for T > 155
MeV successfully provides a consistent description of the
PHENIX anisotropic flow measurements in 0−5% p+Au,
d+Au, and 3He+Au collisions. Hadronic rescattering
from the transport phase is found to increases the high
pT charged hadron vn{SP} and improves the agreement
with experimental data. Prediction of pT -differential tri-
angular flow v3{SP}(pT ) in p+Au and d+Au collisions
are shown for future comparison. In Fig. 7, a same level of
agreement for charged hadron v2,3{SP}(pT ) is achieved in
the top 2% p+Pb collisions at 5.02 TeV with an effective
η/s = 0.10 for T > 155 MeV. The effect of the hadronic
cascade lessens as the collision energy is increased. This
is because the larger pressure gradients at higher colli-
sion energy drive the system to develop hydrodynamic

radial flow faster. Most of the spatial eccentricity has
already been converted to momentum anisotropy before
switching to hadronic transport.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT (GeV)

10-5

10-4

10-3

10-2

10-1

100

101
d
N
/(

2π
d
yp

T
d
p
T
) 

(G
e
V
−

2
)

0-20% d+Au @ RHIC

(a)

PHENIX data

π +

K + × 0. 5

p× 0. 2

with hadronic
rescatterings

without hadronic
rescatterings

0.0 0.5 1.0 1.5 2.0 2.5 3.0
pT (GeV)

10-5

10-4

10-3

10-2

10-1

100

101

d
N
/(

2π
d
yp

T
d
p
T
) 

(G
e
V
−

2
)

0-100% p+Pb @ 5.02 TeV

(b)

CMS data

π +

K + × 0. 5

p× 0. 2

with hadronic
rescatterings

without hadronic
rescatterings

FIG. 8. Identified particle spectra compared with experimen-
tal measurements in (a) 0-20% d+Au collisions at 200 GeV
[37] and (b) minimum bias p+Pb collisions at 5.02 TeV [3].
The shaded bands represent statistical uncertainty.



7

In Fig. 8, identified particle spectra are compared with
experimental measurements for 0-20% d+Au collisions
at 200 GeV and minimum bias p+Pb collisions at 5.02
TeV. In 0-20% d+Au collisions, our hybrid calculations
provide a reasonable description of the pion and proton
spectra up to 1.5 GeV. The yield of produced kaons over-
estimated the PHENIX measurements by about 30%.
This might suggest that the strange and anti-strange
quark production in the small collision systems is sup-
pressed compared to its chemical equilibrium value at
T = 155 MeV. Agreement with measurements at higher
pT may require the contribution from recombination with
jet shower partons, which is not considered here.

We note that the effect of hadronic rescattering, also
shown in Fig. 8, is very small for pions and kaons. The
proton spectrum at pT < 0.5 GeV is reduced due to
baryon anti-baryon annihilation in the transport phase.
The fact that the high pT region of proton spectra re-
mains the same suggests the hadronic rescatterings play
a minor role in the dilute gas phase. Hence, the observed
increase of the proton mean 〈pT 〉 observed earlier (Fig. 5)
owes mainly to baryon anti-baryon annihilation.

pT (GeV)
0.0

0.05

0.1

0.15

0.2

v 2
{ S

P
} 0-5%

d+Au @ 200 GeV

(a)

PHENIX π

PHENIX p

π

p

pT (GeV)

p+Pb@5.02 TeV
0-20%

(b)

ALICE π

ALICE p

0.0 0.5 1.0 1.5 2.0 2.5
pT (GeV)

0.0

0.05

0.1

0.15

0.2

v 2
{ S

P
}

0-5% p+Au@200 GeV

(c)

with hadronic
rescatterings

0.0 0.5 1.0 1.5 2.0 2.5
pT (GeV)

0-5% 3He+Au@200 GeV

(d)

without hadronic
rescatterings

FIG. 9. Identified pion and proton elliptic flow coefficients
compared with the PHENIX [5] and ALICE measurements
[20] in 0-5% d+Au collisions at 200 GeV (a) and 0-20% p+Pb
collisions at 5.02 TeV (b), respectively. Predictions of pion
and proton v2{SP} in top 5% p+Au and 3He+Au collisions
are shown in panels (c) and (d). The legends apply to all four
panels. The shaded bands represent statistical uncertainty.

The mass-ordering of hadronic flow coefficients has
long been considered a hallmark of fluid-dynamical be-
havior [43]. Alternative interpretations have however re-
cently appeared for asymmetric [44, 45] and even sym-
metric [46] heavy-ion collisions. In the current work,
mass ordering in the identified particle elliptic flow is
investigated in Fig. 9. The hydrodynamic model quan-
titatively produced the mass splitting between pion and

proton v2{SP}(pT ) measured in 0-5% d+Au collisions at
200 GeV and 0-20% p+Pb collisions at 5.02 TeV. Within
hydrodynamic framework, the larger difference between
pion and proton elliptic flow in p+Pb collisions at 5.02
TeV can be understood as the consequence of a stronger
radial flow blue shifts the proton v2 to high pT regions at
higher collision energy. The effect of hadronic rescatter-
ing is found to be small, implying that that most of the
mass splitting is developed in the hydrodynamic phase.
This suggests that a strongly-coupled QGP core in the
small collision systems can be at the origin of the mass
ordering in measured identified particle v2. Predictions
of pion and proton elliptic flow coefficients in p+Au and
3He+Au collisions are shown in Figs. 9c and 9d for future
comparison. The amount of mass splitting is found to be
similar for the three systems studied, at the top RHIC
energy.

IV. PHOTON RADIATION

A hot and rapidly expanding QGP droplet radiates
thermal photons. As shown in the previous section, the
hydrodynamic medium has been well calibrated to repro-
duce various aspects of hadronic observables in the small
collision systems. In this section, the significance of ther-
mal photon enhancement in the final measurable direct
photon signal is addressed. More specifically, only ther-
mal photon radiation from fluid cells whose temperature
is higher than the switching temperature, Tsw = 155 MeV
is considered. Since the number of hadrons and average
number of collisions per hadrons is small in p+A colli-
sions, photon emission in the late stage of the medium
is not expected to be large. An estimation of the contri-
butions from temperature below Tsw will be presented in
the next section.

The leading-order QGP photon emission rate [47] is
used for temperature larger than 180 MeV, and hadronic
photon production rates below. In the hot hadronic
phase, photon production through meson-meson scat-
tering [48], from (the imaginary part of) many-body ρ-
spectral function, from π−π bremsstrahlung [49–52], and
from π−ρ−ω reaction channels [53] are considered. Shear
viscous corrections to the 2 to 2 scattering processes in
the QGP phase [54] and to the meson-meson reactions
in the hadronic phase [55, 56] are included. Using the
fact that the shear stress tensor - πµν - is symmetric,
traceless, and orthogonal to the flow velocity, the photon
emission rates can be written as [54],

Eq
dΓ

d3k
(Eq, T, π

µν)

= Γ0(Eq, T ) + δΓ(Eq, T, π
µν)

= Γ0(Eq, T ) +
πµν q̂µq̂ν
2(e+ P )

χ

(
Eq
T

)
Γπ(Eq, T ), (5)

where Γ0(Eq, T ) and δΓ(Eq, T ) denote the equilibrium
rate and first order shear viscous correction, respectively.
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Collision system Centrality Ncoll Npart

p+Pb @ 5.02 TeV 0-1% 15.92(4) 16.92(4)

0-5% 14.47(2) 15.47(2)

0-20% 12.51(1) 13.51(1)

0-100% 6.50(1) 7.50(1)

p+Au @ 200 GeV 0-5% 10.28(1) 11.28(1)

0-20% 8.62(1) 9.62(1)

0-100% 4.66(1) 5.66(1)

d+Au @ 200 GeV 0-5% 18.48(2) 18.19(2)

0-20% 15.75(2) 15.40(1)

0-100% 7.90(2) 8.31(1)

3He+Au @ 200 GeV 0-5% 26.48(2) 25.35(2)

0-20% 22.67(1) 21.59(1)

0-100% 10.59(1) 10.88(1)

TABLE II. The averaged number of binary collisions Ncoll and
participant nucleons Npart in p+Pb collisions at 5.02 TeV and
(p, d, 3He)+Au collisions at 200 GeV. Statistical uncertainties
of the last digits are in parentheses.

Finally, decay photons from short-lived resonances that
can not be subtracted in the experimental cocktail back-
ground are included when computing the direct photon
observables [50, 56–58]. A detailed list and a discussion
of the non-cocktail decay channels that produce photons
can be found in Chapter 21 of Ref. [56]2.

A. Prompt photons

The photons produced by the very first nucleon-
nucleon collisions are the prompt photons. These are
evaluated with perturbative QCD at next-to-leading or-
der in αs [59–61], as in previous work [58, 62]. The isospin
effect is included to account for the different proton-to-
neutron ratio of each colliding ion. Cold nuclear effects
are taken into account with the nCTEQ15 nuclear par-
ton distribution functions [63]. The perturbative calcula-
tion of photon production is scaled up from the nucleon-
nucleon result, by the number of binary collisions Ncoll

which is summarized in Table II for the different systems
investigated in this work.

We note that the nCTEQ15 nuclear parton distri-
bution functions were constrained using nuclear deep-
inelastic scattering (eA → e + X) and nuclear Drell-
Yan (pA → l+l− + X). The default parametrization
of nCTEQ15 was also constrained with pion produc-
tion in d+Au collisions, although a separate parametriza-
tion that did not use these pion measurements was also

2 Compared to the list in Chapter 21 of Ref. [56], we exclude pho-
tons from the decay channel ρ0 → π+ +π−+γ in the short-lived
resonance contribution. Photons from this channel are added in
the decay photon cocktail.

made available. It is this second version of nCTEQ15
— referred to by the authors as nCTEQ15-np — that is
used in this work. The rationale for this choice is that
constraining nuclear parton distribution functions with
hadronic measurements from small systems makes the
explicit assumption that no QGP is formed, i.e. that
no significant energy loss or thermal hadron production
occurs in such collisions. Since the opposite assumption
is made in the present work, it would not be consistent
to use nuclear distribution functions partly constrained
by hadronic measurements. This is also the reason why
the widely used EPS09 nuclear parton distribution func-
tions [64] are not used in this work3.

The isospin effect is only significant at high pT , which is
shown in Figure 10a by plotting RpAu, RdAu, RHe3Au and
RAuAu at RHIC (

√
sNN = 200 GeV). The introduction of

cold nuclear effects with nCTEQ15 differentiates RAuAu

from that of the small systems (p+Au, d+Au, He3+Au),
as seen in Figure 10b.

As investigated in Refs. [65] and [66], uncertainties on
prompt photon production in nuclear collisions originate
from the factorization/renormalization/fragmentation
scale dependence, photon fragmentation functions and
nuclear parton distribution functions. The questionable
reliability of perturbative QCD at low pT further in-
creases the uncertainty in this region of momentum. To
constrain the scale dependence of the calculation, the fac-
torization, renormalization and fragmentation scales are
taken to be proportional to the photon transverse mo-
mentum, and the proportionality constant is fixed [58, 62]
using proton-proton measurements.

The photon fragmentation function BFG-II [67] is
used. It appears to be slightly better than other frag-
mentation functions at describing low momentum photon
measurements in proton-proton collisions [68].

The nuclear distribution functions nCTEQ15 them-
selves have uncertainties [63] reflecting the limited con-
straining power of available nuclear data. They can be
used to provide an uncertainty band on prompt photon
predictions. This uncertainty was studied in Ref. [65] for
different nuclear parton distribution functions, EPS09.
Given that the nuclear distribution function uncertain-
ties of EPS09 and nCTEQ15 are of the same order, this
previous work can be used as a guide for the size of
the uncertainties due to the nuclear parton distribution
functions. Thus, uncertainties from nCTEQ15 of order
10% are expected for the nuclear modification factor of

3 Since hadronic measurements represent only a small fraction of
the measurements used to constrain nuclear parton distribution
functions, it may appear that the use of hadronic data can only
result in a small contamination of the extracted functions. It is
important to note, however, that measurements are not necessar-
ily given the same weight when constraining distribution func-
tions. For example, hadronic measurements are given a large
weight in EPS09 to provide better constraints on the gluon dis-
tribution, increasing the influence of this measurement on the
nuclear parton distribution functions.
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FIG. 10. Nuclear modification factor of prompt photons at RHIC
√
sNN = 200 GeV (a) with isospin corrections only and (b)

with both isospin and nCTEQ15 nuclear parton distribution functions corrections.

prompt photons.
Combining all the above uncertainties in prompt pho-

tons, along with possible final state effects on prompt
photon production (e.g. the effect of parton energy loss
on fragmentation photon production), it is clear that
work remains to be done to determine the precise con-
tribution of this source of photons in small collision sys-
tems. Nevertheless, we believe that the calculation pre-
sented above provides a sufficiently good determination
of prompt photons to establish if thermal photons can be
observed above the prompt photon background.

B. Direct photon spectra and vn

Fig. 11 presents the direct photon spectra and ellip-
tic flow coefficients in 0-5% most central p+Pb collisions
at 5.02 TeV. Contributions from individual production
channels are shown. We find that the thermal sources
are significant in the total direct photon signal for pT < 2
GeV. Thermal radiation represents about 1.6 times that
of the prompt contribution. Decay photons coming from
the short-lived resonances contribute only about 10% to
the direct photon yield. In the thermal photon signal,
almost 80% of the photons come from T > 180 MeV
region: indeed radiation from the QCD phase diagram
at temperatures above that of the crossover is observed.
Contribution of thermal photons from spacetime regions
with T < 180 MeV is as small as decay photons coming
from the short-lived resonances. The relative importance
of photon originating from the low and high temperature
region of the plasma is an important feature of the calcu-
lation that we discuss in more details in the next section.

In Fig. 11b, the net pT -differential elliptic flow coeffi-
cient of direct photons is shown together with the con-
tributions from individual channels. Prompt photons are
assumed to carry zero anisotropy. The direct photon el-
liptic flow in 0−5% p+Pb collisions reaches its maximum
∼ 0.05 at pT ∼ 1.7 GeV. The strength of this signal is
comparable to that of the direct photon v2 measured in

0 − 40% Pb+Pb collisions [69]. The rise and fall in the
direct photon elliptic flow reflects the competition be-
tween thermal and prompt sources at different pT [70].
Although the elliptic flow of hadronic photons and decay
photons from short-lived resonances are large, their con-
tribution to the total direct photon elliptic flow is limited,
owing to their small yield as shown in Fig. 11a.

We summarize the thermal photon enhancement in
all four small collision systems as the nuclear modifica-
tion factor RγpA in Fig. 12. From panels (a) to (d), one
sees that collision systems at RHIC and the LHC ex-
hibit qualitatively similar behaviour. We find sizeable
enhancements in the direct photon signals from ther-
mal radiation with respect to the prompt production for
pT < 3 GeV. The prompt photon RγpA is below 1 in
the low pT region because of nuclear shadowing effects
(see Section IV A). The thermal enhancement over this
baseline is the largest in p+Pb collisions at 5.02 TeV.
At the top RHIC energy, we find that direct photons
RγpAu > RγdAu > Rγ3HeAu. This is because the number of

binary collisions from p+Au to 3He+Au collisions (see
Table II) increases more rapidly than the thermal ra-
diation; this makes for a larger relative weight of the
prompt photon production. As a function of centrality,
direct photon RγpA is larger in more central collisions. In

0 − 5% most central collisions, direct photon RγpA are
predicted to reach up to 2 at pT ∼ 1.2 GeV for all four
systems. Although this thermal enhancement is smaller
than what it is in Au+Au or Pb+Pb collisions [72–74], it
still can serve as a precious signature of the hot medium
in small collision systems. In Fig. 12c, our result in min-
imum bias d+Au collisions is compared to the available
PHENIX measurement [71]. The current experimental
uncertainty does not permit a distinction between the
scenarios with, and without the thermal signal.

The direct photon anisotropic flow coefficients
v2,3{SP} are shown in Figs. 13 for all four systems in-
vestigated. Direct photons from p+Pb collisions at 5.02
TeV carry the largest anisotropic flow, owing to the com-
bined effects of higher temperatures achieved and larger
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those from the hot hadronic phase are represented by the curve labelled 155 MeV< T < 180 MeV. The “thermal;” curve is the
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hancement in 0-5%, 0-20%, and minimum bias p+Pb colli-
sions at 5.02 TeV and (p, d, 3He collisions at 200 GeV. In
Panel (c), the PHENIX measurement is from Ref. [71].

pressure gradients. The direct photon anisotropic coeffi-
cients at top RHIC energy are similar, for p+Au, d+Au,
and 3He+Au collisions despite the initial eccentricities εn
being quite different [12]. This similarity in the momen-
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FIG. 13. (Color online) Panels (a-d): Direct photon v2,3 in 0-
5% and 0-20% centralities of the small collision systems. The
shaded bands represent statistical uncertainty.

tum anisotropy of these three small systems was observed
previously in hadrons (see Fig. 9), and the considerable
damping effect of non-flowing prompt photons makes it
even harder to distinguish differences in the direct photon
vn of these systems.



11

C. Centrality, system size and center-of-mass
energy dependence
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FIG. 14. (Color online) The centrality dependence of pT -
integrated thermal and prompt photon yields compared with
charged pion multiplicity Nπ+ in p+Pb collisions at 5.02 TeV
in the mid-rapidity region, |y| < 0.5. The meaning of the
ordinate is specified in the legend.

In this section, we take a closer look at the centrality,
system size and center-of-mass energy dependence of pho-
ton production in relativistic nuclear collisions. All three
of these parameters can be mapped reasonably well to
the pion multiplicity Nπ+ : more central collision, larger
system size and higher center-of-mass energy all trans-
late into larger pion production. The pion multiplicity
is thus used as proxy for these quantities. To facilitate
comparisons of different systems, the photon spectra is
integrated in transverse momentum to obtain the photon
multiplicity, which we evaluate in this section with the
cuts 1 < pγT < 3 GeV.

As observed in Fig. 12, the thermal photon enhance-
ment is more pronounced in central collisions than at
minimum bias. This can also be seen in Fig. 14, which
shows the centrality dependence of the thermal and
prompt photon multiplicities in p+Pb collisions at 5.02
TeV: the thermal photon multiplicity increases approxi-
mately with N1.45

π+ , while the prompt photon multiplicity
goes much more slowly as Nγ

prompt ∝ N0.67
π+ . The in-

crease of thermal photons can be understood as a com-
bination of changes in the systems’ space-time volume,
average temperature and blueshift effect. First note that
the thermal photon multiplicity shown in Fig. 14 is not
independent of the blueshift, because of the limited inte-
gration range used in pγT (1 < pγT < 3 GeV). This effect
can be quantified by evaluating the photon multiplicity
without including blueshift, shown in Fig. 14. This re-
sults in a slightly smaller slope of N1.40

π+ , implying that
the contribution of the blueshift to the centrality depen-
dence of the thermal photon multiplicity is small. The
growth of the spacetime volume V4 as a function of cen-

trality is slower compared to Nγ
th, with a scaling exponent

1.11 shown in Fig. 14. The remaining difference between
N1.40
π+ and N1.11

π+ can be attributed to the increase of sys-
tems’ average temperature, which is thus the dominant
factor in the centrality dependence of thermal photons
in small systems (as verified by a direct calculation). It
is found that thermal and prompt photon production in
small systems at RHIC show a similar centrality depen-
dence as found above for p+Pb collisions at 5.02 TeV.
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FIG. 15. (Color online) Multiplicity of thermal and prompt
photons (1 < pγT < 3 GeV) as a function of the multiplicity
of pions for all collision systems and centralities investigated
in this work, along with the results from Au+Au collisions at
RHIC and Pb+Pb collisions at the LHC from Ref. [58]

A slightly different picture emerges when investigat-
ing the overall centrality, system size and center-of-mass
energy dependence of all systems studied in this work,
along with calculation for Au+Au collisions at RHIC
(
√
sNN = 200 GeV) and Pb+Pb collisions at the LHC

(
√
sNN = 2760 GeV) [58]. Figure 15 provides an overview

for all these systems. Thermal photons are found to grow
as N1.42

π+ , which is very similar to the power found above
for the centrality dependence at a fixed center-of-mass
energy (see Fig. 14). The prompt photon multiplicity is
found to go as N1.12

π+ , which is slower than thermal pho-
tons but significantly larger than the Nγ

prompt ∝ N0.67
π+

observed in Fig. 14 for the centrality dependence in p+Pb
collisions. This difference in the scaling of prompt pho-
tons is not expected: at a fixed center-of-mass energy,
the centrality and system size dependence of prompt pho-
tons originates mainly from the number of binary colli-
sions that multiply the perturbative QCD calculation of
prompt photons (see Section IV A). On the other hand,
changes in the center-of-mass energy of the collisions have
a significant effect on both the number of binary colli-
sions and the perturbative QCD calculation. The larger
exponent found in Fig. 15 reflects more closely the com-
bination of these two effects.

Note that the pion multiplicity is also a good proxy for
the number of decay photons being produced in a colli-
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sion, since π0 → γγ is the dominant source of decay pho-
tons in heavy ion collisions. The observation in Figure 15
that the thermal and prompt photon multiplicities grow
faster than the pion multiplicity summarizes the fact that
the direct photon signal grows faster than the decay pho-
ton background as the collision energy and system size
increases, making its measurement easier. Inversely, di-
rect photons tend to be increasingly difficult to measure
in small system. This subject is addressed in the next
section.

D. Inclusive and decay photons

In order to estimate the difficulty in measuring the pro-
posed direct photon observables, we investigate the “pho-
ton decay cocktail” in the small systems, at top RHIC
and LHC energies. For the cocktail content we include
decays from π0, η, ω, η′, φ, Σ0, and ρ0: the same species
included in the ALICE direct photon analysis in Pb+Pb
collisions [73, 75]. These particles contribute over 99%
of the decay photons in the calculation. The remaining
less than 1% of the decay photons from other short-lived
resonances are included in the direct photon signal.

In Figs. 16, we show the direct, decay, and inclusive (di-
rect + decay) photon spectra in 0− 5% p+Pb collisions
at 5.02 TeV, and 3He+Au collisions at 200 GeV. Because
the π0 production in p+Pb collisions scales faster than
number of binary collisions (see Figs. 14 and 15), the sig-
nal to background (direct/decay photons) ratio is worse
than the one in Au+Au or Pb+Pb collisions. This trans-
lates in a big gap between the direct and decay photon
spectra at low pT in Figs. 16(a) and (b). In panels (c)
and (d), the ratio of inclusive to decay photons, Rγ , is
shown as a function of pT . At 5.02 TeV, the value of Rγ
is about 1.02−1.03 for pT < 2 GeV and increases up to
∼ 1.05 at pT = 3 GeV. Rγ is larger at the top RHIC
energy. In 0−5% 3He+Au collisions, Rγ is about 4− 5%
higher than unity for pT < 2 GeV. It increases rapidly for
pT > 2 GeV, where the prompt photon signal becomes
more and more dominant. The larger values of Rγ in
3He+Au collisions compared to those in p+Pb collisions
can be understood as a consequence of the faster growth
of Ncoll as a function of centrality in the less asymmet-
ric collision systems. The prompt photon yield increases
relatively faster in 3He+Au collisions than in p+Pb col-
lisions. The faster increase of Rγ as a function of pT in
3He+Au collisions is because a weaker hydrodynamic ra-
dial flow is generated at top RHIC energy. The hadron
spectra who produce decay photons are less blueshifted
at lower collision energy. The direct photon signal for
pT > 2 GeV shines out more easily at RHIC than at the
LHC. The Rγ values in the small collision systems are
about factor of 4 ∼ 5 smaller compared to those mea-
sured in Au+Au and Pb+Pb collisions [73, 76]. This
indicates that direct photon measurements in small colli-
sion systems are challenging, and that measurements at
200 GeV should be somewhat easier than at 5.02 TeV.

E. Thermal photons in pp collisions

Collective flow signatures were also found in high mul-
tiplicity pp collisions at LHC energies [78, 79]. We es-
timate the amount of thermal photon radiation in pp
collisions at 200 GeV and 5.02 TeV in Figs. 17. Since
the size of the medium created in the pp collisions is
extremely small, systems may not achieve quasi-thermal
equilibrium in every collision event. Hence, we explore
the following three scenarios for thermal photon produc-
tion: considering thermal radiation from only the top
5% highest multiplicity events, thermal radiation from
only the top 20% events, and thermal radiation from all
events. For all these three cases, the thermal photon
yields are smaller compared to the prompt component in
minimum bias pp collisions at both 200 and 5.02 TeV. At
200 GeV, our direct photon spectrum agrees reasonably
with the PHENIX measurements [77]. The relative size
of thermal radiation to the prompt production increases
with the collision energy from 35% to 40% at pT ∼ 1
GeV.

V. THEORETICAL UNCERTAINTIES

In this section we estimate some of the theoretical un-
certainties inherent in some of calculations presented in
this work.

A. Photon emission from the dilute hadronic phase

The results presented up to this point included ther-
mal photon radiation from fluid cells with temperatures
higher than the switching temperature to the hadronic af-
terburner, Tsw = 155 MeV. The system’s dynamical evo-
lution in the dilute hadronic phase is modelled by micro-
scopic transport simulations. However, electromagnetic
radiation is not currently included in the transport phase.
To estimate the additional thermal radiation from the
dilute hadronic stage, it is possible to extend the hydro-
dynamic evolution below Tsw and evaluate thermal pho-
ton production from this hydrodynamic medium’s profile.
The hydrodynamic evolution is stopped at T = 105 MeV,
as done in Ref. [58].

Since inelastic scatterings that associated with species
changing processes are expected to stop quickly, we use
an equation of state that implements partial chemi-
cal freeze-out at 150 MeV in order to maintain correct
hadronic chemical contents. Fugacity enhancements in
hadronic photon emission rates are included in the cal-
culations. The choice of 150 MeV as partial chemical
freeze-out temperature, and 105 MeV as the tempera-
ture as which the additional hydrodynamic evolution is
stopped are obviously not unique, but are chosen as rea-
sonable parameters to be used to estimate late stage pho-
ton production.
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In Fig. 18a, one sees that the hadronic photon emis-
sion, defined as photon emitted at temperature below 180
MeV, roughly doubles if thermal radiation is included
down to T = 105 MeV. The final direct photon spectra
increases by about 10%. The v2 of photons emitted be-
low T = 180 MeV remains almost unchanged by the ad-
dition of lower temperature photon emission, as shown in
Fig. 18b. This indicates that the momentum anisotropy
of the system is fully built up and saturated around 155
MeV. In the end, the addition of these large-v2 late stage
photons increase the thermal and direct photon v2 by
about 30% and 25%, respectively.

The bands in plotting the photon elliptic flow coeffi-
cients indicate our estimation of the theoretical uncer-

tainties generated by the inclusion (or not) of the ad-
ditional thermal contribution from the dilute hadronic
phase.

We note that there are reasons to believe that produc-
tion of photons in the late stage of the medium should
be significantly lower in small systems than in heavy ion
collisions. In the hadronic transport simulations, we find
the collision rate in central p+Pb collisions is only ∼0.2
collisions per particle below 155 MeV, in contrast to &
0.5 collisions per particle in semi-peripheral Pb+Pb colli-
sions. This smaller collision rate is in part a consequence
of the large expansion rate found at low temperature in
small systems, which is around four times larger than
what it is in heavy-ion collisions in the same tempera-
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ture range. Considering the smaller number of collisions
per hadrons, and the overall smaller number of hadrons
present in the final state of small systems, it is thus less
likely that a significant number of photons are produced
at late time. In this sense, we expect photon production
in small systems to be more biased towards the earlier
and hotter regions of the plasma.

B. Pre-equilibrium contributions

Because the lifetime of the plasma produced in small
systems is shorter (∼ 4 fm/c) than in heavy ion colli-
sions (∼ 15 − 20 fm/c), the pre-equilibrium dynamics of
the system may have a more sizeable influence on exper-
imental observables [18]. Non-trivial initial flow velocity
profiles and early-stage electromagnetic probe produc-
tion are two examples of the possible influence of pre-
equilibrium dynamics on observables [80]. A rigorous
treatment of these effects would require a detailed model
of pre-equilibrium dynamics, which is still the subject of
much active research and is currently an open question.
Nevertheless, within the hydrodynamic framework used
in this paper, it is possible to address the more modest
question of the relative sensitivity of hadronic and pho-
tonic observables to the time τ0 at which thermalization
is assumed to occur, which was fixed to τ0 = 0.6 fm/c for
the results presented up to this point.

In Figs. 19, we investigate the effect of τ0 on direct
photon observables by choosing smaller values of τ0 for
starting the hydrodynamics. Calculations with different
τ0 are tuned such that the final charged hadron multi-
plicity remains the same. We find about 15% more vis-
cous entropy production if hydrodynamic evolutions are
started at τ0 = 0.2 fm/c compared to ones started at
τ0 = 0.6 fm/c.

The thermal photon spectrum is flatter with a smaller
τ0 in Fig. 19. This is a consequence of the following two

main factors. Firstly, more high pT photons are emitted
from high temperature hot spots at the early time. At
τ0 = 0.2 fm/c, the peak temperature of the medium can
reach up to 650 MeV. Secondly, with a smaller τ0 the sys-
tem’s pressure gradients accelerate fluid cells earlier and
develop more radial flow. It gives a stronger blueshift to
the thermal photons emitted at the late stage. Both ef-
fects make the emitted thermal photon spectrum harder.
Meanwhile, the large expansion rate shortens the fire-
ball lifetime by ∼ 10%. The reduction of the space-
time volume results a smaller thermal photon production
with τ0 = 0.2 fm/c compared to the collision events who
started its transverse expansion at τ0 = 0.6 fm/c. Fi-
nally, the large pressure gradients at the early time also
help the anisotropic flow to develops faster during the
hydrodynamic evolution. Direct photons v2 in Fig. 19 is
found to be considerably larger with a smaller τ0.

In Fig. 20, we verify the τ0 sensitivities on hadronic ob-
servables. Both identified particle mean pT and charged
hadron v2,3 increase as τ0 gets smaller. This is consis-
tent with the direct photon observables in Fig. 19 that
hydrodynamic flow is developed earlier and larger with a
smaller τ0.

The effect of τ0 on photons and hadrons thus appear
to be qualitatively similar, with photons being slightly
more sensitive to the initial time than hadrons, as one
can reasonably expect from probes that can be emitted
at earlier times.

C. Out-of-equilibrium corrections

Temperature and velocity gradients are larger in small
systems than in heavy ion collisions. Consequently, the
out-of-equilibrium corrections could also be expected to
be larger. In the last part of this section, we investi-
gate the shear viscous corrections to direct photon ob-
servables.



15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT  (GeV)

10-6

10-5

10-4

10-3

10-2

10-1

d
N
/
(2
π
d
yp

T
d
p
T
) 

(G
e
V
−

2
)

0-1% p+Pb @ 5.02 TeV

thermal photons

thermal + prompt photons

(a)

τ0 =0.6 fm

τ0 =0.4 fm

τ0 =0.2 fm

0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT  (GeV)

0.00

0.02

0.04

0.06

0.08

0.10

v
γ 2

{ S
P
}

(b)

thermal + prompt photons

τ0 =0.6 fm

τ0 =0.4 fm

τ0 =0.2 fm

FIG. 19. (Color online) Dependence of direct photon spectra (a) and elliptic flow coefficients (b) in 0-1% p+Pb collisions on
the thermalization time, τ0. Three values of τ0 , 0.2, 0.4, and 0.6 fm/c, were used. The charged hadron multiplicity was kept
fixed for the different values of τ0 by adjusting the energy normalization of the initial conditions. The other parameters of the
hydrodynamic model were not modified, meaning that only for τ0=0.6 fm/c are hadronic observables globally well described
(see Fig. 20 and text for details). As such, the direct photon calculations at τ0 =0.2, 0.4 fm/c are meant to represent the
sensitivity of the photon calculation to τ0, and not predictions for direct photons if such values of τ0 were used. The shaded
bands represent statistical uncertainty.

0 50 100 150 200 250〈
N trk

〉0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

〈 p T〉  (
G

e
V

)

π +

K +

p

τ0 = 0. 6 fm

τ0 = 0. 4 fm

τ0 = 0. 2 fm

27
.0

18
.5

9.
0

4.
0

1.
5

0.
25

Centrality(%)

p+Pb @ 5.02 TeV

(a)

0 50 100 150 200 250 300
N offline

trk

0.0

0.02

0.04

0.06

0.08

v n
{ 2}

v2

{
2
}

v3

{
2
}

τ0 = 0. 6 fm

τ0 = 0. 4 fm

τ0 = 0. 2 fm

27
.0

18
.5

9.
0

4.
0

1.
5

0.
25

Centrality(%)

p+Pb @ 5.02 TeV

(b)

FIG. 20. (Color online) Identified particle mean pT (a) and charged hadron anisotropic coefficients, v2,3{SP} (b) in 0-1% p+Pb
collisions with different thermalization time, τ0 = 0.2, 0.4, and 0.6 fm/c. The shaded bands represent statistical uncertainty.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT  (GeV)

10-5

10-4

10-3

10-2

d
N
/(

2π
d
yp

T
d
p
T
) 

(G
e
V
−

2
)

0-1% p+Pb @ 5.02 TeV

QGP 2 to 2 scattering
+ HG meson 2 to 2 scattering

(a)

full δΓ

|δΓ|<Γ0

|δΓ|<0.5Γ0

δΓ =0

0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT  (GeV)

0.00

0.05

0.10

0.15

v
γ 2

{ S
P
}

(b)

QGP 2 to 2 scatterings
+ HG meson 2 to 2 scatterings

full δΓ

|δΓ|<Γ0

|δΓ|<0.5Γ0

δΓ =0

0.5 1.0 1.5 2.0 2.5 3.0 3.5
pT  (GeV)

0.00

0.02

0.04

0.06

0.08

0.10

v
γ 2

{ S
P
} (c)

thermal + prompt photons

full δΓ

|δΓ|<Γ0

|δΓ|<0.5Γ0

δΓ =0

FIG. 21. (Color online) The effects of restricting the size of shear viscous corrections δf to photon emission rate on (a) thermal
photon spectra, (b) thermal photon elliptic flow, and (c) full direct photon v2.

We explore the sensitivity of direct photon spectra and v2 to the shear viscous corrections δΓ by constraining it
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to be smaller than a certain fraction of its corresponding
equilibrium contribution. Based on Eq. (5), we compute
the following ratio for a photon with energy Eq in the
local rest frame of a fluid cell,

r(Eq, T, π
µν ; a) =

|δΓ(Eq, T, π
µν)|

aΓ0(Eq, T )
, (6)

where the coefficient a is a constant parameter, which
determines the maximum allowed fraction of equilibrium
contribution for the δf . Then the constrained photon
emission rate in a fluid cell is evaluated as,

Eq
dΓ

d3k
(Eq, T, π

µν ; a) =

Γ0(Eq, T ) +
δΓ(Eq, T, π

µν)

max{1, r(Eq, T, πµν ; a)}
. (7)

Because shear viscous correction is only available for
those photons emitted from the 2 to 2 scatterings in the
QGP phase and meson-meson reactions, we will focus on
the thermal photon flow observables from these two chan-
nels in Figs. 21(a) and (b). We compared the thermal
photon spectra and their elliptic flow coefficients with the
fraction parameter a = 0, 0.5, 1, and ∞ in Eq. (7). By
choosing a = 1, we allow the maximum size of δΓ to be
equal to its equilibrium part. In this case, the thermal
photon observables are very close to the no-constraint
case (a =∞) after integrated over all space-time volume.
Some noticeable differences are present only for pT > 2.5
GeV. If the constraint increases to a = 0.5 (|δΓ| < 0.5Γ0),
thermal photon elliptic flow starts to show some sizeable
variation. In Fig. 21(c), we show the sensitivity of total
direct photon v2 to different choices of the parameter a.
Among the cases a = 0.5, 1.0, and ∞, the largest vari-
ation of the direct photon v2 reaches up to ∼ 15% in
2 < pT < 3 GeV.

VI. CONCLUSION

In this work, we have presented a systematic study
of hadronic collective observables and of direct photon
probes in small collisions systems at RHIC and LHC en-
ergies, within a consistent dynamical approach.

It was found that hydrodynamic simulations can pro-
vide a good description of the hadronic flow observables
for both inclusive charged hadrons and identified parti-
cles. The effects of the hadronic transport description of
the dilute hadronic phase on hadronic observables were
quantified and found to be small in general. It was also
found that, in the absence of longitudinal fluctuations, a
boost-invariant assumption can provide a reasonable de-
scription of mid-rapidity photonic and hadronic observ-
ables.

A thermal photon enhancement - over the case where
no thermal sources are present - of the differential spec-
tra was predicted in high multiplicity collision events,
in small systems at both RHIC and LHC energies. In

addition, we found that direct photons carry sizeable
anisotropic flow v2,3{SP}. These proposed signals can
serves as independent tests of the hydrodynamic descrip-
tion of small hot and dense systems. An analysis of decay
cocktail and inclusive photons was presented to provide
guidance to future experimental measurements.

Several aspects of theoretical uncertainties in describ-
ing the dynamics of small systems were explored in the
last section of this work. Photon emissions from the di-
lute hadronic phase were found to contribute up to∼ 10%
in the total direct photon signal. The direct photon el-
liptic flow was shown to have a larger sensitivity than
hadrons to the choice of thermalization time τ0. The
shear viscous corrections to the photon production cal-
culations were examined and found to be under control.

Future work will include the study of more realistic
sub-nucleon fluctuations in the initial state [81, 82], of
longitudinal fluctuations [83, 84], as well as the interplay
between soft-hard components in the intermediate pT re-
gion, and the inclusion of bulk viscosity [41].

It is worth re-emphasizing that measurements of low
pT photons represent precious information which com-
pletes and complements what is learned with hadronic
observables. These photons are both penetrating and
soft: they are a unique characterization tool for systems
of all sizes and shapes.
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Appendix A: Space-time structure of medium
evolution and photon emissions in small systems

In this appendix, the space-time evolution of the fluid-
dynamical description of small systems is scrutinized.

Semi-quantitative estimators of the validity of fluid dy-
namics are Knudsen and Reynolds numbers in numerical
simulations. The Knudsen number is estimated accord-
ing to Ref. [85],

Kn = Kθ = τπθ =
5η

e+ P
θ =

5η

sT
θ, (A1)
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Reynolds number in one fluctuating 0-1% p+Pb collisions at 5.02 TeV. Black contour lines are isotherms. Panels (d-f): Similar
plots for one fluctuating event in 0-5% 3He+Au collision at 200 GeV.

where τπ is the shear relaxation time and θ = ∂µu
µ is

system’s expansion rate. In order to have a realistic es-
timation of Kθ in the dilute hadronic phase, we adopt a
temperature dependent η/s(T ) for T < Tsw = 155 MeV
[86],

η

s
(T ) =

(η
s

)
min

+ 0.0594

(
1− T

Tsw

)
+0.544

(
1− T

Tsw

)2

. (A2)

The smallness of the Knudsen number reflects how fast
the system can evolve towards local thermal equilib-
rium. Complementarily, the distribution of the inverse
Reynold’s number [85],

R−1π =

√
πµνπµν
e+ P

, (A3)

describes how far the system is out-of-equilibrium at ev-
ery space-time point. Small values of Kn and R−1π are
needed for viscous effects to remain perturbative.
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FIG. 23. (Color online) Panel (a, c, e): Contour plots for the space-time structure of thermal photon emission in one fluctuating
0-1% p+Pb collision at 5.02 TeV. White contour lines are isotherms. Panel (b, d, f): The space-time structure of the relative
size of shear viscous correction to thermal photon production compared to its corresponding equilibrium emission rate.

Figs. 22 shows the space-time distribution of the tem-
perature profiles, together with the evolution of the
Knudsen and of the inverse Reynold’s number in two typ-
ical individual fluctuating events in central p+Pb and
3He+Au collisions. In spite of the small system size,
the Knudsen numbers above the switching temperature,
Tsw = 155 MeV, remain ∼ 0.5 in 3He+Au collisions at
the top RHIC energy and reaches up to 0.6 ∼ 0.7 in the
p+Pb collisions at 5.02 TeV. The result that Kθ < 1 in
the high temperature QGP phase suggests that a hydro-

dynamic description of these small systems is within the
validity of the theory. In Figs. 22(c) and (f), the evolu-
tion of the inverse Reynold’s number is shown for the two
events. The values of R−1π remain small during the entire
evolutions which means that the relative size of the shear
stress tensor is small compared to its corresponding ideal
part.

In Figs. 23, we study the space-time structure of the
thermal photon emission in one p+Pb collisions at 5.02
TeV. In the left panels, the thermal photon emission is
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shown for three pT cuts. In the right panels, the rela-
tive size of shear viscous correction to the photon yield is
shown for the same momentum cuts. The largest viscous
corrections are commonly found at the early stage of the
evolution for all three pT bins. For 0.4 < pT < 1 GeV,
the maximum size of viscous correction is less 1% com-
pared to its equilibrium part. The relative size of the
δΓ correction increases quadratically as a function of pT .
For 2 < pT < 3 GeV, the shear viscous correction can

reach up to 60% of its equilibrium part. However, the
corresponding left-hand-side plot indicates that the re-
gion where viscous corrections are large, at early time
and large radius, are also regions of low photon emis-
sivity. Thus very few photons are produced from these
regions where viscous correction are large, and viscous
corrections are under control in space-time regions im-
portant for the thermal photon spectrum. This is in line
with the findings of Section V C.
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