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In very high energy collisions nuclei are practically tranparent to each other but produce very
hot, nearly baryon-free, matter in the so-called central rapidity region. The energy in the central
rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and
rapidity loss of the nuclei using the color glass condensate model. This model also predicts the
excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate
the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold
nuclei at the highest energy attainable at the Relativistic Heavy Ion Collider, for example, we find
baryon densities more than ten times that of atomic nuclei over a large volume.

In 1980 Anishetty, Koehler and McLerran [1] outlined
what happens when large nuclei collide at extreme rela-
tivistic energies. Rather than stopping, as at lower ener-
gies, the nuclei pass through each other, compressing and
depositing energy in each other. Most of the produced
particles appear in the region between the two reced-
ing nuclei, the so-called inside-outside cascade. They ar-
gued that the matter within these fireballs would quickly
thermalize with a baryon density about 3.5 times that of
atomic nuclei, and an energy density of about 2 GeV/fm3,
which is 4 times the energy density of a proton. In a sem-
inal paper in 1983 Bjorken [2] utilized the inside-outside
cascade to propose a hydrodynamic model for the evolu-
tion of the matter produced in the central rapidity region
between the receding fireballs. Ever since then the com-
munity has been focused on the central region because
(i) the energy density is expected to be higher there, (ii)
the matter is nearly baryon-free, making it more relevant
for the type of matter that existed in the early universe,
and (iii) detectors in a collider can more easily measure
particle production and correlations in a few units of ra-
pidity around the center-of-momentum. In the enusing
decades only a few papers have studied the baryonic fire-
balls and their deceleration [3–7]. In this paper we use
the McLerran-Venugopalan model [8] to compute the ra-
pidity loss and excitation energy of the fireballs followed
by a space-time picture to obtain the energy and baryon
densities. Currently there is much interest in studying
high baryon density matter in the laboratory [9], albeit at
center-of-momentum energies much lower than discussed
in this paper.

Consider central collisions of equal mass nuclei; this
is easily relaxed to noncentral collisions and collisions
of unequal mass nuclei. We neglect transverse motion,
which should not be important during the fraction of a
fm/c time interval of relevance. Then the collision can
be thought of as a sum of independent slab-slab collisions
each taking place at a particular value of the transverse
coordinate r⊥ with the beam along the z-axis. The pro-
jectile slab has a 4-momentum per unit area in the center-
of-momentum frame denoted by PµP = (EP, 0, 0,PP). The
slab loses energy and momentum to the classical color
electric and magnetic fields produced in the region be-

tween the two receding slabs, sometimes called glasma.
This loss is quantified by dPµP = −TµνglasmadΣν where

dΣν = (dz, 0, 0,−dt) is the infinitesimal four-vector per-
pendicular to the hypersurface spanned by dt, dz, and
unit transverse area. The energy-momentum of the
glasma has the form [10, 11]

Tµνglasma =

A+ B cosh 2η 0 0 B sinh 2η
0 A 0 0
0 0 A 0

B sinh 2η 0 0 −A+ B cosh 2η

 .

(1)

The A and B are known analytical [11] and numerical

(for SU(2)) [12] functions of proper time τ =
√
t2 − z2

(and other input parameters), while the dependence on
space-time rapidity η = 1

2 ln[(t+ z)/(t− z)] follows from
the fact that Tµνglasma is a second-rank tensor in a boost-
invariant setting. The longitudinal position of the slab
zP is a function of time, zP = zP(t). The zP is related to
the time t via the velocity vP = dzP/dt = tanh yP, where
yP is the momentum-space rapidity of the slab. So all
the quantities solely depend on t. Of course Tµνglasma must
be evaluated on the trajectory of the slab. Explicitly

dEP(t, zP) = −T 00
glasma(t, zP)dzP + T 03

glasma(t, zP)dt

dPP(t, zP) = −T 30
glasma(t, zP)dzP + T 33

glasma(t, zP)dt .
(2)

It is useful to define the Lorentz invariant effective mass
per unit areaMP via the relations EP =MP cosh yP and
PP = MP sinh yP. The above pair of equations (2) de-
scribe not only the loss of kinetic energy of the projectile
nucleus but also the internal excitation energy imparted
to it during the collision. Thus MP is not constant but
increases with time, unlike the case of the string model
[5]; this difference can be traced to the lack of off-diagonal
terms in the energy-momentum tensor representing the
strings but which are present in (1). The thickness of the
glasma slice at τ = 0 is zero and, since the energy density
in the glasma is finite at τ = 0, the total energy initially
in the glasma is zero.

Initial conditions are needed to solve the equations of
motion. Immediately after the nuclei collide at τ = 0 the
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local energy density in the glasma is [10, 13–15]

ε0(r⊥) =
2πNcα

3
s

N2
c − 1

µ2(r⊥, Q) ln2(Q2/Λ2
QCD) . (3)

Here αs is the (fixed) strong coupling, µ is the width of
a Gaussian which characterizes color charge fluctuations
at transverse distance r⊥, and Q is an ultraviolet cutoff
on transverse momentum which characterizes the divi-
sion between the classical gluon fields and perturbative
QCD. Larger values of Q attribute more energy and mo-
mentum to the classical fields while smaller values of Q
attribute more to production of partons or minijets. The
value of Q should be chosen optimally so that obervable
results are minimally sensitive to it. In what follows we
choose 3 ≤ Q ≤ 5 GeV with a favored value of 4 GeV.
Generally µ(r⊥) is taken to be proportional to the thick-
ness function TA(r⊥) =

∫∞
−∞ dzρA(r⊥, z) where ρA is the

nucleon number density of a nucleus of atomic number A.
We follow this practice using a Woods-Saxon distribution
for the nucleus.

Equation (3) contains significant uncertainties via the
numerical values of αs and µ(r⊥, Q). For the abso-
lute normalization, therefore, we turn to hydrodynam-
ical descriptions of collisions at the top RHIC energy
of
√
sNN = 200 GeV. Reference [16] assumed that vis-

cous hydrodynamics became applicable at τ = 0.6 fm/c
with ε(r⊥ = 0, τ = 0.6 fm/c) = 30 GeV/fm3. Extrap-
olating back to τ = 0 using the results in [11] gives
ε0 ≡ ε0(r⊥ = 0, τ = 0) = 123, 142, and 158 GeV/fm3

for Q = 3, 4 and 5 GeV, respectively. Other analyses
result in somewhat higher values of the energy density at
τ = 0.6 fm/c [17]; these would increase the rapidity and
energy loss, making our conclusion even stronger.

The function

A = ε0 [TA(r⊥)/TA(0)]2 FA
(
ln(Q2/Λ2

QCD), Qτ
)

(4)

is now fixed. The dimensionless function FA can be found
in [11]. The function B has the same form but with a
different FB. The functions FA and FB are plotted in
Fig. 1 for Q = 4 GeV.

Now it is just a matter of solving the pair of equations
(2) for MP and yP numerically. We solve them up to
τ = 0.6 fm/c where it is assumed that a transition from
glasma to quark-gluon plasma has taken place [16].

Figure 2 shows the momentum-space rapidity yP of
the central core of a gold nucleus as a function of proper
time τ . (The beam rapidities in the center-of-momentum
frame are ±5.36.) The central core loses about 3 units of
rapidity within the first 0.1 to 0.2 fm/c; this is a robust
result, insensitive to the value of Q. When averaged over
the whole nucleus the baryon rapidity loss is about 2.4.
BRAHMS [18, 19] was the only detector at RHIC or LHC
that could measure particle production anywhere near
the fragmentaion region. The coverage was limited to
y ≤ 3.1, so the uncertainty in the loss estimate was large.
For 0-10% centrality BRAHMS found an average rapidity
loss of about 2.05 + 0.4/ − 0.6. This is consistent with
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FIG. 1. (color online) The dependence of FA and FB on
proper time for Q = 4 GeV.
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FIG. 2. (color online) Rapidity of the central core of a
Au projectile nucleus in the center-of-momentum frame for√
sNN = 200 GeV as a function of proper time. The result is

insensitive to the choice of Q in the physically relevant range.

our result, especially since we focus on 0% centrality for
illustration.

Figure 3 shows the excitation energy per baryon in
units of the nucleon mass as a function of proper time.
There is a slow but monotonic increase, unlike the rapid-
ity loss whose asymptotic limit is reached within a few
tenths of a fm/c. There is a weak dependence on Q.

The McLerran-Venugopalan model assumes that the
projectile and target nuclei move along the light-cone.
The validity of the model increases with increasing beam
energy. It assumes that the nuclei can be treated as in-
finitesimally thin slabs. This is valid to a high degree
of accuracy, but it does not address the space-time evo-
lution of the individual nuclei. (A modification of the
model to give the nuclei a nonzero thickness was done
in [20] and its parameters determined in [21]. However,
the space-time evolution of the glasma was not found
and so cannot be used here.) To estimate the space-time
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FIG. 3. (color online) Excitation energy per baryon in the cen-
tral core of a Au projectile nucleus in the center-of-momentum
frame for

√
sNN = 200 GeV as a function of proper time. The

result is mildly sensitive to the choice of Q in the physically
relevant range.
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FIG. 4. (color online) The energy density and baryon density
at τ = 0.6 fm/c as functions of the transverse distance for
central collisions of Au nuclei at

√
sNN = 200 GeV.

evolution requires additional input. Anishetty et al. [1]
presented a very simple and direct calculation that the
nuclear matter would be compressed in its own rest frame
by a factor of exp(∆y) where ∆y > 0 is the rapidity loss
(gain) of the projectile (target). It is clearly a Lorentz
invariant quantity which follows from the infinitely thin
projectile sweeping through the target in the target rest
frame. The argument was verified in a specific model in
[4]. Noting that ∆y depends on the transverse coordinate
r⊥ the local proper baryon density is

nB(r⊥, z
′) = e∆y(r⊥)ρA

(
r⊥, z

′e∆y(r⊥)
)

(5)

where z′ = z − zP(r⊥), all evaluated at τ = 0.6 fm/c.
Figure 4 shows the proper energy density and baryon

density as functions of the transverse coordinate for Q =

4 GeV at τ = 0.6 fm/c. As can be seen from the previous
figures, the baryon density is less sensitive to the time at
which the transition from glasma to quark-gluon plasma
occurs than the excitation energy. It should be noted that
the maximum baryon density, about 3 baryons/fm3, is
20 times greater than the normal matter density of 0.155
nucleons/fm3.
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FIG. 5. (color online) Contour plot of the proper baryon
density for central collisions of Au nuclei at

√
sNN = 200 GeV.

The numbers are in units of baryons per fm3. The horizontal
axis measures the distance along the beam direction in the
local rest frame. Care must be taken when interpretting this
plot since the rapidity of the matter, and therefore the frame
of reference, depends on r⊥

.

Figure 5 is a contour plot of the proper baryon den-
sity. The contours are drawn at nB = 3, 2, 1, 0.5, and
0.15 baryons/fm3. The shapes of the contours arise for
the following reasons. The diameter of a gold nucleus
2RA is about 14 fm. The core centered at r⊥ = 0 along
the z-axis contains the most matter, suffers the greatest
deceleration, and hence the greatest compression. Mov-
ing outward with increasing r⊥, the length of the tube
is decreased to 2

√
R2

A − r2
⊥ and the deceleration, and

hence compression, are reduced. These opposing effects
approximately cancel each other, giving rise to roughly
rectangular contours in the r⊥ − z plane. Care must be
taken when interpretting this figure. Since the rapidity
loss depends on r⊥ it means that there is a shear in the
r⊥-direction and there is no single, global frame of refer-
ence for all elements of the fireball.

A boost-invariant way to display these results is in the
r⊥ − η plane, as shown in Fig. 6, but there the volumes
involved are not apparent.
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It should be emphasized that the baryon densities cal-
culated here are more robust than the energy densities.
The reason can be seen by comparing Figs. 2 and 3.
The rapidity loss, and therefore compression, are mostly
determined within the first few tenths of a fm/c when
the glasma dominates the dynamics. The excitation en-
ergy continues its slow growth as time goes on. If the
transition from glasma to quark-gluon plasma happens
earlier than 0.6 fm/c it would reduce the excitation en-
ergy but hardly affect the compression. Exactly how the
transition occurs is a topic of much current interest and
activity. Possibilities include: instabilities due to initial
state fluctuations [12, 22–24], a universal attractor solu-
tion which governs the late time evolution in the classical
regime [25], and rapid conversion of classical fields to par-
tons with subsequent evolution of the system described
by a Boltzmann equation [26]. This should be kept in
mind in the following discussions.

The above results do not assume that the fireballs ther-
malize. Now, out of curiosity, let us assume that the mat-
ter in the fireballs does equilibrate on the time scale of
0.6 fm/c as argued in [1]. What does that imply for the
temperatures and chemical potentials attainable? That
requires an equation of state. For simplicity consider
a massless gas of noninteracting up, down, and strange
quarks and gluons. (A recent QCD perturbative calcu-
lation of the equation of state at high chemical potential
[27] would give similar results.) The net strangeness in
the fireball is zero which means that the chemical poten-
tial of the strange quark is zero. Let the up and down
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FIG. 6. (color online) Contour plot of the proper baryon
density at τ = 0.6 fm/c for central collisions of Au nuclei
at

√
sNN = 200 GeV. The units are baryons per fm3. The

horizontal axis is the space-time rapidity.

quark chemical potentials be equal to each other and to
1/3 of the baryon chemical potential µB. Then the charge
to baryon ratio is 0.5 versus 0.4 for a gold nucleus. The
equation of state is then given by the pressure as a func-
tion of temperature and baryon chemical potential

P (T, µB) =
19π2

36
T 4 +

1

9
T 2µ2

B +
1

162π2
µ4

B . (6)

Taking the energy density 20 GeV/fm3 and the baryon
density 3 baryons/fm3 (20 times normal nuclear matter
density) results in a temperature T = 299 MeV and
µB = 1061 MeV (approximating ~c = 200 MeV·fm).
Thus the up and down quark chemical potentials are
greater than the temperature, very unlike in the central
rapidity region at the top RHIC energy or at the LHC.
The entropy per baryon of 26.2 is still quite large. How-
ever, the energy density decreases with r⊥ faster than
the baryon density, as can be seen in Fig. 4. Taking
the energy density 5.5 GeV/fm3 and the baryon density
1.5 baryons/fm3 results in T = 205 MeV and µB = 1007
MeV with an entropy per baryon of 18.9.

It would be expected that the hydrodynamic expansion
of the fireball would be approximately adiabatic, just as
in the central rapidity region. If that is the case, then the
values of the entropy per baryon estimated above would
be in just the right range for the trajectories of the fluid
elements in the T−µB plane to pass near or even through
a possible critical point in the QCD phase diagram [28].
Figure 7 shows the entropy per baryon as a function of
rapidity, and begs the question of whether a rapidity scan
could help locate a possible critical point.

In a follow-up paper we will study the systematics of
high baryon densities achievable in high energy heavy
ion collisions, such as the dependence on impact param-
eter, beam energy, nuclear size, projectiles and targets
of different mass, and so on. Beyond that, one must
consider that we are only proposing initial conditions for
subsequent hydrodynamic evolution of the hot and dense
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FIG. 7. (color online) Entropy per baryon rapidity distribu-
tion at τ = 0.6 fm/c. A rapidity scan might help locate a
critical point.
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fireball. This cannot be studied on its own but must in-
corporate the production of quark-gluon plasma in the
region between the receding fireballs. Generally this will
broaden the baryon rapidity distribution due to collective
flow and thermal smearing in the final state.

As mentioned earlier, detectors at RHIC and LHC that
are or were being used for heavy ion collisions focus on
central rapidities, generally within a few units of y = 0.
Apart from BRAHMS, which was still limited to about
3 units of rapidity, this precludes them from studying
the range of rapidities of the hadrons emerging from the
fireballs. Even if the LHC was to operate in a fixed target
mode at a beam energy of 2.76 GeV per nucleon for lead
nuclei, this would only provide a

√
sNN of 72 GeV, which

is already within the RHIC energy range and near the
lower limit of applicability of the McLerran-Venugopalan
model.

In conclusion, we have employed the McLerran-

Venugopalan model to calculate the energy/rapidity loss
of baryons in high energy heavy ion collisions. Very sim-
ilar results should be obtained in different pictures of
heavy ion collisions, even though the language is rather
different [29–31]. We found that the baryon densities in
the fireballs outside the central rapidity region attain val-
ues an order of magnitude greater than normal nuclear
matter. These findings suggest that further theoretical
and experimental studies be done to probe the equation
of state at the highest baryon densities achievable in a
laboratory setting.
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