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We investigate the clustering effects in light mass N=Z and N 6=Z composite systems 20Ne∗, 28Si∗,
40Ca∗ and 21,22Ne∗, 39K∗, respectively, formed in low energy heavy ion reactions at different exci-
tation energies, within the collective clusterization approach of the dynamical cluster-decay model
(DCM) of Gupta and collaborators based on quantum mechanical fragmentation theory (QMFT).
Considering quadrupole deformated and compact orientated nuclei, a comparative decay analysis
of these systems has been undertaken for the emission of different intermediate mass fragments
(IMFs)/clusters, specifically the IMFs having Z=3, 4 and 5 (or Z=7, 6 and 5 complimentary frag-
ments from the 20Ne∗ and 21,22Ne∗ composite systems) which are having the experimental data
available for their Z-distribution. Quite interestingly, the QMFT supports clustering in N=Z (20Ne∗

and 28Si∗) and N 6=Z (21Ne∗ and 22Ne∗) nuclear systems at excitation energies corresponding to their
respective decay thresholds/resonant-state energies for the 4α, 16O cluster and non-α cluster 14C
(more so in 22Ne∗ N 6=Z composite system), supported by the Ikeda diagrams, taking into account
the proper pairing strength in the temperature dependent liquid drop energies. Within the DCM,
we notice that at higher excitation energies in addition to xα (where x is an integer) type clusters
from N=Z composite systems and xn-xα type clusters from N 6=Z composite systems, np-xα type
clusters are relatively quite dominant, with larger preformation probability due to the decreased
pairing strength at higher temperatures in the liquid drop energies. Also, the study reveals the
presence of competing reaction mechanisms of compound nucleus (fusion-fission, FF ) and of non-
compound nucleus origin (deep inelastic orbiting, DIO) in the decay of very light mass composite
systems 20,21,22Ne∗ and 28Si∗ at different excitation energies. The DIO contribution in the interme-
diate mass fragments (IMFs) cross section σIMFs is extracted for these composite systems, σIMFs

is given as the sum of FF cross section σFF and DIO cross section σDIO. The DCM calculated FF

cross-sections σDCM
FF are in good agreement with the available experimental data.

PACS numbers: 21.60.Gx, 23.70.+j, 25.70.Jj

I. INTRODUCTION

An atomic nucleus remains the center of very excit-
ing field of research, with many interesting questions still
unanswered. Nuclear physics being even one of the very
successful disciplines for almost one century, still looking
forward to so many challenges on theoretical as well as
experimental fronts. One of the biggest challenge is the
nucleon-nucleon interaction inside the nucleus, which is
not precisely known as yet. Furthermore, on one hand
too many particles to deal quantum mechanically and
on the other, too few particles to be treated statistically
in an accurate way, makes the matter more challenging.
Theoretical physicists are expected to be further brave
for such facts with the upcoming fast computational fa-
cilities and experimentalists are looking for their data to
be explained with nuclear models.

Nuclear cluster models are complementing other mod-
els in the field, to explain successfully a number of nuclear
phenomena. According to the cluster models, these phe-
nomena could be understood keeping in view the fact
that nucleons lumped together into a cluster, for fur-
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ther interactions among various nucleon clusters, rather
than as free nucleons. The tightly bound alpha-particle
(4He) with protons and neutrons, two each, makes a very
special case of nuclear clustering due to its much larger
binding energy than that of other light nuclei. In 1928,
Gamow explained very well the spontaneous formation
of alpha-particle before its tunneling through the poten-
tial barrier, while understanding the alpha-decay of trans
lead elements [1]. The most famous Hoyle state of 12C,
constituted of three alpha-clusters predicted in 1953 [2]
to account for the abundance of carbon in the universe
and subsequently measured in 1957 [3]. Since then num-
ber of ideas are being explored to study the structure
of various alpha conjugate nuclei (xα, where x is inte-
ger) or N=Z nuclei from 12C to 40Ca [4]. These studies,
specifically the Ikeda diagrams, portray that these nu-
clei can be viewed as a combination of alpha clusters
or alpha+heavier-alpha conjugate clusters depending on
their excitation energy.

It is further being explored to understand the structure
of non-alpha conjugate nuclei (with added neutrons to
alpha conjugate nuclei) or N6=Z nuclei within the above
picture. The neutron-rich N6=Z nuclei are visualized in
terms of covalent exchanging of valence neutrons between
the α cores and by this way nuclear systems surmount
the difficulty of maximizing the interaction of valence/
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excess neutron with the α-core nucleons [5]. The clus-
ter structures are also predicted in the case of N=Z and
N6=Z nuclei from 16O to 40Ca. The cluster states are
probed experimentally through the quasi-elastic scatter-
ing, transfer or the cluster knockout reactions and elec-
tromagnetic transitions [6]. The cluster structures have
been studied experimentally in isotopes of Be and B, 18O,
20,21,22Ne, 24Mg, 28Si, 32S, 40Ca [7, 8]. Moreover, exper-
imentally, Rogachev et al. [7] have worked out success-
fully on the prediction of α+np+α clustering for N6=Z,
10B nucleus.

Many more theoretical attempts have been made to
explain the clustering in such light nuclei. Two of us
(SKP and RKG) have studied [9] the clustering in light,
stable and exotic nuclei within the relativistic mean
field approach which explains the well established clus-
ter structures in both the ground and intrinsic excited
states of these nuclei. In this study, α-clustering and
halo structures have also been explored for the 6−14Be
and 11,13,15,17,19B isotopes, respectively, having α+α+xn
structures with α+α as the core and α+α+p+xn struc-
tures with α+α+p as the core. On the same lines, Ebran
et al. have studied [10] the clustering in light N=Z, 20Ne
nucleus within the density functional theory and explored
that the cause of cluster formation lies in the effective
nuclear interaction. Also, one of us (RKG) and col-
laborators have explored [11] the clustering prospects in
light neutron-rich 18,20O and 22Ne in the resonant excited
states within quantum mechanical fragmentation theory
(QMFT), by taking into account the proper temperature-
dependent pairing strength (δ(T)) in the temperature
dependent liquid drop energy. The results support the
possibility of 14C (3α+2n) clustering, in addition to α-
clustering in these nuclei, which supports the predictions
of extended Ikeda diagram [5] for n-rich nuclei.

Low energy heavy ion collisions provide a wonder-
ful probe to analyze the cluster structure in the decay
of composite systems formed in these reactions. The
decay products of the very light mass composite sys-
tems (A∼20-40) have been analyzed extensively, includ-
ing N=Z as well as N6=Z composite systems [12–14]. The
structure of nucleus also plays an important role in frag-
ment/ cluster emission. A lot of effort has been made to
study the effect of clustering on the reaction mechanism
of light N=Z composite nuclear systems, i.e., 16O+12C
[15], 20Ne+12C [16], 24Mg+12C [17], 28Si+12C [18] reac-
tions. In these cases, in addition to fusion-fission (FF )
path of decay from equilibrated compound nucleus (CN),
the projectile and target nuclei have another possibility
to form a dinuclear composite with subsequent emission
of intermediate mass fragments IMFs/ clusters priori to
equilibration, also referred to as deep inelastic orbiting
(DIO). Thus, observed fragments/ clusters may be re-
sulting either from the decay of equilibrated compound
CN or from DIO prior to formation of CN. The compe-
tition between two decay processes is also interpreted in
terms of number of open channels (NOC) available for the
decay [19]. Large NOC indicates that FF process domi-

nates with regard to the faster process of DIO with mem-
ory of entrance channel. In light mass region, the systems
studied having small NOC are 16O+12C [15], 20Ne+12C
[16], 24Mg+12C [17], 28Si+12C [18] and the systems stud-
ied having large NOC include 10,11B+16,17,18O, 31P+16O,
35Cl+12C, 36Ar+12C [20–22], which have also been stud-
ied successfully within QMFT based dynamical cluster-
decay model (DCM) [23] showing competing decay modes
for the system (20Ne+12C) with the smaller value of NOC
and the only decay mode, i.e., fusion-fission for the sys-
tems 31P+16O and 19F+12C having large NOC values.

It is also relevant to note here that one of us (RKG)
and others have studied [24] the clustering effects in case
of N=Z and N6=Z composite systems formed in the heavy
ion transfer collisions, within the QMFT. The study re-
veals that in case of N=Z, A=4x colliding nuclei, the
minima in potential energy surface (PES) lies only at
α-particle like nuclei whereas on adding the neutrons to
either the projectile or target or both, the colliding nu-
clei (i.e., N6=Z nuclei) leads gradually to disappearance/
decrease in depth of minima at α-clusters along with the
appearance of minima at non-α clusters. This well estab-
lished collective clusterization approach of the DCM may
also be further explored to study the cluster structure of
light mass N=Z and N6=Z composite nuclei formed in the
heavy ion collision reactions.

It may be reminded here that the DCM has been ap-
plied successfully to study the decay of light mass com-
pound systems 28Al∗, 31P∗, 32S∗, 39K∗, 40Ca∗, 48Cr∗,
56Ni∗ [23, 25–27]. Also, the DCM explains successfully
the fragments emission/ decay characteristics of medium,
heavy and super-heavy compound systems. Within the
DCM, the decay of compound system is studied as collec-
tive clusterization process for the emission of light par-
ticles LPs , IMFs , heavy mass fragments HMFs and FF

fragments while the statistical models treats the emis-
sion of different processes on different footings for dif-
ferent mass regions. The DCM incorporates the nuclear
structure effects through preformation probability (P0)
of different clusters in the decaying composite system, an
information missing in the statistical models. The DCM
is an extended version of preformed cluster model (PCM)
of Gupta and collaborators to study the excited state de-
cay of compound systems. The cluster radioactivity, the
manifestation of clustering in the nuclei, has been stud-
ied successfully within the formalism of the PCM [28].
Within the PCM, the cluster emission of mass varying
from 12C to 34Si in cluster radioactive decay process of
nuclei in the trans-lead mass region, have been examined
with inclusion of quadrupole and higher order deforma-
tions and non-compact orientations.

In the present work, within the QMFT, we have in-
vestigated for α-clustering in light mass N=Z and N6=Z
nuclear systems 20Ne∗, 28Si∗ and 21,22Ne∗, respectively,
in their intrinsic excited state at resonant state energies
corresponding to the 4α, 16O cluster and non-α cluster
14C (from 22Ne∗ N6=Z composite system only), given by
the Ikeda diagrams. It may be pointed out here that
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we have confined ourselves to the resonant state energies
of these nuclear systems, corresponding to 16O and 14C
(from 22Ne∗) clusters, only to explore the effect of pair-
ing strength in the liquid drop energies on clustering. As
we will see in the following, with respect to the higher
excitation energies for these composite systems, cluster-
ing effects get changed due to smaller pairing strength in
the liquid drop energy. Thus, the decay analysis of the
above composite systems formed in low energy heavy ion
reactions at different excitation energies has been carried
out within the DCM.

The experimental data [12–14] for the excited com-
posite systems 20,21,22Ne∗, 28Si∗, 39K∗ and 40Ca∗ formed
in the reactions 10,11B+10,11B, 16O+12C, 11B+28Si,
12C+27Al and 12C+28Si, respectively, at different excita-
tion energies is available for the emission of IMFs having
Z=3, 4 and 5 (or Z=7, 6 and 5 complimentary fragments
for the 20Ne∗ and 21,22Ne∗ composite systems) with their
Z-distribution data. It is relevant to mention here that
the decay of extremely light mass systems 20,21,22Ne∗

formed in reactions 10,11B+10,11B has been studied ear-
lier [29] within the DCM for the binary symmetric decay
(BSD) only at Elab=48 MeV. We found that the FF is
in competition with DIO for the BSD and that with the
inclusion of quadrupole deformation and orientation ef-
fects, the contribution of FF process increases in 20Ne∗ in
comparison with 21,22Ne∗. The decay of 39K∗ and 40Ca∗

composite systems have also been studied earlier within
the DCM, but for spherical consideration of nuclei [25].

In the following, a comparative decay analysis of the
light mass N=Z (20Ne∗, 28Si∗, 40Ca∗) and N6=Z (21,22Ne∗,
39K∗) composite systems has been made within the
DCM, at different excitation energies, where experimen-
tal data is available for the IMFs . The competitive decay
modes of DIO in the yields of measured IMFs have been
evaluated empirically, for the light composite systems un-
der study, since we focus here mainly on the clustering ef-
fects in the equilibrated composite systems in the form of
FF contribution in the yields of IMFs . The calculations
of the DIO process will be taken up in future studies.
Also, it is important to understand how the FF process
evolves with increasing energies. It is quite important to
explore and compare the clustering effects in these N=Z
α conjugate and N6=Z non-α conjugate composite sys-
tems as these have also been studied experimentally, and
are widely in need of a more theoretical interpretation.

Section II presents in brief the QMFT-based collective
clusterization approach of the DCM, where the deforma-
tion effects are included up to quadurpole deformations
(β2i) with “compact orientations” (θi, i=1,2), for the
case of coplanar nuclei (azimuthal angle φ=00), shown
schematically in Fig. 1 (see also Table 1 of Ref. [30]),
and obtained as in Ref. [31] for the hot fusion process.
The calculations and results are discussed in Sect. III.
Finally, the conclusions are given in Sect. IV.

 

FIG. 1: Schematic configuration of two equal or unequal ax-
ially symmetric deformed, oriented nuclei, lying in the same
plane (azimuthal angle φ=00) for various θ1 and θ2 values in
the range 00 to 1800. The θi are measured anticlockwise from
the collision axis and angle αi clockwise from the symmetry
axis.

II. THE DYNAMICAL CLUSTER-DECAY
MODEL (DCM)

The DCM, based on QMFT [32–34], is used to study
the decay of hot and rotating compound systems formed
in heavy ion reactions and is an extended version of the
PCM, as already mentioned in the Introduction. It in-
volves the two step process of cluster preformation fol-
lowed by the penetration through the interaction barrier,
analogues to the α-decay where preformation was taken
to be unity. It is worked out in terms of (i) the col-
lective coordinate of mass (and charge) asymmetry η =
(A1 −A2)/(A1 +A2) (and ηZ = (Z1 − Z2)/(Z1 + Z2))
and (ii) relative separation R, (iii) multiple deforma-
tions βλi

, λ=2,3,4 and (iv) orientations θi of two nu-
clei in the same plane. These coordinates η and R,
respectively, characterize the nucleon division (or ex-
change) between outgoing fragments and the transfer
of kinetic energy of incident channel (Ec.m.) to inter-
nal excitation (total excitation (TXE) or total kinetic
energy (TKE)) of the outgoing channel. The TKE and
TXE of fragments is related to CN excitation energy as
E∗

CN +Qout(T ) = TKE(T ) + TXE(T ).
The decay cross section of equilibrated CN, using the

decoupled approximation to R and η motions, is defined
in terms of ℓ partial waves, as [35–37]

σ =
π

k2

ℓc
∑

ℓ=0

(2ℓ+ 1)P0P ; k =

√

2µEc.m.

~2
(1)

where the preformation probability (P0) and the pene-
trability (P) refers to η- and R-motion, respectively, and
ℓc is the critical angular momentum

ℓc = Ra

√

2µ[Ec.m. − V (Ra, ηin, ℓ = 0)]/~.

Ra is the first turning point, defined later, where the pen-
etration starts. The structure effects of the CN, a distinct
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FIG. 2: (Color online) Scattering potential V(R) for the symmetric decay of α conjugate systems, (a) 20Ne∗, (b) 28Si∗ and (c)
40Ca∗ at ℓmin and respective ℓc values.

advantage of the DCM over the statistical models, enters
the model via the preformation probabilities P0 of the
fragments. In case, the non-compound nucleus (nCN)
component, i.e., DIO were not measured in the yield

of IMF , it can be estimated empirically, σDIO=σ
Expt.
IMF -

σDCM
FF , where σDIO, σ

Expt.
IMF and σDCM

FF are, respectively,
the DIO , experimental IMF and DCM calculated FF

cross sections.
The P0 is given by the solution of stationary

Schrödinger equation in η, at a fixed R=Ra,

{− ~
2

2
√
Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η, T )}ψν(η) = Eνψν(η),

(2)
with ν=0,1,2,3... referring to ground-state (ν = 0) and
excited states solutions summed over as a Boltzmann-like
function

| ψ |2=
∞
∑

ν=0

| ψν |2 exp(−Eν/T ). (3)

Then, the probability of cluster preformation is

P0(Ai) =| ψ(η(Ai)) |2
2

A∗

CN

√

Bηη, (4)

where i= 1 or 2 and Bηη are the smooth hydrodynamical
mass parameters [38].
For clustering effects in nuclei we look for the maxima

in P0(Ai) (as shown in Figure 3), or, the energetically fa-
vored potential energy minima in the fragmentation po-
tential VR(η, T ). The VR(η, T ) in Eq.(2), for fixed βλi

, is
the potential energy for all possible mass combinations
Ai, corresponding to the given charges Zi minimized for
each mass fragmentation coordinate η. The fragmenta-

tion potential is defined as

VR(η, T ) =

2
∑

i=1

[

VLDM (Ai, Zi, T )
]

+

2
∑

i=1

[

δUi

]

exp(− T 2

T0
2 )

+Vc(R,Zi, βλi
, θi, T ) + VP (R,Ai, βλi

, θi, T )

+Vℓ(R,Ai, βλi
, θi, T ) (5)

where Vc, Vp, Vl are temperature dependent Coulomb,
nuclear proximity and angular momentum dependent
potentials for deformed and oriented nuclei. Bi =
VLDM (Ai, Zi, T ) + δUi, i=1,2, are the binding energies
of two nuclei, where δU are the ”empirical” shell cor-
rections, i.e., microscopic part [39] of the binding enery
and VLDM is the liquid drop energy, i.e., the macroscopic
part. The T dependent liquid drop part of the binding
energy VLDM (T ) is taken from Davidson et al. [40], based
on the semi-empirical mass formula of Seeger [41], as

VLDM (A,Z, T ) = α(T )A+ β(T )A2/3

+

(

γ(T )− η(T )

A1/3

)(

I2 + 2I

A

)

+
Z2

R0(T )A1/3

(

1− 0.7636

Z2/3
− 2.29

[R0(T )A1/3]2

)

+δ(T )
f(Z,A)

A3/4
(6)

where

I = aa(Z −N), aa = 1.0 (7)

and f (Z,A) = (-1,0,1), for even-even, even-odd, and odd-
odd nuclei, respectively. The temperature-dependent
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binding energies are obtained from Ref. [40] with its con-
stants at T=0 refitted [35–37] to give the ground state
(T=0) experimental binding energies [42], and, where the
data is not available, the theoretical binding energies are
taken from Ref. [43]. It is important to point out here
that one of us (RKG) and co-workers have shown [11, 44]
that for both the α-nucleus and 14C clustering in nuclei,
a modified temperature dependence of the pairing energy
coefficient δ(T) is essential in the temperature-dependent
liquid drop energy (refer to Fig. 3 of Ref. [11]). In the fol-
lowing, we have further highlighted the significance of an
appropriate δ(T) in the present calculations while com-
paring the clustering effects in the N=Z, 20Ne∗, 28Si∗ (or
α conjugate) and N6=Z, 21,22Ne∗ (or non-α conjugate) nu-
clear systems (refer to Fig. 3, discussed in detail in the
next section).
The Coulomb potential Vc for deformed and oriented

nuclei is defined as

Vc(R,Zi, βλi
, θi, T ) =

Z1Z2e
2

R(T )

+3Z1Z2e
2

2
∑

λ,i=1,2

Rλ
i (αi, T )

(2λ+ 1)R(T )λ+1

×Y (0)
λ (θi)[βλi

+
4

7
β2
λi
Y

(0)
λ ] (8)

The deformation parameters βλi
of the nuclei are taken

from the tables of Möller et al. [43], and the orientations
θi are the “optimum” [30] or “compact” orientations [31]
of the “hot” fusion process.
The nuclear proximity potential

Vp(T ) = 4πR̄(T )γb(T )Φ(s(T )), (9)

where γ, the nuclear surface energy constant, is given by

γ = 0.9517

[

1− 1.7826

(

N − Z

A

)2
]

MeV fm−2, (10)

and b(T)=0.99(1+0.009T 2)R̄(T ) is the nuclear surface
thickness and R̄(T ) is the root mean square radius of the
Gaussian curvature and Φ(s(T )) is the universal function,
independent of the geometry of the system but depends
on the minimum separation distance s0(T) depicted in
Fig.1, as

Φ(s(T )) =

{

− 1
2 (s− 2.54)2 − 0.0852(s− 2.54)3; s ≤ 1.2511

−3.437exp(− s
0.75 ); s ≥ 1.2511

(11)
The minimum distance s0, for a fixed R, is defined (see
Fig.1) as

s0 = R−X1 −X2

= R− R1(α1) cos(θ1 − α1)−R2(α2) cos(180 + θ2 − α2),

(12)

where, for s0 to be minimum, the conditions on s0 are
[45],

∂s0/∂α1 = ∂s0/∂α2 (13)

resulting in

tan(θ1 − α1) = −R′

1(α1)/R1(α1) (14)

tan(1800 + θ2 − α2) = −R′

2(α2)/R2(α2) (15)

Here, R
′

i(αi) is the first order derivative of Ri(αi) with
respect to (αi). Note that the above conditions refer
to perpendiculars (normal vectors) at the points P1 and
P2 in Fig.1, and hence minimum s0 defines the so-called
“optimum” [30] or “compact” configuration [31], respec-
tively, for small (positive or negative, incuding zero value)
or large positive β4i. Thus, s0(T) gives the minimum
separation distance along the colliding Z-axis between
any two deformed, co-planar nuclei, denoted as the neck-
length parameter ∆R(η, T) in the following (refer to
Eq.(21)).
The angular momentum dependent potential is given by

Vℓ(T ) =
~
2ℓ(ℓ+ 1)

2I(T )
, (16)

where

I(T ) = IS(T ) = µR2 +
2

5
A1mR

2
1 +

2

5
A2mR

2
2. (17)

is the moment of inertia for sticking limit. This limit is
defined for the separation distance ∆R to be within the
range of nuclear proximity (∼2 fm). The P, penetration
probability in Eq. (1), is calculated by using the WKB
integral as

P = exp[− 2

~

∫ Rb

Ra

{2µ[V (R)−Qeff ]}1/2dR], (18)

where V(R) is the scattering potential at each R-value,
calculated as sum of Coulomb, proximity and angular
momentum dependent potential, with Ra and Rb as the
first and second turning point, satisfying

V (Ra, ℓ) = V (Rb, ℓ) = Qeff (T, ℓ) (19)

The ℓ- dependence of Ra is defined by

V (Ra, ℓ) = Qeff (T, ℓ = ℓmin) (20)

which means that Ra, given by above equaton is the same
for all ℓ- values and that V (Ra,ℓ) acts like an (effective)
Q-value (Qeff (T,ℓ)) for the decay of hot compound sys-
tem. The ℓmin value refers to the minimum value that
starts contributing to WKB integral. As the ℓ-value in-
creases, the Qeff ((T) value increases and hence V(Ra,ℓ)
increases (see Fig.2). Equation (18) is solved analyti-
cally [46], as shown in Fig. 2 for the illustrative case of
symmetric decay of N=Z composite systems.
The first turning point Ra of the penetration path is

given as

Ra = R1(α1, T ) +R2(α2, T ) + ∆R(η, T ) (21)
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with the radius vector Ri(αi, T ) defined as

Ri(αi, T ) = R0i(T )[1 +
∑

λ

βλi
Y

(0)
λ (αi)] (22)

where

R0i(T ) = [1.28A
1/3
i − 0.76 + 0.8A

−1/3
i ](1 + 0.0007T 2)

(23)
with T calculated by using E∗

CN=(A8 )T
2-T. The choice of

parameter Ra, for a best fit to the data, allows to relate
in a simple way the V(Ra) to the top of the barrier VB for
each ℓ, by defining their difference ∆VB as the effective
“lowering of the barrier”:

∆VB = V (Ra)− VB.

Note, ∆VB is defined as a negative quantity because the
actually used barrier is effectively lowered which is an
in built property of the DCM. This ensures that V (Ra)
(=Qeff ) lies below the barrier, as is illustrated in Fig. 2
for ℓmin and ℓc values. It shows that the magnitude of
∆VB decreases with increase in ℓ-value.

III. CALCULATIONS AND DISCUSSION

In this section, first we present the calculations and
discussion within the QMFT, for the decay of light mass
N=Z (20Ne∗ and 28Si∗) and N6=Z (21Ne∗ and 22Ne∗) nu-
clear systems with considerations of quadrupole defor-
mations and “hot” compact orientations of nuclei. The
calculations have been done at T=0 as well as the cor-
responding excitation energies of the nuclear systems for
their respective decay thresholds/ resonant-state energies
for the 4α, i.e., 16O cluster, except for the 22Ne∗ system
where the chosen thresholds/ resonant-state energy is for
the 14C cluster, given by the Ikeda diagram. Secondly,
we present here the calculations and discussion within the
QMFT-based DCM, for the decay of highly excited light
mass N=Z (20Ne∗, 28Si∗ and 40Ca∗) and N6=Z (21Ne∗,
22Ne∗ and 39K∗) composite systems formed in heavy ion
collisions. We intend to analyze the effects of the ris-
ing temperature on the clustering in these systems under
study, specifically, 20Ne∗, 28Si∗, 21Ne∗ and 22Ne∗ from
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ground state T=0 to the corresponding resonant-state
temperature (as mentioned above) and beyond at the
higher excitation energies. At higher excitation energies,
the available experimental data for the IMFs/ clusters
having Z=5,6,7 (for 20Ne∗, 21Ne∗, 22Ne∗) and Z=3,4,5
for 28Si∗ will be compared with the DCM-calculations.
It is quite important to explore and compare the clus-

tering effects in these N=Z or α conjugate and N6=Z
or non-α conjugate composite systems at different ex-
citation energies, and to compare the available experi-
mental data [12–14] with the DCM calculations. Fig-
ure 3 presents the results for clustering effects, showing
the largest preformation probability, i.e., maxima in P0

with respect to the cluster mass (Ai, i=1,2) for the de-
cay of N=Z (a) 20Ne∗, (b) 28Si∗ and N6=Z (c) 21Ne∗,
(d) 22Ne∗ nuclear systems. Figure 3(a) shows that for
the N=Z, 20Ne∗ at T=1.59 MeV (with pairing constant
δ=32.73 MeV), the most probable cluster configurations
are α+16O and 8Be+12C. At T=4.94 MeV (pairing con-
stant δ=0.77 MeV), in addition to the most probable
xα type clusters at T=1.59 MeV, np-xα type clusters,
namely 6Li, 10B and 14N clusters also appear as promi-
nent clusters. For 28Si∗ at T=2.33 MeV (with pairing
constant δ=31.19 MeV), Fig. 3(b) shows that 4He+24Mg
is the most probable cluster configuration (largest P0),
followed by the 8Be+20Ne and 12C+16O cluster configu-
rations. At T=4.51 MeV (pairing constant δ=2.11 MeV),
in addition to the most probable clusters at T=2.33 MeV,
6Li, 10B, 14N , 18F and 22Na (np-xα type clusters) also
appear as prominent clusters.
On the other hand, for the cases of N6=Z systems,

21Ne∗ (Fig. 3(c)) at T=2.29 MeV (with pairing constant
δ=31.30 MeV), 4He+17O (≡ α+n+16O) cluster configu-
ration competes with 8Be+13C (≡2α+n+12C) clustering.

At T=4.67 MeV (pairing constant δ=1.53 MeV), in addi-
tion to the most probable clusters at T=2.29 MeV, 6,7Li,
14,15N clusters also appear as prominent clusters. For
22Ne∗ (Fig. 3(d)) at T=2.59 MeV (with pairing constant
δ=30.43 MeV), 4He+18O (≡ α+2n+16O) cluster config-
uration competes with 8Be+14C clustering. At T=4.46
MeV (pairing constant δ=2.34 MeV), in addition to the
most probable clusters at T=2.59 MeV, 10,12B clusters
also appear as prominent clusters. Quite interestingly,
these results show that the QMFT supports clustering
in N=Z (20Ne∗ and 28Si∗) and N6=Z (21Ne∗ and 22Ne∗)
nuclear systems at excitation energies corresponding to
their respective decay thresholds/ resonant-state energies
for the 4α, i.e., 16O cluster and non-α cluster 14C (for
N6=Z 22Ne∗ composite system only), given by the Ikeda
diagrams [4, 5], for taking into account the proper pairing
strength in the temperature-dependent liquid drop ener-
gies [11, 44]. Thus, we observe that the clusters remain
same for 20Ne∗, 28Si∗ and 21Ne∗ at all excitation energies
as shown in Fig. 3, but for 22Ne∗, the clusters changes at
higher excitation energy of 15.89 MeV. This happens be-
cause of the change in Z-distribution with increasing tem-
perature, as shown in Fig. 4. The Fig.4 shows the vari-
ation of fragmentation potential with fragment charge Z
for A2=4 for the decay of non-α conjugate system 22Ne∗.
At E∗=15.89 MeV (with δ(T)=30.43 MeV), 4He is en-
ergetically minimized while at higher experimental ex-
citation energy E∗=50.36 MeV (with δ(T)=2.34 MeV),
n-rich 4H is energetically minimized, and hence the cor-
responding heavy clusters for 22Ne∗ in Fig. 3 are 18O
and 18F, respectively.

Figures 5 and 6 present the clustering effects in the
N=Z composite systems (a) 20Ne∗, (b) 28Si∗ and (c)
40Ca∗ at the higher excitation energy E∗

CN or T-values,
respectively, for the energetically favored potential en-
ergy minima in the fragmentation potential V(η,T) and
the largest preformation factor or maxima in the clus-
ter preformation probability P0(Ai), at ℓ=0 as well as at
respective ℓc. Surprisingly, at higher excitation energies
clustering get changed drastically in these systems, due
to decreasing pairing strength. Figures 3(a) and 6(a)
for 20Ne∗ system at different T-values, clearly demon-
strate the probable binary symmetric cluster configura-
tion with the IMF 10B (≡2α+p+n) at higher T-value
showing the large preformation yield in comparison to
at the lower T-values, as observed also in the relativis-
tic mean field calculations for intrinsic excited states of
20Ne [9], and also for the calculations within formalism
of energy density functionals which clearly presents the
similar kind of results for the 20Ne [10]. Moreover, the
IMF 14N (≡3α+p+n) appear as the most probable clus-
ter followed by IMF/ α-clusters 12C and 16O which are
anyhow most probable at resonant state energies. Also,
18F (≡4α+p+n) is in strong competition with the α-
clusters. Figures 3(b) and 6(b) for another N=Z com-
posite system 28Si∗ system at different T-values, present
the most probable binary symmetric cluster configuration
with the IMF 14N (≡3α+p+n) at higher T-value show-
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ing the largest preformation yield in comparison to at the
lower T-values. The α-clusters 16O and 20Ne, respec-
tively, have strong competition from 18F (≡4α+p+n)
and 22Na (≡5α+p+n). It is interesting to note that
another N=Z composite system 40Ca∗ (Fig. 6(c)) also
presents similar kind of picture with binary symmetric
decay (20Ne) in competition with α as well as non-α clus-
ters (xα+p+n).
For N6=Z composite system 21Ne∗, Figs. 3(c) and 7(a),

at different T-values, demonstrate that the 13C (≡3α+n)
cluster is still dominant at higher T-value with compet-
ing binary near symmetric cluster configuration with the

IMFs 10B (≡2α+p+n) and 11B (≡2α+p+2n) and, 17O
(≡4α+n) cluster configuration is now not favored. Other
clusters/ IMFs 14N (≡3α+p+n) and 15N (≡3α+p+2n)
are strongly competing with other new possibilities. Fig-
ures 3(d) and 7(b) for another N6=Z composite system
22Ne∗ system at different T-values, presents the most
probable binary near symmetric cluster configuration
with the IMFs 10B (≡2α+p+n) and 12B (≡2α+p+3n)
at higher T-value showing the largest preformation yield
in comparison to ones at the lower T-values. Now, non-
α cluster 14C is replaced by the IMF 14N (≡3α+p+n)
competing strongly with the binary decay. The IMF 15N
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(≡3α+p+2n), 16N (≡3α+p+3n) and 18F (≡4α+p+n)
are also having small maxima. Note that 18O (≡4α+2n)
is replaced by 18F (≡4α+p+n) at higher excitation en-
ergies. Another N6=Z composite system 39K∗ (figure
6(c)) presents asymmetric decay with 6Li (≡α+p+n) the
most probable IMFs followed by 10B (≡2α+p+n), 13C
(≡3α+n) and 14N (≡3α+p+n) along with α-clusters 12C
and 16O.

Thus, at higher excitation energies, we notice from
Figs. 6(a)-(c) that, for N=Z composite systems, xα
type clusters are preformed in addition to the xα+p+n

type clusters, which is due to smaller pairing strength at
higher temperatures in the liquid drop energies. On the
other hand, for the N6=Z composite systems we find from
Figs. 7(a)-(c) that at higher excitation energies xα+xn
and xα+p+xn type clusters are preformed, specifically
for 21,22Ne∗ systems, whereas for 39K∗, in addition, the
α-clusters also come into picture. These results are of
important consequences for the observed yields of IMFs

having Z=3,4 and 5 from 28Si∗, 40Ca∗ and 39K∗ com-
posite systems (or Z=7,6 and 5 complimentary frag-
ments from 20Ne∗ and 21,22Ne∗ composite systems) which
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TABLE I: The DCM-calculated FF cross sections σDCM
FF for the decay of 20Ne∗, 28Si∗ and 40Ca∗ summed up to ℓc, and the

σDIO estimated empirically and compared with experimental data.

Ec.m. E∗

CN T ℓc ∆R (fm) σDCM
FF (mb) σ

Expt

IMFs (mb) σ
emp

DIO (mb)
(MeV) (MeV) (MeV) (~) Z=5 Z=6 Z=7 Z=5 Z=6 Z=7 Z=5 Z=6 Z=7 Z=5 Z=6 Z=7

10B+10B→20Ne∗

12 43.14 4.35 12 2.118 2.2 2.171 77.37 48.33 312.73 77.37 192.90 313.25 — 144.57 —
15 46.14 4.50 13 2.13 2.2 2.14 115.56 57.45 337.98 115.01 427.10 482.41 — 369.65 144.43
20 51.14 4.72 15 2.112 2.10 1.9 214.69 70.75 275.18 214.33 376.40 334.83 — 305.65 59.65
24 55.14 4.90 16 2.1 2.0 1.8 254.56 62.13 234.79 268.70 472.06 247.33 14.14 409.93 12.54
25 56.14 4.94 16 2.12 2.02 1.781 252.42 60.89 205.72 303.0 510.75 205.33 50.58 449.86 —

Ec.m. E∗

CN T ℓc ∆R (fm) σDCM
FF (mb) σ

Expt

IMFs (mb) σ
emp

DIO (mb)
(MeV) (MeV) (MeV) (~) Z=3 Z=4 Z=5 Z=3 Z=4 Z=5 Z=3 Z=4 Z=5 Z=3 Z=4 Z=5

16O+12C→28Si∗

50.14 66.89 4.51 26 1.223 1.542 1.585 17.06 12.72 38.34 42.68 14.20 60.28 25.62 1.48 21.94
53.57 70.32 4.62 26 1.24 1.56 1.61 16.79 11.86 37.38 44.12 17.32 63.95 27.33 5.46 26.57
62.14 78.89 4.92 26 1.31 1.625 1.67 16.56 10.98 34.24 68.34 21.53 83.31 51.78 10.55 49.07
68.57 85.32 5.08 25 1.47 1.75 1.792 20.36 11.58 32.02 95.16 33.13 126.48 74.80 21.55 94.46

Ec.m. E∗

CN T ℓc ∆R (fm) σDCM
FF (mb) σ

Expt

FF (mb)
(MeV) (MeV) MeV) (~) Z=3 Z=4 Z=5 Z=3 Z=4 Z=5 Z=3 Z=4 Z=5

12C+28Si→40Ca∗

53.90 67.20 3.77 29 1.14 1.14 1.34 4.08 2.81 3.82 3.7+5.4
−1.7 2.7+4.1

−1.2 3.4+5.1
−1.5

are having the experimental data available for their Z-
distribution.

Next, in the following, we will compare the decay
of N=Z or α-conjugate and N6=Z or non-α conjugate
composite systems into the measured IMFs , in terms
of preformation profile of clusters/ fragments, i.e., P0,
penetrability through interaction potential, i.e., P and
the calculated σDCM

FF , followed by empirical evaluation
of DIO contribution in the experimental yield, i.e.,

σDIO=σ
Expt.
IMF -σDCM

FF .

Figures 5(a)-(c) show that, in case of 20Ne∗ for Z=5,
Z=6 and Z=7, the energetically favored/ minimized mass
clusters are 10B, 11,12C and 13,14,15N, respectively, and in
case of 28Si∗ and 40Ca∗ for Z=3, Z=4 and Z=5, the en-
ergetically favored clusters are 5,6,7Li, 8Be and 9,10B, re-
spectively. Also, here we see that at ℓ=0 ~, the LPs

(1≤A≤4) or equivalently, evaporation residue ER are
competing with the IMFs/ clusters. At higher ℓ-values,
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TABLE II: The DCM-calculated FF cross-sections σDCM
FF for the decay of 21Ne∗, 22Ne∗ and 39K∗ summed up to ℓc value, and

the σDIO estimated empirically and compared with experimental data.

Ec.m. E∗

CN T ℓc ∆R (fm) σDCM
FF (mb) σ

Expt

IMFs (mb) σ
emp

DIO (mb)
(MeV) (MeV) (MeV) (~) Z=5 Z=6 Z=7 Z=5 Z=6 Z=7 Z=5 Z=6 Z=7 Z=5 Z=6 Z=7

10B+11B→21Ne∗

13.09 39.54 4.07 12 1.987 2.2 2.2 17.29 142.15 171.92 17.36 802.48 600.83 — 660.33 428.91
15.71 42.16 4.20 13 2.09 2.2 2.2 45.85 183.10 219.05 46.31 739.95 732.66 — 556.85 513.16
20.95 47.40 4.44 15 2.19 2.12 2.05 111.86 241.13 201.36 111.16 881.22 743.16 — 640.09 541.80
26.19 52.64 4.67 17 2.0 1.92 1.78 109.28 231.53 168.24 159.80 713.31 484.10 50.52 481.78 315.86

11B+11B→22Ne∗

12 37.36 3.87 12 1.75 2.2 2.2 3.93 13.82 80.86 3.99 288.33 80.43 — 274.81 —
15 40.36 4.02 14 1.782 2.2 2.11 30.29 25.12 166.86 30.26 378.54 166.30 — 353.42 —
20 45.36 4.25 15 1.86 2.2 2.02 61.17 19.46 142.56 61.09 493.31 220.10 — 473.85 77.54
24 49.36 4.42 17 1.73 1.96 1.81 82.14 14.91 130.49 82.21 537.27 298.91 — 522.36 168.42
25 50.36 4.46 17 1.765 2.0 1.82 88.70 15.16 124.63 88.49 560.68 410.86 — 545.32 286.23

Ec.m. E∗

CN T ℓc ∆R (fm) σDCM
FF (mb) σ

Expt

FF (mb)
(MeV) (MeV) MeV) (~) Z=3 Z=4 Z=5 Z=3 Z=4 Z=5 Z=3 Z=4 Z=5

11B+28Si→39K∗

45.94 66.93 3.81 28 1.11 1.33 1.936 9.20 6.23 2.96 8.5+10.0
−5.8 5.3+8.0

−2.3 21.0+32.1
−9.2

12C+27Al→39K∗

50.53 67.14 3.81 30 0.97 1.16 1.78 9.30 5.06 2.53 8.5+10.6
−6.2 4.2+5.8

−3.0 9.+13.0
−5.2

IMFs are the dominant mode of decay. As discussed ear-
lier, at ℓ=ℓc, there is a strong minima for the symmetric
decay of N=Z (20Ne∗ and 28Si∗) or α-conjugate systems.
As shown in Figs. 6(a)-(c), the energetically favored clus-
ters are stable and thus have higher P0. Similarly, Figs.
7(a)-(c) present that the highly preformed clusters in the
case of N6=Z composite systems 21Ne∗, for Z=5, Z=6 and
Z=7, are 10,11B, 12,13C and 14,15N, respectively, and in
case of 22Ne∗, for Z=5, Z=6 and Z=7, are 10,11B, 13C
and 14,15,16N, respectively, and in case of 39K∗, for Z=3,
Z=4 and Z=5, are 5,6,7Li, 8,9Be and 10,11B, respectively.

Figures 8(a)-(c) depict the penetration of different
IMFs/ clusters for N=Z composite systems and, in gen-
eral, we see that their P→1 at ℓ=ℓc, while at low angular
momentum in case of 20Ne∗ (Fig. 8(a)), the 10B cluster
is having the least P while it is preformed strongly and
11,12C and 13,14,15N have the higher value of P. In case
of 28Si∗ (Fig. 8(b)), at low angular momentum, the 7Li
has the least P and other clusters 5,6Li, 8Be, 9,10B have
higher P. In case of 40Ca∗ (Fig. 8(c)) also, at low angular
momentum, the 7Li has a less P-value in comparison to
5,6Li, 8Be and 9,10B, whereas the 20Ne cluster is having
least P although it has high value of P0. Figures 9(a)-(c)
present a similar kind of picture but for the N6=Z com-
posite systems, with the exception that of 39K∗ (Fig.
9(c)), the symmetric fragments have very high P-values
contrary to their low P0 values.

Following the above results, the calculations for σDCM
FF

and their comparisons with σExpt.
IMF for the N=Z and N6=Z

composite systems are presented, respectively, in Table
I and Table II. The empirically evaluated σDIO are also

presented here for 20,21,22Ne∗ and 28Si∗ systems. Note
that the experimental data is fitted by adjusting the
neck-length parameter (∆R) simultaneously within the
proximity range. Table I shows that in case of 20Ne∗,
Z=5, 10B has the highest P0 but has least penetrability
P (see Figs. 6 and 8) which is in line with the experimen-

tal cross-section (σExpt
IMFs) which is least for Z=5 amongst

Z=5,6,7. For Z=5, the decay mode is FF while the DIO
comes into picture at two higher energies. For Z=7, the
dominant decay mode is FF at the lowest energy and
at higher energies DIO is present. The %-age contribu-
tion of DIO is maximum near the entrance channel, i.e.,
Z=6. In case of 28Si∗, for Z=4 the %-age FF contribu-
tion is comparatively more than in Z=3,5 clusters. There
is an enhanced yield near the entrance channel, i.e., Z=5.
For Z=3, the %-age DIO is more and increases with in-
crease in energy. For 40Ca∗, the FF cross-sections are
well reproduced for the Z=3,4,5 and compared with ex-
perimental data.

Table II shows that in case of 21Ne∗, Z=5 10,11B are
preformed strongly having competition with 8Be and 13C
but have least penetrability (see, Figs.7 and 9) which is in

line with the experimental cross-section (σExpt
IMFs) which

is least for Z=5 amongst Z=5,6,7. For Z=5, the decay
mode is FF while the DIO comes in to picture at the
highest energy. In case of Z=6, 13C has highest P0 and
good penetrability (P) (see, Figs.7 and 9) and has highest
experimental cross-section amongst Z=5,6,7. For Z=6,7,
the dominant decay mode is DIO which increases with
increase in energy. In case of 22Ne∗, for Z=5 the σexpt

IMFs is
least in comparison to Z=6,7. Also, the results within the
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DCM show that the symmetric breakup into 11B is least
favored in terms of P0 and P (refer, Figs.7 and 9) and the
FF is the only decay mode at all experimental energies
(for Z=5). For Z=6 (i.e., near to entrance channel), the
DIO is the significant decay mode. For 39K∗; the FF
cross sections are well reproduced for the Z=3,4 while
for Z=5 we are not able to obtain a good agreement with
experimental data. The percentage contribution of FF
is more in α composite systems in comparison to non-α
composite systems. The results, within the DCM, are in
good agreement with the experimental data.

IV. SUMMARY

The clustering effects in the light mass N=Z (20Ne∗,
28Si∗ and 40Ca∗) and N6=Z (21,22Ne∗ and 39K∗) com-
posite systems, with considerations of quadrupole defor-
mations and compact orientations of nuclei, have been
studied within the QMFT-based DCM and their com-
parative decay-analysis undertaken. The calculations at
T=0 and corresponding to excitation energies near to de-
cay threshold given by Ikeda diagram, by taking into ac-
count the temperature dependent pairing energy term in
liquid drop energies, reveal that in N=Z nuclear systems,
xα (where x is an integer) type cluster configurations
are dominant while in N6=Z nuclear systems, xn-xα type
cluster configurations are dominant. These results are
in conformity with cluster configurations given by Ikeda
diagram. However, the clustering scenario at experimen-
tally available excitation energies is changed due to de-
creasing pairing strength at high energies. In addition to
xα configuration in N=Z composite systems and xn-xα
type configuration in N6=Z composite systems, the np-

xα type configurations are having comparatively higher
preformation probability in these systems.

Thus, the present study explores the role of nuclear
structure effects via preformation probability P0, that
enters the collision dynamics within the formalism of
DCM. The emission of different intermediate mass frag-
ments/ clusters with Z=3,4,5 (or complementary frag-
ments Z=5,6,7 in 20,21,22Ne∗) have been also studied in
terms of fragmentation potential (V), preformation prob-
ability (P0), penetration (P) through interaction poten-
tial and IMFs cross-section by fitting the only param-
eter (i.e. neck length parameter) within the proximity
range, in reference to available Z-distribution data. The
study shows the co-existence of competing reaction mech-
anisms, i.e., FF and DIO in the decay of light mass com-
posite systems under study. The contribution of DIO in
total cross-section of IMFs have been evaluated empiri-
cally. The percentage contribution of FF is more in N=Z
(α conjugate) systems in comparison to N6=Z (non-α con-
jugate) systems. The calculated cross-sections, using the
DCM, are in good agreement with experimental data.
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