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Background: Fission barriers of actinide nuclei have been mostly and for long been microscopi-
cally calculated for even-even fissioning systems. Calculations in the case of odd nuclei have been
performed merely within a so-called equal-filling approximation (EFA) as opposed to an approach
taking explicitly into account the time reversal breaking properties at the mean field level- and for
only one single-particle configuration.
Purpose: We study the dependence of the fission barriers on various relevant configurations (e.g.
to evaluate the so-called specialization energy). Besides, we want to assess the relevance as a func-
tion of the deformation of the EFA approach which has been already found out at ground state
deformation.
Methods: Calculations within the Hartree-Fock plus BCS with self-consistent particle blocking
have been performed using the SkM* Skyrme effective interaction in the particle-hole channel and
a seniority force in the particle-particle channel. Axial symmetry has been imposed throughout the
whole fission path while the intrinsic parity symmetry has been allowed to be broken in the outer
fission barrier region.
Results: Potential energy curves have been determined for six different configurations in 235U and
four in 239Pu. Inner and outer fission barriers have been calculated along with some spectroscopic
properties in the fission isomeric well. These results have been compared with available data. The
influence of time-reversal breaking mean fields on the solutions has been investigated.
Conclusions: A sizeable configuration dependence of the fission barrier (width and height) has
been demonstrated. A reasonable agreement with available systematic evaluations of fission barrier
heights has been found. The EFA approach has been validated at the large elongations occurring
at the outer barrier region.

I. INTRODUCTION

A microscopic understanding of the nuclear fission pro-
cess remains one of the most complex and challenging
problem in low-energy nuclear physics.

Although fission-barrier heights are not observable
quantities, they play an important role in determin-
ing whether the excited compound nucleus de-excites
through neutron evaporation or fission. They are also
a necessary input for the calculations of fission cross-
sections. From a different point of view, they allow to
describe quantitatively the nuclear stability with respect
to spontaneous fission in competition with other decay
modes, particularly α decay.

Over the years, many microscopic calculations of the
average fission paths of heavy nuclei have been per-
formed, within mean-field approaches supplemented by
the treatment of nuclear correlations without or with
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the restoration of some symmetries spuriously broken by
the mean-field. While most of fission-barrier calculations
have been performed for even-mass (with even proton
and neutron numbers) nuclei (see e.g. [1–11] for recent
related works), there are comparatively very few micro-
scopic studies dedicated to odd-mass nuclei and even
fewer to odd-odd nuclei. The main reason is the compli-
cation caused by the breaking of time-reversal symmetry
at the mean-field level for a nuclear system involving an
odd number of neutrons and/or protons, considered as
identical fermions.

One of the earlier microscopic study of spectroscopic
properties in odd-mass actinides at very large defor-
mation was performed by Libert and collaborators in
Ref. [12] for the band-head energy spectra in the fission-
isomeric well of 239Pu within the rotor-plus-quasi-particle
approach. More recently, fission-barrier calculations were
performed within the Hartree-Fock-Bogoliubov approach
by Goriely et al. [13] for nuclei with a proton number Z
between 88 and 96. The resulting fission barriers were
then used for the neutron-induced fission cross-section
calculations as part of the RIPL-3 project published in
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Ref. [14]. Around the same time, Robledo et al. have
performed fission-barrier calculations of the 235U [15]
and 239Pu [16] nuclei, within the equal-filling approxi-
mation (EFA) presented e.g. in Ref. [17]. In practice,
the EFA consists in occupying pairwise the lowest single-
particle energy levels—exhibiting the two-fold Kramers
degeneracy—and “splitting” the unpaired nucleon into
two time-reversal conjugate states with an equal occu-
pation 0.5. In this way, the time-reversal symmetry is
not broken and the calculations are performed in a way
which is very similar to what is done when describing the
ground state of an even-even nucleus.

There are actually two different formalisms in which
this EFA is implemented. One as used in Ref. [15, 16]
deals with self-consistent calculations of one quasi parti-
cle states. It has been shown to provide the same results
as the exact blocking results within this frame for the
time-even part of the densities [18]. Another EFA ap-
proach will be considered here in some cases for the sake
of comparison with the corresponding exact calculations
which are the subject of our study. It corresponds here to
an equal-filling approximation to self-consistent blocked
one-particle states.

Although the EFA is likely to be a reasonable approx-
imation, a proper microscopic description of odd-mass
nuclei requires a priori the consideration of all the ef-
fects brought up by the unpaired nucleon. This nucleon
gives rise to non-vanishing time-odd densities entering
the mean-field Hamiltonian. The terms involving time-
odd densities vanish identically in the ground-state of
even-even nuclei. Their presence for odd-mass nuclei in-
creases the computing task. As discussed for e.g. in
Refs. [19, 20], the time-odd densities cause a spin polari-
sation of the even-even core nucleus which results in the
removal of the Kramers degeneracy of the single-particle
states. The recent work of Ref. [21] shows that the static
magnetic properties of deformed odd-mass nuclei can be
properly described when taking into account the effect
of core polarization induced by the breaking of the time-
reversal symmetry at the mean-field level. Therefore, it is
our purpose here to study the effect on fission barriers of
the time-reversal symmetry breaking. To do so, we calcu-
late fission-barrier profiles of odd-mass nuclei within the
self-consistent blocking approach in the HF+BCS frame-
work, taking the time-reversal symmetry breaking at the
mean-field level into account.

As well known, some geometrical intrinsic solutions are
broken near both inner and outer barriers. The intrin-
sic parity is violated for elongations somewhat before the
outer barrier region and beyond [22]. The axial symme-
try is also known from a very long time to be violated
in static calculations around the inner barrier, an effect
which is increasing with Z in the actinide region from,
e.g., Thorium isotopes [23].

Recently it has been suggested that the outer bar-
rier of actinide nuclei should also correspond to triaxial
shapes [24]. However the triaxial character of the fission
path in both barriers might vanish or be strongly reduced

upon defining it as a least action trajectory upon mak-
ing some ansatz on adiabatic mass parameters as well
as on the set of collective variables to be retained. This
has been first discussed in Ref. [25] for super-heavy nu-
clei. There, all quadrupole and octupole (axial and non-
axial) degrees of freedom have been considered. The mass
parameters had been calculated according to the Inglis-
Belyaev formula [26]. Such a result has been recently
confirmed in non-relativistic [27] and relativistic [24, 28]
mean-field calculations. The calculations of mass param-
eters have been significantly improved by using the non-
perturbative ATDHFB approach first discussed and used
in Ref. [29], later revisited in Ref. [30]. Moreover the in-
tensities of pairing fluctuations have been included in the
set of collective variables together with the two axial and
non-axial quadrupole degrees of freedom. Calculations
in 240Pu and 264Fm in Ref. [27] as well as 250Fm and
264Fm in Ref. [28] have drawn similar conclusions about
the disappearance or strong quenching of the triaxiality
of the fission paths. These results have been shown to im-
ply very strong consequences on the spontaneous fission
half-lives.

¿From these considerations, and keeping in mind the
somewhat preliminary character of our exploration of fis-
sion barriers of odd nuclei, we have deemed as a reason-
able first step to stick here to purely axial microscopic
static solutions.

This paper is organized as follows. In Sec. II, a brief
presentation of the self-consistent blocking HF+BCS for-
malism and some of its key aspects are given together
with some technical details of the calculations. Our re-
sults will be presented in Section III and Section IV. Fi-
nally, the main results are summarised and some conclu-
sions drawn in the Section V.

II. THEORETICAL FRAMEWORK

The fission-barrier heights have been obtained from
deformation-energy curves whereby the quadrupole mo-
ment has been chosen as the driving coordinate. The
total energy at specific deformation points has been cal-
culated within the Hartree-Fock-plus-BCS (HF+BCS)
approach with blocking, and we refer to this as a self-
consistent blocking (SCB) calculation. We will first
discuss the details of our SCB calculations in Subsec-
tion A, while our approximate treatment for the restora-
tion of rotational symmetry using the Bohr-Mottelson
(BM) unified model is presented in Subsection B. A de-
tailed discussion about the expressions relating our mean-
field solutions to the BM model can be found in Ref. [31],
and we shall only retain the relevant expressions herein.
Subsection C will be devoted to the treatment of the mo-
ment of inertia entering the rotational energy in the BM
model, and Subsection D to some technical aspects of the
calculations.
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A. Self-consistent-blocking calculations

We assume that the nucleus has an axially symmetri-
cal shape such that the projection Ωk of the total angu-
lar momentum onto the axial symmetry z-axis ĵz of the
single-particle state |k〉

〈k|ĵz|k〉 = Ωk (1)

is a good quantum number. The intrinsic left-right (par-
ity) symmetry was allowed to be broken around and be-
yond the top of the outer-barrier, where such a symmetry
breaking is known to lower the outer-barrier. For our de-
scription of odd-mass nuclei, we have merely considered
seniority-1 nuclear states in which only one single-particle
state is blocked. The lowest nuclear Kπ state, in general,
corresponds to an unpaired nucleon blocked in the single-
particle state which is the nearest to the Fermi level with
quantum numbers such that Ωk = K and, when par-
ity symmetry is not broken, πk = π. In practice, the
blocking procedure translates to setting the occupation
probability v2

k of the blocked single-particle state and its
pair-conjugate state to 1 and 0, respectively.

Such a blocking procedure in an odd-mass nucleus re-
sults in the suppression of the Kramers degeneracy of
the single-particle spectrum. As a consequence of time-
reversal symmetry breaking at the mean-field level, the
pairs of conjugate single-particle states needed for the
BCS pairing treatment cannot be pairs of time-reversed
states. However, without recourse to the Bogoliubov
treatment, we were able to unambiguously identify pair-
conjugate states by searching for the maximum overlap in
absolute value between two eigenstates of the mean-field

Hamiltonian, |k〉 and |k̃〉, such that |〈k|
(
T̂ |k̃〉

)
|, where T̂

denotes the time-reversal symmetry operator, is as close

to 1 as possible. These partner states |k〉 and |k̃〉 are
dubbed as pseudo-pairs and they serve as Cooper pairs
in our BCS framework. The value for this overlap will
be exactly 1 when time-reversal symmetry is not broken.
This procedure for establishing the BCS pair states when
time-reversal symmetry is broken at the mean-field level
has been implemented earlier in the work of Ref. [32]. A
more detail discussion can also be found in Appendix A
of Ref. [31].

The breaking of the time-reversal symmetry induces
terms which are related to the non-vanishing time-odd
local densities in the Skyrme energy density functionals
(see Appendix A). These time-odd local densities are the
spin-vector densities sq, the spin-vector kinetic energy
densities Tq, the current densities jq where the index q
here represents the nucleon charge states. These time-
odd local densities contributes in such a way that the
expectation value of the energy is a time-even quantity
as it should.

B. Bohr-Mottelson total energy

The total energy within our Bohr-Mottelson approach
(see the detailed discussion of Ref. [31]), is written as

〈IMKπα|ĤBM|IMKπα〉

= 〈Ψα
Kπ|Ĥeff |Ψα

Kπ〉 −
1

2 J
〈J2〉core +

~2

2 J

[
I(I + 1)

−K(K − 1) + δK, 12 a(−1)I+
1
2 (I +

1

2
)
]

(2)

with |IMKπα〉 being the normalized nuclear state de-
fined by

|IMKπα〉 =

√
2I + 1

16π2

[
DI
MK |Ψα

Kπ〉

+ (−)(I+K)DI
M −K T̂ |Ψα

Kπ〉
]

(3)

In the notation above, I and M are the total angular mo-
mentum, and its projection on the symmetry axis in the
laboratory frame, respectively. The state |Ψα

Kπ〉 refers
to the intrinsic nuclear state, while DI

MK is a Wigner
rotation matrix. The 〈J2〉core quantity is the expecta-
tion value of the total angular momentum operator for
a polarized even-even core. In our model, Coriolis cou-
pling has been neglected except for the case of K = 1/2
in which its effect has been accounted for by the decou-
pling parameter term. The moment of inertia J and the
decoupling parameter a have been computed from the
microscopic solution of the polarized even-even core (see
Ref. [31]).

For the band-head state (I = K), the Bohr-Mottelson
total energy reduces to

EKπα = 〈Ĥeff〉 −
1

2 J
〈J2〉core +

~2

2 J
(2K − δK, 12 a) (4)

For given quantum numbers K and π (when the intrinsic
parity symmetry is present) the fission-barrier heights
have then been calculated as differences of the Bohr-
Mottelson energy in Eq. (4) at the saddle points and the
normally-deformed ground-state Kπ solution.

C. Calculation of the moment of inertia

Special attention has been paid to the moment of in-
ertia entering the core rotational energy term given by
Erot = 〈Ĵ2〉core/2J . The usual way to handle it is to use
the Inglis-Belyaev (IB) formula [26]. It is not satisfac-
tory for at least three reasons. It is derived within the
adiabatic limit of the Routhian Hartree-Fock-Bogoliubov
approach. The Routhian approach is, as well known, only
a semi-quantal prescription to describe the rotation of a
quantal object. Moreover, it is not clear, as we will see,
that the corresponding collective motion is adiabatic. Fi-
nally, the IB formula corresponds to a well-defined ap-
proximation to the Routhian-Hartree-Fock-Bogoliubov
approach.
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Concerning the last point, as discussed in Ref. [29],
the IB moment of inertia ought to be renormalized to
take into account the so-called Thouless-Valatin correc-
tive terms [33] studied in detail in Ref. [29]. They arise
from the response of the self-consistent fields with respect
to the time-odd density (as e.g. current and spin vector
densities) generated by the rotation of the nucleus which
is neglected in the IB ansatz. In order to incorporate
these corrective terms in our current approach, the mo-
ments of inertia yielded by the IB formula JBel are scaled
by a factor α whose value is taken to be 0.32 following
the prescription of Ref. [34]:

J ′ = JBel (1 + α) . (5)

As a result, one should diminish by the same percentage
the rotational correction evaluated upon using the IB mo-
ment of inertia. Let us remark that the above correction
concerns adiabatic regimes of rotation.

Projecting after variation the 0+ state out of a
HF+BCS solution, corresponds, of course, in principle
to a better approach to the determination of the ground-
state energy. This has been performed in Ref. [35] for
the fission-barrier of 240Pu upon using two Skyrme force
parametrizations (SLy4 and SLy6 [36, 37]). These works
clearly show that using the IB approach leads to an over-
estimation of the rotational correction by about 10 - 20%
in the region of inner-barrier and fission-isomeric state
and by more than 80% close to the outer-barrier. A word
of caution on the specific values listed above should be
made, however, since these calculations yield a first 2+

energy in the ground-state band which is about twice its
experimental value (83 keV instead of 43 keV).

A third theoretical estimate stems from the consider-
ation of a phenomenological approach belonging to the
family of Variable Moment of Inertia models. It describes
the evolution of rotational energies in a band by consid-
eration of the well known Coriolis Anti-Pairing (CAP)
effect [38] in terms of intrinsic vortical currents (see e.g.
Ref. [39]). The IB treatment to the moment of inertia
corresponds to a global nuclear rotation which is adia-
batic, i.e. corresponding to a low angular velocity Ω, or
equivalently to a rather small value of the total angular
momentum (also referred to as spin). However, one can
compute the average value of the total angular momen-
tum Iav spuriously included in the mean-field solution
as

Iav(Iav + 1)~2 = 〈Ĵ2〉 (6)

where Ĵ is the total angular momentum operator, and
find that the value of Iav even at ground-state deforma-
tion cannot be considered as small (one finds there that
Iav ≈ 13). Consequently, the moment of inertia entering
the rotational correction term should reflect the fact that
the average Ω is large.

Recently, a polynomial expression for the moment of
inertia as a function of Ω denoted as J (Ω) has been pro-
posed according to this approach to the Coriolis anti-
pairing effect (see Ref. [40] and a preliminary account of

TABLE I. Rotational energy (in MeV) calculated from
Belyaev formula (IB) and the Intrinsic Vorticity Model (IVM)
at the ground-state deformation of four even-even nuclei as a
function of the total angular momentum Iav defined in Eq.
(6).

Nucleus Iav IB IVM
234U 12.988 2.371 1.232
236U 12.905 2.423 1.255
238Pu 13.146 2.441 1.266
240Pu 13.143 2.408 1.232

it in Ref. [41]). This model shall be referred to as the
Intrinsic Vorticity Model (IVM) in the discussion herein.
The IVM was found to work well for the rotational bands
in the ground-state deformation for some actinide nuclei,
for instance a very good agreement for 240Pu for a value
of I as high as Iav ≈ 30 (where it predicts a rotational
energy differing by only 70 keV from the experimental
value).

Table I lists the spurious rotational energy obtained
with the IB formula as compared to the IVM rotational
energy for a given value of the total angular momen-
tum Iav in the ground-state of even-even nuclei. In all
cases, the spurious rotational energy evaluated with the
IB moments of inertia is larger by about a factor of 2
with respect to the values obtained in the IVM approach.
Therefore, the rotational energy obtained with the IB
formula should be reduced by approximately 50%. The
same amount of correction is assumed to apply as well to
all other deformations.

Incidentally, the 50% reduction in the rotational en-
ergy at all deformation happens to translate into lower-
ings of fission barriers of the same magnitude as those
obtained from the angular momentum projection calcu-
lations of Ref. [35] in 240Pu.

One may note that in both the exact or approximate
projection formalisms described above, one overlooks -as
we will do here- the possible effect of coupling of the pair-
ing mode with the collective shape degrees of freedom,
as for instance a possible Coulomb centrifugal stretching
(see e.g. Ref. [41]). Indeed, if any, this effect should
be more important at the angular momentum value Iav

than at much lower spins.
In view of this, we consider to fix ideas, the follow-

ing three approaches to the calculation of the moment of
inertia, namely

(i) the Inglis-Belyaev’s formula (IB),

(ii) the increase of the Inglis-Belyaev moment of inertia
by 32% (IB+32%), in order to take into account the
Thouless-Valatin corrective terms,

(iii) the renormalization of the Inglis-Belyaev moment
of inertia by a factor of 2 (IB+100%), which arises
from the 50% reduction in the rotational energy of
the intrinsic vorticity model.
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D. Total nuclear energies within an approximate
projection on good parity states

In the spirit of the unified model description of odd
nuclei disentangling the dynamics of an even-even core
on one hand and of the unpaired (odd) nucleon on the
other, we factorize the total wavefunction (with an obvi-
ous notation) as

|Ψtot〉 = |Φcore〉|φodd〉 . (7)

Similarly we decompose the total Hamiltonian in two sep-
arate core and single particle parts

Ĥ = Ĥcoreĥodd . (8)

Upon projecting on good parity states both core and odd
particle states we get

|Ψtot〉 = |Ψ+〉+ |Ψ−〉 (9)

where the good parity components of |Ψtot〉may be devel-
oped onto core and odd-particle good parity components
as

|Ψ+〉 = εη|Φ+
core〉|φ+

odd〉+
√

1− ε2
√

1− η2|Φ−core〉|φ−odd〉
(10)

and similarly

|Ψ−〉 = ε
√

1− η2|Φ+
core〉|φ−odd〉+

√
1− ε2η2|Φ−core〉|φ+

odd〉
(11)

where all kets on the r.h.s. of the two above equations
are normalized. As a result of this, and further making

the rough assumption that Ĥcore and ĥodd break only
slightly the parity, one gets approximately the energies
of the state described by the ket |Ψtot〉 after projection
as

E+ =
ε2η2(E+

core + h+
odd) + (1− ε2)(1− η2)(E−core + h−odd)

1− (ε2 + η2) + 2ε2η2

(12)
in the positive parity case and similarly for the negative
parity case

E− =
ε2(1− η2)(E+

core + h−odd) + (1− ε2)η2(E−core + h+
odd)

(ε2 + η2)− 2ε2η2

(13)
where E+

core and E−core are the energies of the projected
core states and h+

odd and h−odd are the diagonal matrix

elements 〈φ+
odd|ĥodd|φ

+
odd〉 and 〈φ−odd|ĥodd|φ

−
odd〉.

Only in special cases, can we easily approximate from
what we know about the core projected energies, what
are the total projected energy of the odd nucleus.

Let us illustrate the above in two simple cases. The
first one is a favourable one where the odd nucleon has an
average parity which is roughly equal to one in absolute
value (e.g. such that roughly η = 1). Then, the total
projected energies will be given by

Eπ = Eπcore + eodd (14)

where eodd is the single particle (mean field) energy of
the last nucleon. Now, we recall that the energy of the
core state projected onto a positive parity is lower than
(or equal to) what is obtained when projecting it on a
negative parity. Moreover, within the core plus particle
approach, we may approximate (à la Koopmans) the to-
tal projected nuclear energy E(K,π) of the odd nucleus
corresponding to a (K,π) configuration for the last nu-
cleon as

E(K,π) = E+
core + eodd = Eint(K,π) + ∆E+

core (15)

where the intrinsic total energy Eint(K,π) results from
our microscopic calculations for the considered single
particle (K,π) configuration and the corrective energy
∆E+

core is the gain in energy obtained when projecting
the core intrinsic solution on its positive parity com-
ponenet.

On the contrary whenever the average parity of the odd
nucleon state is close to zero such that roughly η2 = 1

2 one
would get for instance for the positive parity projected
state

E+ =
ε2E+

core + (1− ε2)E−core
2

+
ε2h+

odd + (1− ε2)h−odd
2

,

(16)
which cannot be simply evaluated without a detailed
knowledge of the projected wave functions.

E. Some technical aspects of the calculations

We have employed the SkM* [42] parametrization as
the main choice of the Skyrme force for our calculations.
This Skyrme parametrization has been fitted to the liq-
uid drop fission-barrier of 240Pu and is usually consid-
ered as the standard parametrization for the study of
fission-barrier properties, for e.g in Refs. [11, 43] within
the HF framework and Refs. [3, 44, 45] in the Hartree-
Fock-Bogoliubov calculations. Two other parametriza-
tions will be also considered here in some cases, namely
the SIII [46] and the SLy5* [47] parameter sets.

As was done in the study of low-lying band-head spec-
tra in the ground-state deformation [31], to be consis-
tent with the fitting protocol and respect the galilean
invariance, we have neglected the terms involving the
spin-current tensor density Jµνq and the spin-kinetic den-
sity Tq by setting the corresponding coupling constants
B14 and B15 (see Appendix A for the definition of these
constants) to 0 in the energy-density functional and the
Hartree–Fock mean field. To make this presentation self-
contained we recall in Appendix A, the expressions of the
Skyrme energy-density functional and the Hartree–Fock
fields, together with the coupling constants in terms of
the Skyrme parameters. In addition, we have also ne-
glected the terms of the form s ·∆s in the energy-density
functional, where s is the spin nucleon density, and the
corresponding terms of the Hartree–Fock Hamiltonian.
We shall refer to this as the minimal time-odd scheme
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where only some combinations of the time-odd densities
appearing in the Hamiltonian density are taken into ac-
count. On the other hand, the full time-odd scheme refers
to the case where all time-odd densities are considered
when solving the Hartree–Fock equations.

The pairing interaction has been approximated with a
seniority force which assumes the constancy of so-called
pairing matrix elements between all single-particle states
belonging to a restricted valence space. In our case,
the valence space has been chosen to include all single-
particle states up to λq +X, where λq is the chemical po-
tential for the charge state q and X = 6 MeV. A smooth-
ing factor of Fermi type with a diffuseness µ = 0.2 MeV
(see e.g. Ref. [48] for details) has been used to avoid a
sudden variation of the single-particle valence space. The
pairing matrix element is given by

gq =
Gq

Nq + 11
, (17)

where Nq denotes the nucleon number of charge state
q. The pairing strengths Gq were obtained by reproduc-
ing as best as possible the experimental mass differences

∆
(3)
q (Nq) of some well-deformed actinide nuclei (for odd

Nq-values, see Ref. [31] for further discussions). The ob-
tained values when using the SkM* parametrization are
Gn = Gp = 16.0 MeV.

The calculated single-particle states have been ex-
panded in a cylindrical harmonic oscillator basis. The ex-
pansion needs to be truncated at some point, and this has
been performed according to the prescription of Ref. [49]

~ω⊥
(
n⊥ + 1

)
+ ~ωz

(
nz +

1

2

)
≤ ~ω0

(
N0 + 2

)
, (18)

where the frequencies ωz and ω⊥ are related to the spher-
ical angular frequency, ω0, by ω3

0 = ω2
⊥ωz. The basis size

parameter N0 = 14 which corresponds to 15 spherical
major shells has been chosen. The two basis size param-
eters have been optimized for a given Skyrme interaction
at each deformation point of the neighbouring even-even
nuclei while assuming axial and parity symmetrical nu-
clear shapes. The optimized values were then used for
the calculations of the odd-mass nuclei.

Numerical integrations were performed using the
Gauss–Hermite and Gauss–Laguerre approximations
with 16 and 50 mesh points, respectively. The Coulomb
exchange term has been evaluated in a usual approxima-
tion generally referred to as the Slater approximation [50]
even though it had been proposed much earlier by C.F.
von Weisæcker [51].

III. FISSION-BARRIER CALCULATIONS

A. Fission barriers of odd-mass nuclei without
rotational correction

First the HF+BCS calculations of deformation energy
curves as functions of the quadrupole moment Q20, with

imposed parity symmetry, were performed in the two
even-even neighboring isotopes of a given odd-mass nu-
cleus. Subsequently, the calculations for the odd-mass
nucleus were then carried out starting from the converged
solutions of either one of the two even-even neighboring
nuclei. It has been checked that, as it should, the choice
of the initial even-even core solution to be used at a par-
ticular deformation point does not affect the solution of
the odd-mass nucleus when self-consistency is achieved.

For odd-mass nuclei, the choice of the blocked states
have been limited to the low-lying band-head states ap-
pearing in the ground-state well. This corresponds to
blocking the single-particle states with quantum numbers
Ωπ = 1/2+, 5/2+, 7/2− and 7/2+ for 239Pu and 235U,
and the additional two single-particle states with Ωπ =
3/2+ and 5/2− for 235U. In all cases, the single-particle
state with the desired Kπ quantum numbers nearest to
the Fermi level is selected as the blocked state at every
step of the iteration process. However, this selection cri-
terion does not guarantee a converged solution. There
can be, indeed, a problem related to the oscillation of
the blocked state from one iteration to the next. In this
case, we were forced to perform, instead, two sets of cal-
culations. The blocked configuration with a lower energy
solution was selected as the solution for the particular
Kπ state.

The results of these calculations where intrinsic parity
is conserved are displayed on Figs. 1 (for 239Pu) and 2 (for
235U). They lead as well-known, to unduly high fission
barriers for two reasons. One is that a correction for the
spurious rotational energy content (as above discussed
and substantiated below) should be removed throughout
the whole deformation energy curve. The second specific
to the outer barrier is related to the imposition of the
intrinsic parity symmetry. This is why parity-symmetry
breaking calculations have been considered. Due to the
huge amount of numerical effort that it involves, we have
considered only some of the lower band-head states in the
ground-state deformation. These are band-head states
with K = 1/2, 5/2 and 7/2 states for 239Pu, and 1/2,
3/2 and two 7/2 states for 235U. These parity symme-
try breaking calculations were performed starting from a
converged parity-symmetric solution of the respectiveKπ

configuration beyond the fission-isomeric well. From this
initial solution corresponding to a given elongation (as
measured by Q20), we blocked one single-particle state
with K = Ω and then performed calculations by con-
straining the nucleus to a slightly asymmetrical shape at
a finite Q30 value for a few iterations. The constraint on
Q30 was then released and the calculations were allowed
to reach convergence. Once an asymmetric solution was
obtained, we used it for calculating the next Q20 defor-
mation point with an increment of 20 barns.

The results of such parity breaking calculations are
reported also on Figs. 1 and 2. Figure 3 illustrates
on a specific example, the transition from a symmetri-
cal equilibrium solution at Q20 = 95 b to increasingly
asymmetrical equilibrium solutions upon increasing Q20.
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FIG. 1. Deformation energy curves of 239Pu as functions of Q20 calculated with the SkM* parametrization and without taking
the rotational energy correction into account. The Kπ labels refer to the quantum numbers in the parity symmetrical region
(unfilled circles). The plotted solutions when this symmetry is broken (filled circles) are obtained by continuity as functions of
Q20. .

At the top of the barrier (corresponding roughly to the
Q20 = 110 − 130 b range) the attained octupole defor-
mations (as measured by Q30) reach large values which
are representative of the most probable fragmentation in
the asymmetrical fission mode experimentally observed
at very low excitation energy in this region. Of course,
upon releasing the symmetry constraint, the parity is no
longer a good quantum number. Thus, e.g. on Fig. 1,
the parity-broken energy curve associated with the label
1/2+ corresponds merely to a K = 1/2 solution beyond
the critical point where the left-right reflection symme-
try is lost. This may cause some ambiguity in how we
define the fission barrier. For instance, in the case of
235U (Fig. 2) we have two K = 7/2 solutions of oppo-
site parity. On Fig. 4, we have reported potential energy
curves for the two K = 7/2 solutions followed by con-
tinuity upon increasing the deformation from the parity
conserved region. It turns out that the energy curves of
these two solutions are crossing around Q20 = 115 barns.
The solution stemming at low Q20 from a positive parity
configuration becomes energetically favored. We could
thus define a lowest K = 7/2 fission barrier by jumping

from one solution to the other. Yet, this overlooks two
problems. One which will be touched upon below, is the
projection on good parity states. The other is the fact
that we do not allow here for a residual interaction be-
tween the two configurations, a refinement that is beyond
the scope of our current approach.

As expected, the parity-symmetry-breaking calcula-
tions do yield a substantial effect on the intrinsic de-
formation energies around the outer fission-barrier. Its
height for the 1/2 configuration in 239Pu is lowered by
about 3.9 MeV with respect to the symmetrical barrier,
leading to a calculated height EB = 6.3 MeV. The outer-
barrier height for the 5/2 configuration, in the same nu-
cleus, was found to be EB = 6.6 MeV, corresponding
to an even larger reduction of 4.7 MeV with respect to
the left-right symmetric barrier height. Important re-
ductions of fission barrier heights are also obtained in
the 235U case (see Fig. 2). One lowers the K = 1/2 outer
barrier by 3.7 MeV and by 5.4 MeV in the K = 7/2 case.

Associated with this substantial gain in energy upon
releasing the left-right reflection symmetry, one observes
also a very important lowering of the elongation at the
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FIG. 2. Same as Fig. 1 for 235U.

outer fission saddle point, resulting in a reduced barrier
width and therefore in a strong further enhancement of
the barrier penetrability.

To generate relevant outer barrier heights, one has in
principle to project our solutions on good parity states.

In the absence of such calculations for the odd nuclei
under consideration here, one may propose some reason-
able estimates taking stock of what we know about the
projection of a neighboring even-even core nucleus. As
discussed in Subsection II.D however, this is only possi-
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used.
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FIG. 4. A portion of the deformation energy curves of the
blocked K = 7/2 configurations in 235U from the fission-
isomeric well up to beyond the top of the outer-barrier. The
filled symbols refer to the local minima as a function of Q30 for
fixed elongation Q20 while the unfilled symbols refer to the so-
lutions obtained by imposing a left-right symmetry. The solid
line connects the lowest-energy solutions when the left-right
symmetry is broken.

ble whenever the single-particle wavefunction of the last
(unpaired) nucleon corresponds to an average value of
the parity operator which is close to 1 in absolute value.
This is not always the case as exemplified on Fig. 5 cor-
responding to two low excitation energy K = 7/2 con-
figurations in the 235U nucleus. They are followed, as
we have already seen, by continuity from slightly be-

fore the isomeric-fission well to much beyond the outer
barrier. One of these two solutions stemming from a
Kπ = 7/2− configuration at small elongation keeps up to
Q20 = 120− 130 b an average parity reasonably close to
1. On the contrary, the other K = 7/2 solution involves
in the outer barrier region, a large mixing of contribu-
tions from both parities. We will therefore be only able
to evaluate the fission barrier of the former and will not
propose any outer fission barrier height for the latter.
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FIG. 5. (Top): Evolution of the single-particle energies
for two Ω = 7/2 states near the BCS chemical potential
(marked with crosses) as functions of Q20 obtained in the
parity asymmetric calculations of 235U. The solid line con-
nects the blocked single-particle states as a function of defor-
mation. (Bottom): Average parity of the above considered
blocked single-particle states as a function of Q20.

In the work of Ref. [11] one has described the fission
barrier of 240Pu nucleus within the Highly Truncated
Diagonalization approach, to account for pairing corre-
lations while preserving the particle-number symmetry.
Such solutions have been projected on good parity states
after variation. The parity-projection calculation had no
effect on the total binding energy at the top of the outer
fission-barrier, where the value of Q30 was found to be
very large. In contrast, projecting on a positive parity
state causes a lowering of the total binding energy in the
fission-isomeric well.

Using the notation of Subsection II.D, one has ob-
tained in Ref. [11] for the 240Pu nucleus, a positive cor-
recting energy ∆+

core about equal to 350 keV for the
fission-isomeric state and which vanishes at the top of
the outer barrier.

According to the discussion of Subsection II.D, out of
all the configurations considered up to the isomeric state
in 235U and in 239Pu, only the Kπ = 1/2+ and 7/2+ con-
figurations in 235U, and the 7/2+ configuration in 239Pu
qualify to allow us to propose reasonable estimates of the
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outer fission barrier heights (see Table II).

TABLE II. Expectation value of the parity of the parity oper-
ator for the blocked single-particle state nearest to the Fermi
level in both considered odd nuclei corresponding to a spe-
cific K configuration in the Q20 = 120−130 barn region. The
SkM*interaction has been used. Only the lowest energy solu-
tions have been considered for a given K value. In the single
case K = 7/2 where two solutions stemming by continuity
from states with the same K and opposite π values were close
enough in energy (a couple of MeV) we have reported the
parity expectation value of both, putting in parenthesis the
solution with the higher energy.

K 1/2 3/2 5/2 7/2
235U 0.76 −0.53 0.06 0.85 (0.10)
239Pu – −0.13 – 0.83 (0.19)

B. Inclusion of rotational energy and sensitivity of
fission-barrier heights to the moment of inertia

Table III displays the inner-barrier height EA, the
fission-isomeric energy EIS and the outer-barrier height
EB , obtained within the Bohr-Mottelson unified model
(therefore including the rotational energy). Parity sym-
metric and asymmetric (when available) outer-barrier
heights are both tabulated for completeness. It should
be emphasized that the notation EIS used here is not
synonymous with the usual meaning of fission-isomeric
energy often denoted by EII. The latter refers to the en-
ergy difference between the lowest-energy solutions in the
fission-isomeric and ground-state wells. The correspond-
ing results will be reported in Section IV, while the for-
mer is the energy difference between given Kπ quantum
numbers in the two wells.

It can be seen from Table III that the rotational-energy
correction calculated using the Inglis-Belyaev formula
gives too low an outer fission barrier in some cases, as
compared to the empirical values found to be within the
range of 5.5 to 6.0 MeV (see Table IV presented in the
next Subsection). The increase in the IB moments of in-
ertia by 32% and 100% as discussed in Section II results
in an increase, on the average, of EA and EIS by about
0.27 MeV and 0.35 MeV, respectively while the parity
symmetric EB increases by about 0.64 MeV.

Among the three different considered energy differ-
ences, EB is found to be the most sensitive one to the
variation of the moment of inertia as expected in view of
the well-known increase of the rotational energy correc-
tion with the elongation.

C. Comparison with empirical values and other
calculations

Before comparing our fission-barrier heights to other
available data, some corrections should be made. The
corrections considered herein, stem from approximations
of different nature: the so-called Slater approximation
to the Coulomb exchange interaction, the truncation of
the harmonic-oscillator basis, and the effect of triaxiality
around the inner-barrier ignored here.

We shall discuss first the corrections to be made for the
inner-barrier heights. A test study on the impact of basis
size parameter on the fission-barrier heights is presented
in Appendix B. As discussed therein, the inner-barrier
height is estimated to be lowered by about 300 keV when
increasing the basis size parameter N0 to a value where
this relative energy may be considered to have converged.
Moreover the use of Slater approximation was found in
Ref. [52] to underestimate the inner-barrier height of 238U
by about also 300 keV. Assuming that a similar cor-
rection applies to the two considered nuclei irrespective
of the Kπ quantum numbers, our inner-barrier height
should be increased by the same magnitude.

Let us consider the impact of breaking the axial sym-
metry should around the top of the inner barrier. When
breaking this symmetry, K is no longer a good quantum
number and this may pose a problem in the blocking pro-
cedure for an odd-mass nucleus since the single-particle
states will contain to some extent mixtures of K quantum
number components. As a simple ansatz, overlooking
these potential difficulties, we estimate the lowering of
the inner barrier of odd-mass nuclei by using the results
obtained in similar triaxial calculations for even-mass nu-
clei, taking stock of the results of Ref. [56] where the same
SkM* parametrization and seniority residual interaction
have been used. Thus assuming that the effect of includ-
ing the triaxiality is the same as in 236U (for 235U) and
as in 240Pu (for 239Pu) for all considered blocked configu-
rations, we expect a reduction in the inner-barrier height
by about 1.3 MeV.

Taking the three above mentioned corrections into ac-
count, we obtain a total reduction of the inner-barrier
height by about 1.3 MeV.

Next, we consider the isomeric energies EIS . We esti-
mate that the finite basis size effect (see Appendix B)
results in an overestimation of this energy by about
0.5 MeV. The exact Coulomb exchange calculations of
Ref. [52] have shown that the Slater approximation
yielded an underestimation of the isomeric energy of 238U
of about 0.3 MeV.

As for the outer barrier now, exact Coulomb exchange
calculations have not been performed—due to corre-
sponding very large computing times—for these very
elongated shapes in this region of nuclei. As discussed
in Ref. [52] most of the correction comes from an error in
estimating the Coulomb exchange contributions in low
single-particle level density regimes Therefore as far as
EB is concerned, we assume that this correction depends
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TABLE III. Inner-barrier height EA, fission-isomeric energy EIS (with respect to the ground-state solution), and outer-barrier
height EB for the two considered odd-neutron nuclei. The SkM* parametrization has been used. Three values (in MeV) were
given in all cases, corresponding to different prescription for the moments of inertia (see the discussion in Section II).

Nucleus Kπ EA EIS EB (symmetric) EB (asymmetric)

IB IB+32% IB+100% IB IB+32% IB+100% IB IB+32% IB+100% IB IB+32% IB+100%

235U

1/2+ 6.57 6.83 7.11 2.60 2.94 3.30 8.60 9.23 9.90 5.31 5.83 6.38

3/2+ 6.19 6.43 6.69 1.48 1.81 2.16 8.12 8.72 9.37

5/2+ 5.83 6.09 6.37 1.44 1.78 2.15 9.57 10.17 10.80

5/2− 6.32 6.59 6.87 3.97 4.28 4.62 8.21 8.81 9.46

7/2− 6.97 7.18 7.41 2.70 3.00 3.32 10.25 10.85 11.49

7/2+ 4.75 5.04 5.35 2.21 2.55 2.91 7.29 7.93 8.61 4.03 4.54 5.09

239Pu

1/2+ 7.43 7.71 7.98 1.70 2.05 2.43 7.63 8.24 8.88

5/2+ 6.97 7.25 7.54 0.96 1.30 1.67 8.83 9.40 10.00

7/2− 8.10 8.32 8.56 2.74 3.05 3.37 8.75 9.32 9.93

7/2+ 5.90 6.18 6.48 1.72 2.05 2.40 6.63 7.22 7.86 3.80 4.25 4.72

TABLE IV. Comparison between various estimates of the inner EA and outer-barrier EB heights (given in MeV) of the two
considered odd-neutron nuclei. Our calculated fission-barrier heights corresponding to the experimental Kπ quantum numbers,
at ground state deformation, are listed in the last column, whereby these values have been obtained after taking the various
corrections into account.

Nucleus K
Ref. [15, 16] Ref. [53] Ref. [13] Ref. [54] Ref. [55] present work

EA EB EA EB EA EB EA EB EA EB EA EB

235U

1/2+ 9.0 8.0

4.20 4.87 5.54 5.80 5.25 6.00 5.9 5.6

5.81 6.18

3/2+ - - 5.39 -

5/2+ - - 5.07 -

5/2− - - 5.57 -

7/2−
8.5 7.2

6.11 -

7/2+ 4.05 4.89

239Pu

1/2+ 11.0 8.5

5.73 4.65 5.96 5.86 6.20 5.70 6.2 5.5

6.68 -

5/2+ 11.5 9.0 6.24 -

7/2−
11.0 8.5

7.26 -

7/2+ 5.18 4.52

only on the treatment of the ground-state and therefore
should be the same as what was obtained for EA, namely
an underestimation of 0.3 MeV. The finite basis size ef-
fect, as evaluated in a particular case in Appendix B
corresponds to an overestimation of about 0.5 MeV. The
nett effect of the corrective terms for the outer-barrier
height is therefore a decrease by about 0.2 MeV.

When including all the above corrections and using the
doubled moment of inertia (IB+100% scheme), we obtain
inner-barrier heights for the different blocked configura-
tions ranging from 5.0 to 6.2 MeV for 235U, and from 5.1
to 7.3 MeV for 239Pu. The left-right asymmetric outer-
barrier heights lie within the range of 4.8 to 6.2 MeV for
the 235U nucleus, and 4.5 MeV for 7/2+ configuration in
the 239Pu nucleus.

Some other fission-barrier heights have been also re-
ported for comparison in Table IV. More precisely
we consider two sets of calculations, namely the EFA

calculations by Robledo and collaborators [15, 16] and
the macroscopic-microscopic calculations by Möller [53].
Three sets of evaluated fission-barrier heights are alos
listed: those fitted to reproduce the neutron-induced
fission cross-sections by Goriely and collaborators [13],
those coming from the RIPL-3 [14] database extracted
from empirical estimates compiled by Maslov et al. [54],
and the empirical fission-barrier heights of Bjørnholm
and Lynn [55] obtained from the lowest-energy solution
at the saddle points irrespective of the nuclear angular-
momentum and parity quantum numbers.

Out of these values, only those obtained from Refs. [15,
16] using the Gogny D1S force within the Hartree-Fock-
Bogoliubov-EFA framework are directly comparable with
our results. In these works, axial symmetry is assumed.
The resulting fission-barrier heights are much higher than
our calculated values. This is consistent with the rather
high fission-barrier heights obtained for the even-even
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240Pu nucleus in the earlier work of Ref. [57].
It should be stressed that the rather large differ-

ences existing between our results and those reported
in Refs. [15, 16] cannot be ascribed to the treatment of
the time-reversal symmetry breaking. In fact, we have
checked that equal-filling approximation (EFA) calcula-
tions (corresponding to a particle and not quasi-particle
blocking though) affects the total binding energies by a
few hundred keV at most for the parity symmetric case.
The resuls of calculations for four different configurations
in 239Pu of EA, EIS and EB are displayed on Table V.
The effect of time-reversal symmetry breaking terms is
found to be approximately constant with deformation.

TABLE V. Differences (in keV) betwreen the intrinsic fission-
barrier heights (∆Ex =

(
Ex

)
EFA

−
(
Ex

)
SCB

with x ≡
A, IS,B) calculated within the EFA and SCB framework for
239Pu with the SkM* parametrization.

Kπ ∆EA ∆EIS ∆EB

1/2+ -70 -50 -10

5/2+ -10 -20 0

7/2+ -10 -20 -10

7/2− -10 0 0

The comparison with the other sets of data in Table IV
is less straightforward. As was mentioned by Schunck et
al. in Ref. [45], due to an uncertainty in the empirical
fission-barrier heights of about 1 MeV, it is may be illu-
sory to attempt a reprodution of empirical values within
less than such an error bar. In our case, the fission-barrier
heights calculated with the SkM* parametrization and in-
cluding the various corrective terms as discussed above,
falls easily within this range.

D. Specialization energies

Originally (see Refs. [58, 59]), the concept of special-
ization energy has been defined as the difference between
fission barrier heights of an odd nucleus with respect to
those of some of its even-even neighbors. Namely one de-
fines, for instance, the specialization energy for the first
(inner) barrier, upon considering 239Pu as a 238Pu core
plus one neutron particle, as

∆E
(p)
A (239Pu,Kπ) = EA(239Pu,Kπ)− EA(238Pu, 0+) ,

(19)
and similarly when considering 239Pu as a 240Pu core plus
one neutron hole

∆E
(h)
A (239Pu,Kπ) = EA(239Pu,Kπ)− EA(240Pu, 0+) .

(20)
For configurations at the ground state deformation hav-
ing a very low or zero excitation energy, due to the con-
servation of quantum numbers preventing to follow the a
priori lowest energy configurations at s.p. level crossings,

one expects that these specialization energies should be
positive quantities. This is of course the case for exper-
imentally observed spontaneous fission processes. But
this would not hold whenever one would consider config-
urations which correspond to a high enough excitation
energy in the ground state well as we will show in a spe-
cific case (see Table VI).

To illustrate this concept Figure 6 and Table VI
present the deformation-energy curves and the fission-
barrier heights, respectively, with a conserved parity
symmetry evaluated within the BM unified model for
the four blocked Kπ configurations of 239Pu with respect
to those of the neighbouring even-even nuclei. We see
that the inner and outer-barrier heights for some blocked
configurations—the 7/2− configuration being an excel-
lent example—are higher than the one of the two neigh-
boring even-even nuclei as a consequence of fixing Kπ

quantum numbers along the fission path. In contrast the
7/2+ blocked configuration happens to yield lower fission-
barrier heights as compared to the two neighboring even-
even nuclei. This is so, as above discussed, because the
7/2+ configuration is found at a much higher excitation
energy in the ground-state deformation well [31] but with
a low excitation energy at the saddle points as compared
to the other blocked configurations. This results in neg-
ative specialization energies, as shown in Table VI.

TABLE VI. Specialization energies defined here as the average
of Eq. (19) and (20) for the four blocked configurations of
239Pu (in MeV). The Belyaev’s moments of inertia have been
increased by a factor of 2.

Kπ

1/2+ 5/2+ 7/2+ 7/2−

∆EA 0.83 0.39 -0.68 1.41

∆EB 0.26 1.38 -0.77 1.31

By way of conclusion, one can state that the fission-
barrier profiles (heights and widths) are very much de-
pendent on the Kπ quantum numbers.

E. Effect of neglected time-odd terms

In order to probe the effect of the neglected time-
odd densities we have performed calculations of the total
binding energy as a function of deformation with parity
symmetry within the so-called full time-odd scheme, from
the normal-deformed ground-state well up to the fission-
isomeric well. For this study, we have also considered
another commonly used Skyrme parameters set, namely
the SIII parametrization [46], partly because there, the
coupling constants B14 and B18 driving the terms involv-
ing the spin-current tensor density Jµνq and the Laplacian
of the spin density, respectively), are exactly zero. In the
full time-odd scheme, the B14, B15, B18 and B19 cou-
pling constants are not set to zero but allowed to take
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FIG. 6. Deformation-energy curves of 238,240Pu (with Kπ = 0+) and 239Pu (with Kπ = 1/2+, 5/2+, 7/2− and 7/2+) as
functions of Q20 in barns. The Belyaev’s moments of inertia have been increased by a factor of 2. Left panel: absolute energy
scale; right panel: relative scale, taking the normal-deformed minimum as the origin of energy for all curves.

the values resulting from their expression in terms of the
Skyrme parameters (see Appendix A). The contributions
to the inner-barrier height EA and fission-isomeric energy
EIS stemming from the kinetic energy, the Coulomb en-
ergy, the pairing energy as well as the various coupling-
constant terms appearing in the Skyrme Hamiltonian
density are calculated self-consistently in the minimal
and full time-odd schemes from our converged solutions.

More specifically we denote by ∆E′Bi
the difference

between the Bi contribution to the inner-barrier heights

∆E
(full)
Bi

and ∆E
(min)
Bi

in the full time-odd and the mini-
mal time-odd schemes, respectively

∆E′Bi
= ∆E

(full)
Bi

−∆E
(min)
B1

. (21)

Similarly we denote by ∆E
(full)
kin and ∆E

(min)
kin the kinetic-

energy contribution to the inner-barrier height in both
time-odd schemes. In the same spirit the abbreviated in-
dices C and pair are used for the corresponding Coulomb
and pairing contributions, respectively. The sum of
the double energy differences coming from the kinetic,
Coulomb, pairing and Bi contributions with i ranging
from 1 to 13 is denoted as ∆E′min

∆E′min = ∆E′kin +

13∑
i=1

∆E′Bi
+ ∆E′pair + ∆E′C . (22)

The difference of inner-barrier heights in the two time-
odd schemes is therefore given by

∆E′A = ∆E′min + ∆E′B14
+ ∆E′B15

+ ∆E′B18
+ ∆E′B19

.
(23)

Similar notations are used for the fission-isomeric energy.

In Figures 7 and 8, the various energy differences de-
fined above, are represented as histograms for the SkM*
and SIII parametrizations, respectively. We find that
the inner-barrier heights, in general, decrease when going
from a minimal to a full time-odd scheme in all consid-
ered blocked configurations. This is reflected by the neg-
ative values of ∆E′A. The difference in the inner-barrier
heights between both time-odd schemes is overall a com-
petition between the ∆E′min and ∆E′B14,15

, while the

∆E′B18,19
terms have a negligible effect. More precisely,

the ∆E′B14
term involves the combination of

←→
J 2 − s ·T

local densities and is found to be dominated by the
←→
J 2

component. When the ∆E′min and ∆E′B14,15
contribu-

tions are of the same magnitude but with opposite signs,
then we do not have a change in the inner-barrier height,
as is the case for the 7/2+ blocked configuration with the
SkM* parametrization.

The effect of the time-odd scheme on fission-isomeric
energy EIS is less clear-cut. However, we could still ob-
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serve that the B18 and B19 contributions remain negli-
gible. Moreover the time-odd scheme generally has less
impact on the fission-isomeric energy than on the inner-
barrier height. A notable exception is found for the 1/2+

configuration.
This study shows that the terms proportional to cou-

pling constants which are not constrained in the original
fits of the Skyrme force can impact the fission-barrier
heights in a non-systematic and non-uniform manner.
This suggests that one cannot absorb this effect into an
adjustment procedure.

IV. SPECTROSCOPIC PROPERTIES IN THE
FISSION-ISOMERIC WELL

In this section, we discuss the results obtained in the
fission-isomeric well for the 235U and 239Pu nuclei. We
will compare here the results obtained with three Skyrme
force parametrizations (SkM*, SIII and SLy5*). In the
vicinity of the isomeric state, we will make the approxi-
mation that the parity mixing is indeed very small, such
that (with the notation of Subsection II.D)

ε ∼ 1 (24)

and similarly for an odd nucleon state stemming from a
positive parity s.p. configuration

η ∼ 1 h+ ∼ eodd h− ∼ 0 (25)

while for an odd nucleon state stemming from a negative
parity s.p. configuration

η ∼ 0 h− ∼ eodd h+ ∼ 0 . (26)

As a result for a positive parity nuclear configuration,
the projected energy of the fission-isomeric state will be
approximated by

E(K+) ∼ Eint(K+) + ∆E+
core (27)

while in the negative parity case we will have

E(K−) ∼ Eint(K−) + ∆E+
core (28)

where the intrinsic energies Eint(K
±) are the energies of

our microscopic blocked HF + BCS calculations.

A. Static quadrupole moment

Before discussing relative energy quantities in the
fission-isomeric well, we assess the quality of deforma-
tion properties of our solutions in this well by calculat-
ing the intrinsic quadrupole moments for some relevant
Kπ configurations in the fission-isomeric well. The ob-
tained values are listed in Table VII. To the best of
our knowledge, experimental values are available in 239Pu
only [60, 61]. In this nucleus, our values calculated for
the 5/2+ configuration with the three considered Skyrme
force parametrizations are all found to agree with exper-
iment within the quoted error bars.

TABLE VII. Calculated intrinsic quadrupole moments in the
isomeric well for the two lowest-energy states in 235U and the
two states corresponding to the experimentally known [60, 61]
Kπ configuration in 239Pu. In addition, the values obtained
for the 11/2+ state in 239Pu are also reported.

Nucleus Kπ SkM* SIII SLy5* Exp

235U
5/2+ 32.9 31.8 33.4 -

11/2+ 32.5 31.8 32.3 -

239Pu
5/2+ 34.1 33.2 34.8 36 ± 4

9/2− 34.1 33.2 34.5 -

11/2+ 34.5 33.9 34.3 -

B. Fission-isomeric energy, band heads and
rotational bands

Above the lowest-energy solution at the fission-
isomeric well there are several band-head states within
1 MeV. This has been displayed in Figures 9 and 10 for
the 239Pu and 235U nuclei, respectively. These results
have been obtained with the inclusion of rotational en-
ergy with the approximate Thouless-Valatin corrective
term in the moment of inertia (assuming a 32 % increase
above the IB value).

Let us first discuss the energy spectra for the 239Pu nu-
cleus for which a comparison with the experimental data
of Refs. [62, 63] is possible. As shown in Fig. 9, the exper-
imental ground-state quantum numbers in the normal-
deformed well are 1/2+ while in the fission-isomeric well
they are 5/2+. Our calculated results with the SkM* and
the SIII parametrizations reproduce these data.

On the contrary, the calculations with the SLy5* pa-
rameter set, fail to do it as they yield a 5/2+ ground-state
in the normal-deformed well located 160 keV below the
1/2+ state and a 1/2+ lowest-energy state in the fission-
isomeric well. Moreover, the Kπ = 9/2− state calcu-
lated with SLy5* appears at a too high excitation energy
of more than 500 keV as compared to the experimental
value of about 200 keV.

In contrast the excitation energy of this 9/2− state is
found in much better agreement with data for SkM* and
SIII (139 keV and 127 keV, respectively). The agreement
with the data of these values is expected to be favorably
improved when including the effect of Coriolis coupling,
as suggested from the work of Ref. [12]. In addition,
a 11/2+ excited state is predicted at 151 keV, 129 keV
and 299 keV with the SLy5*, the SkM* and the SIII
parametrizations, respectively. This state was also pre-
dicted (at a 44 keV excitation energy) in the Hartree–
Fock–Bogoliubov calculations with the Gogny force by
Iglesia and collaborators [16].

The rotational band built on the 5/2+ band-head state
can also be compared with experimental data: the cal-
culated energies for the first two excited states are found
to be rather similar within the three considered Skyrme
parametrizations in use, and to compare very well with
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data.

Let us now move the discussion to the results for the
235U nucleus displayed in Fig. 10. To the best of our
knowledge, there are no experimental data available for
comparison with our calculated values in the superde-
formed well of this nucleus. There are, however, some
calculations performed with the Gogny force in the work
of Ref. [15] which predict a 5/2+ ground state with
a first 11/2+ excited state at 120 keV in the fission-
isomeric well. The same level sequence is also obtained
in our calculations with the SkM* and the SLy5* Skyrme
parametrizations, although the 11/2+ state is located at
a much higher energy in the latter parametrization. The
calculations with SIII yields the opposite level sequence,
with a 5/2+ state 66 keV above the 11/2+ ground-state.

C. Fission-isomeric energies

Let us discuss now the fission-isomeric energy EII. Ta-
ble VIII displays the fission isomeric energies EII defined
as the difference between the energies of the solutions
lowest in energy in both the ground state and fission-
isomeric wells (irrespective of their Kπ quantum num-
bers), namely with an obvious notation

EII = EIS
0 − EGS

0 . (29)

As seen on Table VIII (see also Figs. 9 and 10) when us-
ing the standard Thouless-Valatin correction of 32% over
the IB estimate, the Skyrme SIII interaction yields values
of EII which are much too high. This is not very surpris-
ing in view of the well-known defect of its surface tension
property. On the contrary, the too low value obtained
with the SkM∗ interaction which provides very good Liq-
uid Drop Model barrier heights must be explained by
some inadequate account of relevant shell effect energies.
The last interaction (SLy5∗) provides reasonable EII val-
ues (yet slightly too weak).

Now, as discussed before, rotational energy correc-
tions calculated using the Belyaev moment of inertia were
found to be too large, resulting in an underestimation of
the fission-barrier heights. This is partly due to the re-
sulting overestimation of the rotational correction. As a
rough cure for this, one may increase the IB moments of
inertia by a factor of 2. The resulting EII values are listed
in Table VIII. It has been checked that the band-head
energy spectra in the fission-isomeric well are then only
affected by some tens of keV from the values shown in
Figs. 9 and 10. The Kπ quantum numbers of the lowest-
energy solutions in all cases remain unchanged except for
235U with the SkM* interaction. In this case, we have a
change in the level ordering of the ground and first ex-
cited states, where the quoted value of EII = 2.20 MeV
involves the Kπ = 11/2+ blocked configuration in the
fission-isomeric well.

V. CONCLUDING REMARKS

¿From the above calculations of fission barriers in odd-
mass nuclei within a self-consistent blocking approach we
can draw the following conclusions.

First, barrier heights and fission isomeric energies de-
pend on the time-odd scheme in a non-systematic way.
Indeed they are found to vary with the nucleus and with
the quantum numbers in a given nucleus between zero
and almost 0.8 MeV in the studied nuclei. This effect
cannot be absorbed in the adjustment of the Skyrme pa-
rameters. In particular the calculated specialization en-
ergies strongly vary with the K and π quantum numbers
and can be negative when the blocked configuration lies
rather high in energy in the ground-state well and rather
low at the saddle point.

Moreover, the equal-filling approximation, defined in
our work as an equal occupation of the block single-
particle state and its time-reversed state as opposed to
the definition of Ref. [18] based on one-quasi-particle
states, is found to have no significant effect on defor-
mation and is a fairly good approximation to calculate
relative energies, such as the fission-barrier heights and
fission-isomeric energies.

Regarding spectroscopic properties in the ground-state
and fission-isomeric wells, we have found overall a fair
agreement with available data. This gives us some confi-
dence in the deformation properties of the fissioning nu-
clei, especially in the barrier profiles as functions of the
Kπ quantum numbers.

In this context, we recall that we have imposed axial
symmetry throughout the whole potential energy curve
so that the K quantum number remains meaningful. As
already discussed, this may be deemed as a reasonable
assumption in view of dynamical calculations performed
for 240Pu and heavier nuclei, showing that the least-
action path is closer to an axial path than the triaxial
static one around the top of the inner and outer barri-
ers [25, 27, 28]. Moreover, as far as class I states are
concerned, it has been established from gamma decay of
even-even and odd-odd rare earth nuclei formed by neu-
tron capture, that the K-quantum number is reasonably
conserved even at energies resulting from neutron cap-
ture in the thermal and resonance energy domains (see,
e.g., [64]).

Regardless of the validity of the axial symmetry as-
sumption, our calculations of fission barriers with fixed
K values allow to expect that the penetrabilities of in-
ner and outer fission barriers will strongly vary with the
blocked configurations, resulting in a widespread distri-
bution of fission-transmission coefficients as a function of
K and π for a fixed J quantum number. This can a priori
impact the fission cross section computed in the optical
model for fission with the full K mixing approximation
(see, for instance, [65, 66]).

As a matter of fact fission cross section calculations
require in principle the knowledge of penetrabilities for
each discrete transition state, that is the barrier profile
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TABLE VIII. Fission-isomeric energy EII for three different prescriptions for the moment of inertia. The Kπ quantum numbers
of the ground-state solution in the fission-isomeric well are those displayed in Figs. 9 and 10, except for 235U with the SkM*
parametrization and when increasing the Belyaev’s result by a factor of 2 (column labeled IB+100%), for which the Kπ = 11/2+

blocked configuration has been considered.

Nucleus
SLy5* SkM* SIII

Exp
IB IB+32% IB+100% IB IB+32% IB+100% IB IB+32% IB+100%

235U 2.36 2.73 3.11 1.46 1.83 2.20 3.62 3.97 4.35 -
239Pu 2.30 2.69 3.10 1.08 1.43 1.80 3.42 3.84 4.30 3.1

and inertia parameters for each discrete state at barrier
tops. In Fig. 11 we show such transition states as ro-
tational bands built on various low-lying blocked con-
figurations. They are calculated in the above discussed
Bohr–Mottelson approach using Skyrme-HFBCS intrin-
sic solutions with self-consistent blocking. This kind of
results can provide microscopic input to the discrete con-
tribution to the fission transmission coefficients, along
the lines of Ref. [13]. Note that, in this work, odd-mass
nuclei were not considered in a time-reversal symmetry
breaking approach and that the inertia parameters were
calculated within a hydrodynamical model. A natural ex-
tension, requiring very long computing times, is to com-
pute these parameters from a microscopic model as in the
non-perturbative ATDHFB approach [29], consistently
with the barrier profiles for each blocked configuration.

Finally, it is to be noted that in such dynamical calcu-
lations, and even in static calculations, the phenomeno-

logical quality of the pairing interaction is of paramount
importance. In our case, its intensities have been deter-
mined by a fit based on explicit calculations of odd-even
mass differences in the actinide region. However, such
approaches suffer a priori from the deficiencies inherent
to a non-conserving particle-number theoretical frame-
work, particularly so if strong pairing fluctuations are to
be considered. To cure for that in an explicit and man-
ageable fashion, we intend to perform similar calculations
as those presented here, using the so called Highly Trun-
cated Diagonalization Approach of Ref. [48].

Appendix A: Skyrme energy density functional

As well known, when using an effective internucleon
interaction of the Skyrme type, the total energy of a nor-
malized Slater determinant |ΨHF 〉 can be written as an
integral of a Hamiltonian density, H, such that:

E = 〈ΨHF |Ĥ|ΨHF 〉 =

∫
H(r) dr =

∫ (
Hkin(r) +Hc(r) +HDD(r) +Hs.o(r) +HCoul(r)

)
dr (A1)

where the various Hamiltonian densities Hkin, Hc, HDD,
Hs.o and HCoul(r) are given [67, 68] by (see Table IX

for the definition of the coefficients Bi as function of the
usual ti, xi and W0 parameters of the Skyrme interaction
in use)

Hkin(r) =
(

1− 1

A

) ~2

2m
τ (A2)

Hc(r) = B1ρ
2 +B10s

2 +B3(ρτ − j2) +B14(
←→
J

2
− s ·T) +B5ρ4ρ+B18s · 4s

+
∑
q

{B2ρ
2
q +B11s

2
q +B4(ρqτq − j2q) +B15

(←→
J q

2
− sq ·Tq

)
}+B6ρq4ρq +B19sq · 4sq (A3)

HDD(r) = ρα
[
B7ρ

2 +B12s
2 +

∑
q

(B8ρ
2
q +B13s

2
q)
]

(A4)

Hs.o(r) = B9

[
ρ∇ · J + j · ∇ × s +

∑
q

(
ρq∇ · Jq + jq · ∇ × sq

)]
(A5)

HCoul(r) ≈ 1

2
ρp(r)VCD(r)− 3

4
e2(

3

π
)

1
3

ρ
4
3
p (r) (A6)
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The factor (1 − 1
A ) appearing in the kinetic energy

density is a corrective term introduced to approximately
eliminate the center-of-mass motion spuriously intro-
duced by the breaking of the translational invariance in-
herent to the mean-field approach. Such an approach
has been noted to overestimate the contribution from the
center-of-mass correction [69]. Nevertheless, the approx-
imate treatment of the correction term is consistent with
the manner in which the adopted Skyrme parametriza-
tions were fitted. For a study on the various approxima-
tions of the center-of-mass correction in the mean-field
approach and also its effects on nuclear properties as de-
formation energy surface we refer to Ref. [70].

The direct part of the Coulomb mean field VCD is read-
ily calculated from the proton density (see for the numer-
ical method in use, e.g. Refs. [71–73]). The exchange
part given by the second term of equation (A6) has been
approximated here as usually done, with a Slater approx-
imation [50]. The effect of using such an approximation
as opposed to performing rather time-consuming exact
Coulomb exchange calculations have been previously in-
vestigated (see Ref. [52, 74, 75]). It has been found
that the appropriateness of the Slater approximation is
directly related with the proton single-particle level den-
sity near the Fermi level, being less good for a spherical

(close shell) nucleus as compared to a well deformed nu-
cleus. Consequently, the lowering of the total energy is
lesser at the top of the barrier due to a higher single-
particle level density when the Slater approximation is
more appropriate as compared to the ground-state so-
lution. This translates into an underestimation of the
fission-barrier heights when calculations of the Coulomb
exchange term are performed using the Slater approxi-
mation.

All the above Hamiltonian densities are time-even
functionals of the local densities that are further catego-
rized into time-even and time-odd densities with respect
to the action of the time-reversal operator. The time-
even densities are the particle density ρ(r), the kinetic
energy density τ(r) and the spin-current density Jµν(r)
whose explicit definition can be found in Refs. [67, 68].

For each of the time-even densities, there exists a time-
odd counterpart, namely the spin density s(r), the spin
kinetic density, Tµ(r) and the current density j(r) (see
Refs. [67, 68]).

The Hartree-Fock equations obtained by varying the
total energy given in equation (A1) with respect to the
single-particle wavefunctions φk yield the following one-

body Hamiltonian ĥHF [67, 68]

〈r|ĥ(q)
HF |φk〉 = −∇ ·

( ~2

2m∗q(r)
∇[φk](r)

)
+
(
Uq(r) + δqpUCoul(r)

)
[φk](r) + iWq(r) ·

(
σ ×∇[φk](r)

)
− i
∑
µ,ν

{(
W (J)
q,µν(r)σν∇µ[φk](r)

)
+∇µ

(
W (J)
q,µν(r)σν [φk](r)

)}
− i

2

{
Aq(r) · ∇[φk](r)

+∇ ·
(
Aq[φk](r)

)}
+ Sq(r) · σ[φk](r)−∇ ·

((
Cq(r) · σ

)
∇[φk](r)

)
(A7)

The fields m∗, Uq, UCoul, Wq and W
(J)
q,µν where the

notation q labels the nuclear charge state, are time even-
operators wheras the fields Sq, Aq and Cq are time-odd
operators. They are given as follows [67, 68] in terms of
the various densities by
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TABLE IX. Definition of the coupling constants Bi entering the expression of Hamiltonian densities, in terms of usual Skyrme
force parameters.

B1 =
t0
2

(
1 +

x0
2

)
B2 = − t0

2

(1

2
+ x0

)
B3 =

1

4

[
t1
(
1 +

x1
2

)
+ t2

(
1 +

x2
2

)]
B4 = −1

4

[
t1
(1

2
+ x1

)
− t2

(1

2
+ x2

)]
B5 = − 1

16

[
3t1

(
1 +

x1
2

)
− t2

(
1 +

x2
2

)]
B6 =

1

16

[
3t1

(1

2
+ x1

)
+ t2

(1

2
+ x2

)]
B7 =

t3
12

(
1 +

x3
2

)
B8 = − t3

12

(1

2
+ x3

)
B9 = −W0

2

B10 =
1

4
t0x0 B11 = −1

4
t0 B12 =

1

24
t3x3

B13 = − t3
24

B14 = −1

8

(
t1x1 + t2x2

)
B15 =

1

8

(
t1 − t2

)
B18 = − 1

32

(
3t1x1 − t2x2

)
B19 =

1

32

(
3t1 + t2

)

~2

2m∗q
=

~2

2mq
+B3ρ+B4ρq (A8)

Uq = 2
(
B1ρ+B2ρn

)
+B3τ +B4τq + 2

(
B5∆ρ+B6∆ρq

)
+ (2 + α)B7ρ

1+α

+B8

(
αρ(α−1)

(
ρ2
n + ρ2

p

)
+ 2ραρq

)
+B9

(
∇ · J +∇ · Jq

)
+ αρα−1

(
B12s

2 +B13

(
sn + s2

p

))
(A9)

UCoul = Vdir − e2
( 3

π
ρp
)1/3

(A10)

Wq = −B9

(
∇ρ+∇ρq

)
(A11)

Wq,µν = B14Jµν +B15Jq,µν (A12)

Sq = 2
(
B10 +B12ρ

α
)
s + 2

(
B11 +B13ρ

α
)
sq −B9∇×

(
j + jq

)
−B14T−B15Tq + 2

(
B18∆s+B19∆sq

)
(A13)

Aq = − 2
(
B3 j +B4 jq

)
+B9∇×

(
s + sq

)
(A14)

Cq = −
(
B14 s +B15 sq

)
(A15)

Appendix B: Effect of basis size on fission-barrier
heights

The single-particle states of the canonical basis are
expanded on deformed harmonic oscillator basis states
truncated according to the deformation-dependent trun-
cation scheme of Ref. [49]. ¿From the oscillator fre-
quencies ω⊥, ωz one defines a spherical frequency ω0

by ω3
0 = ωzω

2
⊥. The corresponding basis parameters

b =
√

mω0

~ and q = ω⊥
ωz

are optimized to yield the min-

imal energy given a basis size, N0. For computational
time reasons, the calculations are performed with a ba-
sis size defined by N0 = 14 corresponding to 15 major
shells in the spherical case. The b and q parameters for
the calculations involving the SIII and SkM* interactions
in odd-mass nuclei are deduced as an average of the op-
timized basis of its neighbouring even-even isotopes, at
each deformation points. It was furthermore checked that
the optimal parameter values obtained for the SkM* in-
teraction were applicable for the SLy5* parameters sets
up to a very good approximation (of the order of tens of
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TABLE X. Inner-barrier EA, fission-isomeric energy (EII for
even-even nucleus and EIS for odd-mass nucleus) and outer-
barrier EB heights of 239Pu and 240Pu assuming axial and
intrinsic parity symmetries for different harmonic oscillator
basis sizes calculated with the SkM* interaction. All energies
are given in MeV.

Nucleus N0 EA EIS /EII EB

239Pu (5/2+)
14 8.14 2.42 11.25

16 7.97 2.22 10.83

18 7.93 2.12 10.80

240Pu
14 8.18 2.53 10.18

16 8.00 2.31 9.76

18 7.96 2.22 9.71

keV).
In this Appendix we assess the basis size effect on

fission-barrier heights using the notation of Subsection
II.E. In practice we have performed such a study for the
239Pu and 240Pu nuclei, assuming axial and parity sym-
metry along the whole fission path. Calculations were
performed with the SkM* interaction for three basis sizes
(N0 = 14, 16, 18). It would be a priori desirable to op-
timize the b and q parameters for each basis size. How-
ever, the work of Ref. [43] comparing solutions which has
been optimized in their respective basis size, has shown
that the impact of the optimization process on the bar-
rier heights is rather small in determining the considered
basis size effect. Thus, the same b and q parameters ob-
tained in the optimization process in N0 = 14 have been
used for other N0 values. The locations of the saddle
points as well as the ground states and second minima in
the deformation energy surface were obtained by using
the modified Broyden’s method [76].

The fission-barrier heights obtained for the various ba-
sis sizes are shown in Table X. The truncation effect are
shown to increase with deformation. As a result we have
crudely estimated for all considered nuclei (even-even or
odd) that the calculations performed with a basis defined
byN0 = 14 overestimate on the average, the inner-barrier
height by about 300 keV and the isomeric energy as well
as the outer-barrier height by about 500 keV.
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FIG. 7. Energy differences between various contributions (see Eqs. (21) to (23) for definitions) to the inner-barrier height and
isomeric energy obtained in the default minimal time-odd scheme and the full time-odd scheme for several blocked configurations

in 239Pu with the SkM* parametrization. The difference in the inner-barrier heights ∆E
′
A and fission-isomeric energy ∆E

′
IS

between the two schemes are also given for each blocked configuration.
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FIG. 8. Same as Figure 7 for the SIII parametrization.
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FIG. 9. Band-head energy spectra of 239Pu calculated with the SLy5*, SkM* and SIII parametrizations in the isomeric well
with the inclusion of the rotational correction. The standard Thouless-Valatin correction of Ref. [34] beyond the Belyaev’s
result has been taken into account for the moments of inertia of each band. The rotational spectra built upon the lowest-energy
5/2+ state (rot band) are also shown on the second column of each Skyrme force. The experimental data are taken from Refs.
[62, 63]. The fission-isomeric energy defined as the energy difference between the lowest-energy solution in the ground state
and the fission-isomeric well is denoted by EII.
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FIG. 10. Same as Figure 9 for 235U.
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