
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Microscopic method for E0 transition matrix elements
B. A. Brown, A. B. Garnsworthy, T. Kibédi, and A. E. Stuchbery

Phys. Rev. C 95, 011301 — Published 13 January 2017
DOI: 10.1103/PhysRevC.95.011301

http://dx.doi.org/10.1103/PhysRevC.95.011301


Microscopic method for E0 transition matrix elements

B.A. Brown1, A.B. Garnsworthy2, T. Kibédi3 and A.E. Stuchbery3
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We present a microscopic model for electric monopole (E0) transition matrix elements by com-
bining a configuration interaction model for orbital occupations with an energy-density functional
model for the single-particle potential and radial wavefunctions. The configuration interaction model
is used to constrain the orbital occupations for the diagonal and off-diagonal matrix elements. These
are used in an energy-density functional calculation to obtain a self-consistent transition density.
This density contains the valence contribution, as well as the polarization of the protons by the
valence protons and neutrons. We show connections between E0 matrix elements and isomer and
isotope shifts of the charge radius. The spin-orbit correction to the charge density is important in
some cases. This model accounts for a large part of the data over a wide region of the nuclear chart.
It also accounts for the shape of the observed electron scattering form factors. The results depend
on the Skyrme parameters used for energy-density functional and might be used to provide new
constraints for them.

PACS numbers: 21.10.Ft,21.60.Cs,21.60.Jz,23.20.-g

I. INTRODUCTION

Electric monopole (E0) transitions between spin zero
states in atomic nuclei were first suggested by George
Gamow [1] when interpreting a mysterious electron line in
the beta decay spectrum of radon [2]. Single photon 0 →
0 transitions are strictly forbidden. E0 transitions can
only proceed via internal conversion, electron–positron
pair conversion or very rarely by double photon emission.
E0 transitions between the first excited 0+ state and the
0+ ground state are one of the dominant features of the
low-energy nuclear structure of even-even nuclei. The
total E0 transition probability, W (E0) = Ω(E0) ρ2(E0),
for a transition between the initial and final states, | i〉
and | f〉, conveniently can be separated into an electronic,
Ω(E0), and nuclear, ρ(E0), factor. The quantity ρ(E0) is
the dimensionless monopole transition strength, carrying
all the information about the nuclear structure, and is
related to the monopole matrix element, M(E0), by

ρ(E0) = 〈f |M(E0) | i〉/(eR2), (1)

where R is the nuclear radius in fm defined by R =

1.2A1/3. The operator is M(E0) = r2 ≡ e
∑
i

r2i where

the sum is over all protons in the nucleus. It is widely
accepted that E0 transitions provide sensitive tests [3] of
various nuclear structure models for understanding vol-
ume oscillations, isotope and isomer shifts and, in par-
ticular, nuclear shape coexistence [4].
In recent years there has been a resurgence in the num-

ber of measurements of E0 transition strengths encour-
aged by their association with shape coexistence. There
are relatively few E0 transition strengths known experi-
mentally, mainly due to the challenging nature of the nec-

essary parent lifetime and E0 branching ratio measure-
ments. Although a lifetime measurement can be made
by detecting a competing gamma-ray branch, a range of
experimental techniques are necessary as the lifetimes of
the parent state can vary from femtoseconds to hundreds
of nanoseconds. The branching ratio must come from
electron spectroscopy which can be hindered by the rela-
tively low emission intensities, in comparison to gamma-
ray emission, in addition to large backgrounds especially
during in-beam measurements. Nevertheless there are
now a number of experimental setups becoming available
worldwide that are bringing new concepts and modern
equipment to face these challenges. [5], [6], [7], [8], [9],
[10] With renewed interest and renewed capabilities, it
is expected that the number of experimentally measured
E0 transition strengths will dramatically increase over
the next several years.

Previous calculations of E0 transition strengths are
mostly based on collective models and shape coexistence,
[11], [12], [3], [4], [13], [14], [15]. In this paper we
present a theoretical model for E0 matrix elements based
on a combination of configuration interaction (CI) re-
sults in a spherical basis for orbital occupations, together
with energy-density functional (EDF) calculations for the
monopole core polarization. This core-polarization is
caused by the change in the nodal structure of the ra-
dial wavefunctions for the orbitals that participate in the
valence transition. The core polarization is not propor-
tional to the valence E0 matrix element.

Previous models starting with a spherical basis are
based on two-level models, e.g., Refs. [16], [17] and oth-
ers reviewed in [3]. Our method is a generalization of
the two-level model, and makes connections to isomer
and isotope shifts via a common EDF approach. We
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choose several cases across the nuclear chart for which
good wavefunctions with CI methods can be obtained,
and for which there is rather precise experimental data
on E0 matrix elements. We start with the case of 90Zr for
which a two-level model for the two 0+ states is a good
approximation and make a connection to the observed
isomer shift (the change in the charge radius between
the isomeric excited state and the ground state) for 89Y.
Then we proceed to the cases of 206Pb and 68Ni that are
determined by a CI space with valence neutrons. Finally,
we show results for the more complicated cases of 26Mg,
32S and 58Ni were both valence protons and neutrons are
involved.

II. APPLICATION TO A TWO LEVEL MODEL

FOR
90
ZR

Our discussion for 90Zr is similar to previous results
based on a two-level model summarized in [3]. However,
it will be used to formulate a more general approach for
the CI method and its connection to EDF results. In the
shell model these two 0+ states are dominated by the
mixing of the configurations

| a〉 = | Ca, (1p1/2)
2〉

and

| b〉 = | Cb, (0g9/2)
2〉, (2)

where C represents the 88Sr closed-shell configuration for
neutrons up to N = 50 [0s21/2, 0p
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3/2]. The proton (q = p) and neu-

tron (q = n) radial densities of these two configurations
are given by

ρqx(r) =
∑
k

Oqxk ψ
2
qxk(r), (3)

where x = a/b and k = (n, ℓ, j) are the quantum
numbers for the spherical single-particle wavefunctions,
ψqxk(r)[Y

(ℓ)(r̂)⊗ χ(s)](j). The O are the orbital occupa-
tions. In this case Ok = (2j + 1) for the filled neutrons
up to N = 50 and for the filled protons up to Z = 38.
The occupations are zero for all other orbitals except
Opa,1p1/2

= 2 and Opb,0gg/2 = 2. The sum over k is for
the 11 orbitals given above.
In the simplest model the radial wavefunctions, ψ, only

depend on k. And the core wavefunctions Ca and Cb are
the same. However, in the EDF model ψ also depends q
and on a and b since the different orbital occupancies lead
to different self-consistent potentials and slightly different
radial wavefunctions for the orbitals in the core Ca and
Cb.

The volume integral of Eq. (3) is (Z/N) for q = (p/n).
The matrix element of the E0 operator for protons is

∫
ρpxr

2 dτ = 〈x|r2 | x〉p

=
∑
k

Opxk 〈pxk|r2 | pxk〉. (4)

In the two-level model these two proton configurations
are mixed

| 0+1 〉 = α | a〉+ β | b〉

and

| 0+2 〉 = β | a〉 − α | b〉, (5)

with β = ±
√
1− α2.

With maximal mixing, α = β = 1/
√
2, the r2 matrix

elements are

〈0+1 |r2 | 0+1 〉 = 〈0+2 |r2 | 0+2 〉 =
1

2
[< b|r2 | b > + < a|r2 | a >]

=
1

2
〈Cb|r2 | Cb〉+

1

2
〈Ca|r2 | Ca〉

+ 〈0g9/2|r2 | 0g9/2〉+ 〈1p1/2|r2 | 1p1/2〉, (6)

and

〈0+1 |r2 | 0+2 〉 =
1

2
[< b|r2 | b > − < a|r2 | a >]

=
1

2
〈Cb|r2 | Cb〉 −

1

2
〈Ca|r2 | Ca〉

+ 〈0g9/2|r2 | 0g9/2〉 − 〈1p1/2|r2 | 1p1/2〉. (7)

(The sign of the off-diagonal matrix element is not deter-
mined, but experiment depends only on its square.) In
the harmonic oscillator (HO) model for the radial wave-
functions, the core term cancels and the E0 matrix ele-
ment is given by

〈0+1 |r2 | 0+2 〉 =
11

2
b2 − 9

2
b2 = b2, (8)

where b2 = h̄
mω . With h̄ω = 45A−1/3 - 25A−2/3, b2 =

4.71 fm2. Taking into account the finite charge size and
the relativistic contributions [18] for the protons and neu-
trons, the charge matrix element for the E0 transition is
〈0+1 |r2 | 0+2 〉ch = 5.32 fm2 (the increase is mainly due
to the spin-orbit contribution). This is much larger than
the experimental value of 1.70(3) [19]. This discrepancy
was noted in the experimental lifetime paper [17] where
they used α=0.80 and β=0.60.
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This E0 matrix element is closely connected to the iso-
mer shift between the 1/2− ground state and 9/2+ ex-
cited state of 89Y that has been measured to be δ〈r2〉ch=
0.84(8) fm2 [20]. In the single-particle model the isomer
shift is given by,

δ〈r2〉 = 〈C′

b, 0g9/2|r2 | C′

b, 0g9/2〉−〈C′

a, 1p1/2|r2 | C′

a, 1p1/2〉

= 〈C′

b|r2 | C′

b〉 − 〈C′

a|r2 | C′

a〉

+ 〈0g9/2|r2 | 0g9/2〉 − 〈1p1/2|r2 | 1p1/2〉, (9)

where C′ represents the 88Sr closed-shell configuration
for 89Y. The orbital configurations for C and C′ are the
same, but the self-consistent EDF solutions for 90Zr and
89Y, respectively, are different. With HO radial wave-
functions the core terms cancel, and the value for the dif-
ference in charge radii is given by Eq. (8). Together with
the spin-orbit contribution this gives δ〈r2〉ch = 5.31 fm2.
Thus, in the limit of maximal mixing for 90Zr, E0 ma-
trix and 89Y isomer shift are the same in the HO model,
and are both are a factor of three to four larger than
experiment.
Next we replace the HO radial wavefunctions with

those obtained from self-consistent EDF calculations car-
ried out with the Skyrme form for the functional. We
start with the Skyrme parameter set Skx [21]. The EDF
results obtained for a closed-shell configuration for 88Sr
plus one proton in the 1p1/2 orbital for the 1/2− ground

state and one proton in the 0g9/2 orbital for the 9/2+ ex-

cited state of 89Y are given in Table I. The resulting iso-
mer shift of the charge radii is now in much better agree
with experiment. The difference in the charge radii,of
the valence orbitals 〈0g9/2|r2 | 0g9/2〉 − 〈1p1/2|r2 | 1p1/2〉
= 4.81 fm2, is slightly reduced from the HO model value
of 5.31 fm2. But the isomer shift (the observable) is re-
duced to 0.82 fm2 due to a cancellation coming from the
〈C′

b|r2 | C′

b〉 − 〈C′

a|r2 | C′

a〉 term in Eq. (9). This is
due to a self-consistent rearrangement of all protons as
a response to the added density of the valence proton.
Qualitatively, this is due to the interior density for the
1p orbital that forces the proton density to be pushed
out in order to achieve self-consistent saturation for the
interior density. From Eq. (9), the total isomer shift can
be written as a sum of three terms, the change in the
core-radius, the difference in the valence point proton
radii, and the spin-obit contribution from the change in
the valence orbitals: δ〈r2〉 = −3.99 + 4.20 + 0.61 = 0.82
fm2.
For the 90Zr E0 transition we carried out EDF calcu-

lations for the configurations of Eq. (2) and then used
these in Eq. (7) for the E0 matrix element. The response
of the core to two valence protons is approximately two
times that for one valence protons, hence, the connection
between the core terms in Eq. (7) and Eq. (9) is

〈Cb|r2 | Cb〉−〈Ca|r2 | Ca〉 = 2(〈C′

b|r2 | C′

b〉−〈C′

a|r2 | C′

a〉).
(10)

In analogy with the isomer shift, The E0 matrix element
can be written as a sum of three terms 〈0+1 |r2 | 0+2 〉 =
−4.00+4.10+0.61 = 0.71 fm2. This is reduced compared
to HO due to the change in the core radius. The results
are slightly different from those of the isomer shift due
to the small mass dependence of the valence radii in the
EDF calculation.

III. APPLICATION FOR

CONFIGURATION-INTERACTION MODELS

The final step is to use EDF together with the orbital
occupations from large-basis CI calculations. There will
be many configurations analogous to those of Eq. (2).
For a given pair of eigenstates | 1〉 and | 2〉, one can
calculate the diagonal occupations for protons (q = p)
and neutrons (q = n) for orbitals k

Oq1k = 〈1 | [a+qk ⊗ ãqk]
λ=0 | 1〉, (11)

and

Oq2k = 〈2 | [a+qk ⊗ ãqk]
λ=0 | 2〉, (12)

as well as the off-diagonal occupation change

O′

q12k = 〈1 | [a+qk ⊗ ãqk]
λ=0 | 2〉. (13)

(The sum over k for O′

q12k is zero.) To use these in EDF
calculations we take the average of Oq1k and Oq2k and
then add and subtract the one-half of the off-diagonal
term to make two derived sets of occupations a and b

Oqak =
1

2
[Oq1k +Oq2k −O′

q12k], (14)

and

Oqbk =
1

2
[Oq1k +Oq2k +O′

q12k]. (15)

These, together with the (2j+1) occupations of the filled
orbitals, are used in Eq. (3) to construct the densities for
a and b. The difference of the two densities ρpb(r)−ρpa(r)
gives the proton radial transition density for the E0 tran-
sition. In the HO limit the diagonal terms cancel and the
transition density only comes from the off-diagonal term
determined by O′. When these constrained densities are
used in EDF calculations, the core response is taken into
account by the change in the diagonal terms induced by
O′.
With this procedure we reproduce the EDF result dis-

cussed above for 90Zr. We propose to use this method
for other E0 transitions that can be calculated within the
CI method. Here we use these results for E0 transitions
that connect to the 0+ ground state. But the method is
general and can be applied to any Jπ and to transitions
between excited states.
For 89Y and 90Zr we use the j4 model space for the

(0f5/2, 1p3/2, 1p1/2, 0g9/2) set of orbitals. The wavefunc-
tions are obtained with the jj44pna Hamiltonian [22].
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FIG. 1: Calculated proton transition densities for 90Zr ob-
tained with EDF(Skx). Contributions are shown for the three
terms in Eq. (17).

We calculate the CI occupations for the two states of in-
terest, Oqifk and Oqifk , and use these to constrain the
orbital occupations for the EDF calculation as discussed
above. The j4 results for 89Y given in Table I are similar
to those of the single-particle model. For the 90Zr E0
transition the off-diagonal occupations for protons O′

p12k

(q = p in Eq. (13)) are: 0.946 (0g9/2), −0.747 (1p1/2),
−0.150 (1p3/2) and −0.049 (0f5/2).
We use these constrained orbital occupations for the

EDF calculations to obtain self-consistent radial densi-
ties, ρ(r)qa and ρ(r)qb. The proton transition density is
given by

ρp12(r) = ρpb(r) − ρpa(r). (16)

We can calculate the transition density coming just from
the valence protons density, ρvp(r). If we subtract this
from the total proton transition density, ρp12(r), we have
the contribution coming from the change of the proton
density induced by the change in the valence proton den-
sity, ρpvp(r). Thus the total can be understood as a sum
of two terms

ρp12(r) = ρvp(r) + ρpvp(r). (17)

These densities for 90Zr are shown in Fig. 1. If all Oq12k

are zero then the E0 matrix element is zero.
Next we apply our method to a variety of

other cases across the nuclear chart; 206Pb in the
(0h9/2, 1f7/2, 1f5/2, 2p3/2, 1p1/2, 0i13/2) model space for
neutrons with the modified Kuo-Herling Hamiltonian
[25]; 68Ni in the j4 model space for neutrons with the
jj44pna Hamiltonian [22]; 58Ni in the (1p, 0f) model
space for protons and neutrons with the GPFX1A Hamil-
tonian [26]; and 26Mg in the (1s, 0d) model space for
protons and neutrons with the USDB Hamiltonian [27].
The calculations were carried out with the code NuShellX
[28]. For all cases considered here, the calculated energy
of the excited state is within 200 keV of the experimental

value. The results are given in Table 1. For 206Pb and
68Ni only neutrons are active and the contribution from
the model space is zero (except for the spin-orbit contri-
bution coming from the neutrons). The proton contri-
bution for the E0 matrix element comes entirely from
the polarization of the protons from the valence neu-
trons (ρ(r)cpvn). Our results for 206Pb are similar to the
two-level model of Zamick [16]; the dominant orbitals in
the transition are 1f5/2 and 2p1/2. The E0 transition

strength is related to the isotope shifts of 204,207Pb rela-
tive to 208Pb related to these two orbitals. The density
dependence of the interaction that gives rise to the core-
polarization is important [29], and in our approach this
is provided by the Skyrme interaction.
Finally we consider 26Mg, 32S and 58Ni. For 26Mg

and 58Ni there is additional information on the transition
form factors from inelastic electron scattering [24]. 32S
provides a test of our model for a nucleus with equal num-
ber or protons and neutrons. The E0 matrix elements
are zero in the sd and pf model spaces with harmonic-
oscillator radial wavefunctions approximation since all of
the valence 〈r2〉 matrix elements are the same. But the
valence proton transition densities are not zero and this
provides the mechanism for proton core-polarization in-
volving both valence protons (pvp) and valence neutrons
(pvn):

ρp12(r) = ρvp(r) + ρpvp(r) + ρpvn(r). (10)

In [24] the strength and shape of the form factors
were explained by adding an arbitrary small amount of
0d5/2 → 1d5/2 and 0f7/2 → 1f7/2 to the off-diagonal CI

transition density for 26Mg and 58Ni, respectively. These
are part of the giant monopole transition densities. Our
core polarization model can be represented as an addition
of the giant monopole transition density with an ampli-
tude that is determined by the Skyrme parameters. We
can calculate the form factor F (q) coming from the j0(qr)
integral of Eq. (16). The results for | F (q) |2 are shown
in Fig. 2. The valence contribution is in agreement with
those given in [24]. The shape for the total form factor
is in reasonable agreement with the data given in [24],
however, its magnitude around q = 0.6 fm−1 is two or-
ders of magnitude larger than the valence contribution,
but it is still about an order of magnitude smaller than
the data at low q, reflecting the fact that the E0 matrix
elements are about a factor of three smaller than exper-
iment (Table 1). We will discuss the possible reason for
this disagreement below.
The calculated E0 matrix element for the 0+2 state at

2.942 MeV in 58Ni is much larger than the experimen-
tal value. Also the calculated E2 matrix element for the
0+1 → 2+2 of 13.0 e fm2 is much larger than the exper-
imental value of 1.4(5) e fm2 for the 2+2 state at 2.775
MeV. The minimal resolution of both of these problems
requires a remixing of the theoretical 0+2 and 2+2 states
with the 0+3 and 2+3 states that lie about 0.4 MeV higher.
After remixing to give the small E0 to the 0+2 state, the
value for the 0+3 state is 3.2 fm2 with EDF(s3); about half



5

TABLE I: Matrix elements in units of fm2. For 89Y we give δ〈r2〉ch, and for the others we give | 〈0+f |r2 | 0+1 〉 |ch, where f is
given in the second column. The spin-orbit contribution given in column five is included in the other theory results. Results
are given for the single-particle (SP), two-level (TL) and configuration-interaction (CI) models discussed in the text.

f exp model spin EDF valence EDF valence plus core ratios

orbit (Skx) (Skx) (s3)

a b c d a/b a/c a/d
89Y 0.84(8) [20] SP 0.61 4.81 0.82 0.34 0.17 1.02 2.47

CI 0.51 4.54 0.97 0.60 0.19 0.9 1.5
90Zr 2 1.70(3) [19] TL 0.61 4.71 0.71 0.36 2.4 5.2

CI 0.53 4.48 0.90 0.57 0.4 1.9 3.0
206Pb 2 1.72(6) [19] CI −0.04 −0.04 0.66 1.43 43 2.6 1.2
68Ni 2 1.41(3) [23] CI 0.43 0.43 1.06 0.74 3.3 1.3 1.9
58Ni 2 0.054(14) [19] CI 0.33 0.30 1.47 1.80

3 5.5(10) [24] CI −0.08 1.01 1.69 2.62

2+3 5.5(10) [24] CI 0.25 1.31 3.16 4.42 4.2 1.7 1.2
32S 3 2.0(3) [19] CI −0.04 0.11 0.74 1.06 18 2.7 1.9

26Mg 2 3.5(12) [24] CI 0.16 0.26 0.93 1.11 13 3.8 3.2
26Mg 3 3.8(10) [24] CI 0.00 0.61 1.40 1.79 6.2 2.7 2.1

of the experimental value. It remains to be seen how (or
if) the GPFX1A Hamiltonian can be modified to explain
these small matrix elements.

We have explored the sensitively to the Skyrme param-
eters by using the 18 parameter sets that go with Table
I of [30]. Of these 18, the KDE0v1 (s3) set gives the
largest difference for the r2 matrix elements compared to
Skx (the dependence on m∗

n/m is small). Part of this
is correlated with the nuclear matter incompressibility
that is larger for Skx (Km = 270 MeV) compared to s3
(Km = 220 MeV). For 206Pb s3 gives a much larger core-
polarization than the other sets given in Table I of [30].
This is correlated with the t2 parameter that is much
larger in s3 compared to the others. The full dependence
on the Skyrme parameters remains to be explored and
perhaps exploited as an additional constraint.

The core-polarization is caused by the change in the
nodal structure of the radial wavefunctions for the or-
bitals that participate in the valence transition. There is
a connection with the isomer and isotope shifts in the nu-
clear charge radii. EDF calculations can only account for
part of the observed isotope shift. For example, recent
results for 49,51,52Ca [31] show a rapid increase in the r2

charge radius beyond N = 28 for which only about half
is accounted for by the EDF calculations [31],[32]. Some
of the isotope shift anomalies can be accounted for by
quadrupole zero-point motion corrections. This correc-
tion arises from second-order configuration admixtures

of the type [2+valence ⊗ 2+collective]
J=0+ . One may need an

expansion of the model space to include octupole correla-
tions to account for the increase in radii beyond N = 28.
These second-order corrections will also be important for
the E0 matrix elements, and the next step for future
work will be to calculate their contribution.
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FIG. 2: Calculated form factors for 26Mg. The dashed lines
are for the valence space contribution only. The solid lines
take into account the valence space and the core-polarization.

IV. CONCLUSIONS

In conclusion, we have presented a microscopic model
for electric monopole (E0) matrix elements that can be
used with orbital occupations obtained from CI calcula-
tions. The most important part of the CI Hamiltonian is
the pairing part (J = 0, T = 1) that provides the mix-
ing required for the non-zero off-diagonal orbital occupa-
tions. These occupations are used as constraints for an
EDF calculation that is used to obtain a self-consistent
transition density. We discussed the connections between
E0 matrix elements and isomer and isotope shifts of the
charge radius. We also showed that the electromagnetic
spin-orbit correction to the charge density is important
in some cases. For the nuclei considered here, this model
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accounts for a large part of the data over a wide region of
the nuclear chart. The ratio of the experimental matrix
element divided by the conventional valence EDF matrix
element is shown in Table I by the ratio a/b; it ranges
from 0.2 to 43. This a greatly improved with the valance-
plus-core model where the ratios a/c (Skx) and a/d (s3)
are reduced to the range 1 to 5. About half of this comes
from the uncertainties in Skyme EDF functional. Over-
all the experimental matrix elements are about a factor
of two larger than theory indicating the need for an “ef-
fective charge” that can come from a second-order cor-
rection. The model can be applied to E0 transitions be-
tween any Jπ states. It also accounts for the shape of

the observed electron scattering form factors. As demon-
strated for the case of 58Ni, comparison of experiment to
our model results provide tests of the wavefunctions and
Hamiltonians used for the CI method. The results de-
pend on the Skyrme parameters used for energy-density
functional and might be used to provide new constraints
for these parameters.
BAB acknowledges U.S. NSF Grant No. PHY-

1404442. ABG acknowledges support from NSERC,
Canada. TK and AES acknowledge support from Aus-
tralian Research Council grant DP140102986. We thank
George Bertsch and John Wood for their comments the
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