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The electromagnetic responses of carbon obtained from the Green’s function Monte Carlo and
spectral function approaches using the same dynamical input are compared in the kinematical
region corresponding to momentum transfer in the range 300–570 MeV. The results of our analysis,
aimed at pinning down the limits of applicability of the approximations involved in the two schemes,
indicate that the factorization ansatz underlying the spectral function formalism provides remarkably
accurate results down to momentum transfer as low as 300 MeV. On the other hand, it appears
that at 570 MeV relativistic corrections to the electromagnetic current not included in the Monte
Carlo calculations may play a significant role in the transverse channel.
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I. INTRODUCTION

Understanding neutrino-interactions with nuclei in
the broad kinematical region relevant to long-baseline
neutrino-oscillation experiments is a challenging many-
body problem, whose solution requires an accurate and
consistent description of the nuclear initial and final
states, as well as of the interaction vertex. These ele-
ments are in fact intimately connected, as the Hamilto-
nian determining the nuclear wave functions is related to
the currents entering the definition of the transition op-
erators through the continuity equation. In addition, for
large values of the momentum transfer, a full account of
relativistic effects and the resonance production mecha-
nism is required.

The payoff of this endeavor is high, as it will lead
to a significant reduction of the systematic uncertain-
ties associated with the determination of oscillation pa-
rameters. In addition, a comparison between theoret-
ical predictions and experimental data will provide a
great deal of previously unavailable information, allow-
ing to test the existing models of nuclear interactions and
currents, notably in kinematical regions sensitive to the
high-momentum components of the nuclear wave func-
tion. As an example, signatures of nuclear short-range
correlations arising from the non-central component of
the nucleon-nucleon (NN) force have been recently identi-
fied in charge-changing neutrino-nucleus interactions ob-
served in the Liquid Argon Time Projection Chamber of
the ArgoNeuT Collaboration [1, 2].

Electroweak currents are usually tested on transitions
of light nuclei, characterized by extremely low momen-
tum transfer. Validating these currents in neutrino-
nucleus scattering calculations would corroborate their
applicability in the lower energy window, down to
20–30 MeV, which is of great relevance for the physics
of supernovae. Finally, probing the high-momentum re-
gion is potentially relevant for the ongoing and planned

searches of neutrinoless double-beta (0νββ) decay. In
fact, unlike the standard 2νββ process, in the 0νββ de-
cay the virtuality of the neutrino in the intermediate state
makes the nuclear matrix element sensitive to the high
momentum components of the nuclear wave function.

The measurement of a Charged Current Quasi Elastic
(CCQE) cross section largely exceeding the predictions
of the Relativistic Fermi Gas Model (RFGM), reported
by the MiniBooNE collaboration [3, 4], has clearly ex-
posed the need for a more accurate model of neutrino-
nucleus interactions, whose development will require a
cross-disciplinary transfer of knowledge between nuclear
theorists, neutrino experimentalists and the developers
of simulation codes. In the pioneering works of Martini
et al. [5, 6] and Nieves et al. [7, 8], the discrepancy
between theory and data has been ascribed to reaction
mechanisms other than single nucleon knock out, such as
those involving meson-exchange currents (MEC), lead-
ing to the occurrence of many-particle many-holes final
states. The contributions of MEC, evaluated within the
RFGM, have been also included in the phenomenological
approach based on the scaling analysis of electron-nucleus
scattering data [9–11]. While being remarkably success-
ful in explaining MiniBooNE data, however, these models
are all based on a somewhat oversimplified description of
the underlying nuclear dynamics.

Over the past decade, ab initio approaches have
reached the degree of maturity needed to describe lepton-
nucleus scattering processes starting from a realistic
model of the interactions among the nucleons and be-
tween them and the beam particle. For instance, the
electric dipole response of 16O and 40Ca has been com-
puted combining the Lorentz integral transform with
the coupled-cluster many-body technique [12, 13]. The
Green’s Function Monte Carlo (GFMC) algorithm has
been implemented to perform accurate calculations of
the electromagnetic response functions of 4He and 12C in
the regime of moderate momentum transfer, which fully
include nuclear correlations generated by a state-of-the-
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art Hamiltonian and consistent meson-exchange currents
[14, 15]. The main drawbacks of this method are its
computational cost—∼5 million core-hours to compute
the response functions for a single value of the momen-
tum transfer—and the severe difficulties involved in its
extension to include relativistic kinematic and resonance
production.

At large momentum transfer, the formalism based on
spectral function (SF) and factorization of the nuclear
transition matrix elements [16] allows the combination
of a fully relativistic description of the electromagnetic
interaction with an accurate treatment of nuclear dy-
namics. Recently, this approach has been generalized
to include the contributions of meson-exchange currents
leading to final states with two nucleons in the contin-
uum [17, 18]. However, final state interactions (FSI) in-
volving the struck particles are treated as corrections,
whose inclusion requires further approximations [19, 20]

In view of the the above considerations, a comparison
of the results obtained using different approaches appears
to be much needed. Ab initio methods, while not being
best suited to study the kinematical region relevant to
neutrino experiments, can in fact provide strict bench-
marks, valuable to constrain more approximate models
in the limit of low momentum transfer.

This article can be seen as a first step in this direction.
We report the results of an analysis of the electromag-
netic responses of 12C, obtained from the GFMC and SF
approaches in a variety of kinematical setups. Our work
is aimed at gauging the accuracy of the factorization ap-
proximation and the importance of relativistic effects, in
both the kinematics and the current operator. In order
to pin down the role played by the elements of the calcu-
lations, we only consider one-body terms in the nuclear
current, leaving the discussion of two-body MEC to a
forthcoming study. It is very important to realize that
our comparison is fully legitimate and meaningful, be-
cause the SF and GFMC approaches are based on the
same dynamical model, in which nuclear interactions are
described by a realistic phenomenological Hamiltonian.

In Section II, we outline the derivation of the electro-
magnetic responses from the electron-nucleus cross sec-
tion, and discuss the main elements of their description
within the GFMC and SF approaches. In Section III we
report the results of our analysis, carried out in the kine-
matical region corresponding to momentum transfer in
the range 300–570 MeV, while in Section IV we summa-
rize our findings and state the conclusions.

II. NUCLEAR RESPONSE

The double differential cross section of the inclusive
electron-nucleus scattering process in which an electron
of initial four-momentum ke = (Ee,ke) scatters off a nu-
clear target to a state of four-momentum ke′ = (Ee′ ,ke′),
the hadronic final state being undetected, can be written

in the one-photon-exchange approximation as

d2σ

dEe′dΩe′
=
α2

q4
Ee′

Ee
LµνW

µν
A . (1)

In the above equation α = 1/137 is the fine structure
constant, dΩe′ is the differential solid angle in the direc-
tion specified by the vector ke′ , and q = ke−ke′ = (ω,q)
is the four momentum transfer. The lepton tensor Lµν
is fully specified by the measured electron kinematical
variables. The nuclear response is described by the ten-
sor Wµν

A , defined as

Wµν
A (q, ω) =

∑
N

〈0|JµA(q)|N〉〈N |JνA(q)|0〉×

δ(4)(P0 + q − PN ) , (2)

where |0〉 and |N〉 denote the initial and final hadronic
states, the four-momenta of which are P0 ≡ (E0,p0) and
PN ≡ (EN ,pN ).

The target ground state |0〉 does not depend on mo-
mentum transfer, and can be safely described using non-
relativistic nuclear many-body theory (NMBT). Within
this scheme, the nucleus is viewed as a collection of A
pointlike protons and neutrons, whose dynamics are de-
scribed by the Hamiltonian

H =
∑
i

p2
i

2m
+
∑
j>i

vij +
∑
k>j>i

Vijk . (3)

In the above equation, pi is the momentum of the i-
th nucleon, while the potentials vij and Vijk describe
two- and three-nucleon interactions, respectively. Phe-
nomenological two-body potentials are obtained from an
accurate fit to the available data on the two-nucleon sys-
tem, in both bound and scattering states, and reduce
to the Yukawa one-pion-exchange potential at large dis-
tances. In this work, we adopt the state-of-the-art Ar-
gonne v18 potential [21]. The inclusion of the additional
three-body term, Vijk, is needed to explain the binding
energies of the three-nucleon systems and nuclear matter
saturation properties [22].

The nuclear electromagnetic current is usually written
as a sum of one- and two-nucleon contributions according
to

JµA =
∑
i

jµi +
∑
j>i

jµij , (4)

where the second term in the right hand side—accounting
for processes in which the photon couples to a meson
exchanged between two interacting nucleons or to the
excitation of a resonance (see, e.g., Ref. [23])—is needed
for the continuity equation to be satisfied.

In this paper we will discuss the results obtained re-
taining only the current jµi , which describes interactions
involving a single nucleon. In the quasi elastic (QE) sec-
tor, it can be expressed in terms of the measured proton
and neutron vector form factors [24, 25].
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Both the current operator and the final nuclear state
|N〉, which includes at least one particle carrying a mo-
mentum of order |q|, explicitly depend on q. As a con-
sequence, in the absence of a comprehensive relativistic
description of nuclear structure and dynamics, a con-
sistent theoretical calculation of the response tensor is
only possible in the kinematical regime corresponding to
|q|/m � 1, with m being the nucleon mass, where the
non relativistic approximation is applicable.

By performing the Lorentz contraction, the double dif-
ferential cross section of Eq.(1), can be written in terms
of the nuclear responses describing interactions with lon-
gitudinally (L) and transversely (T) polarised photons

d2σ

dE′edΩe
=

(
dσ

dΩe

)
M

[
AL(|q|, ω, θe)RL(|q|, ω)

+AT (|q|, ω, θe)RT (|q|, ω)
]
, (5)

where

AL =
( q2
q2

)2
, AT = −1

2

q2

q2
+ tan2 θe

2
. (6)

and (dσ/dΩe)M = [α cos(θe/2)/4Ee sin2(θe/2)]2 is the
Mott cross section.

The L and T response functions can be readily ex-
pressed in terms of the components of the hadron tensor,
i.e. of the nuclear current matrix elements of Eq. (4), as

RL = W 00
A

=
∑
N

〈0|J0
A|N〉〈N |J0

A|0〉δ(4)(P0 + q − PN ) , (7)

RT =

3∑
ij=1

(
δij −

qiqj
q2

)
W ij
A

=
∑
N

〈0|JTA |N〉〈N |JTA |0〉δ(4)(P0 + q − PN ) . (8)

Choosing the z-axis along the direction of the momentum
transfer, one finds

RT = W xx
A +W yy

A =
[
〈0|JxA|N〉〈N |JxA|0〉

+ 〈0|JyA|N〉〈N |J
y
A|0〉

]
δ(4)(P0 + q − PN ) . (9)

A. Quantum Monte Carlo

GFMC is a suitable framework to carry out accurate
calculations of a variety of nuclear properties in the non
relativistic regime (for a recent review of Quantum Monte
Carlo methods for nuclear physics see Ref. [26]).

Valuable information on the L and T responses can be
obtained from their Laplace transforms, also referred to
as Euclidean responses [27, 28], defined as

ẼT,L(q, τ) =

∫ ∞
ωel

dωe−ωτRT,L(q, ω) . (10)

The lower integration limit ωel = q2/2MA, MA being
the mass of the target nucleus, is the threshold of elastic
scattering—corresponding to the |N〉 = |0〉 term in the
sum of Eq. (2)—the contribution of which is excluded.

Within GFMC, the Euclidean responses are evaluated
from

ẼL(q, τ) = 〈0|ρ∗(q)e−(H−E0)τρ(q)|0〉
− |〈0|ρ(q)|0〉|2e−ωelτ , (11)

and

ẼT (q, τ) = 〈0|j†T (q)e−(H−E0)τ jT (q)|0〉
− |〈0|jT (q)|0〉|2e−ωelτ , (12)

where ρ(q) and jT (q) denote non relativistic reductions
of the nuclear charge and transverse current operators,
respectively [29]. Keeping only the leading relativistic
corrections, they can be written as

ρi(q) =
[ εi√

1 +Q2/(4m2)

− i (2µi − εi)
4m2

q · (σi × pi)
]
, (13)

jTi (q) =
[ εi
m
pTi − i

µi
2m

q× σ
]
, (14)

with

εi = GpE(Q2)
1

2
(1 + τz,i) +GnE(Q2)

1

2
(1− τz,i) ,

µi = GpM (Q2)
1

2
(1 + τz,i) +GnM (Q2)

1

2
(1− τz,i) , (15)

where G
p(n)
E (Q2) and G

p(n)
M (Q2) are the proton (neutron)

electric and magnetic form factors, while σi and τz,i are
the Pauli matrices describing the nucleon spin and the
third component of the isospin, respectively.

Although the states |N〉 6= |0〉 do not appear explicitly
in Eqs. (11) and (12), the Euclidean responses include
the effects of FSI of the particles involved in the electro-
magnetic interaction, both among themselves and with
the spectator nucleons.

Inverting the Laplace transform to obtain the lon-
gitudinal and transverse response functions from their
Euclidean counterparts involves non trivial difficul-
ties. However, maximum-entropy techniques, based on
bayesian inference arguments [30, 31], have been suc-
cessfully exploited to perform accurate inversions, sup-
plemented by reliable estimates of the theoretical uncer-
tainty [14]. In the case of carbon, particular care has
to be devoted to the subtraction of contributions arising
from elastic scattering and the transitions to the low-
lying 2+ and 4+ states [15].

B. Spectral function formalism

In the kinematical region corresponding to
λ ∼ π/|q| � d, d being the average NN distance
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in the target nucleus, nuclear scattering can be approx-
imated with the incoherent sum of scattering processes
involving individual nucleons. This is the conceptual ba-
sis of the Impulse Approximation (IA), which obviously
entails neglecting the contribution of the two-nucleon
current. Under the further assumption that the struck
nucleon is decoupled from the spectator particles, the
final state |N〉 can be written in a factorized form
according to

|N〉 −→ |p′〉 ⊗ |R,pR〉 , (16)

where |p′〉 is the hadronic state produced at the elec-
tromagnetic vertex, with momentum p′, and |R,pR〉 de-
scribes the residual system, carrying momentum pR .

Within the IA, the intrinsic properties of both the tar-
get nucleus and the spectator system, which are obvi-
ously independent of momentum transfer, are described
in terms of the spectral function, defined as

P (p, E) =
∑
R

|〈R,pR|ap|0〉|2δ(E + E0 − ER) , (17)

which can be obtained from NMBT. In the above equa-
tion, the operator ap removes a nucleon of momentum
p from the nuclear ground state, leaving the spectator
system with an excitation energy E.

In the QE sector, the nuclear tensor of Eq. (2) can
be written as an integral involving the nuclear SF and
the incoherent sum of the elementary matrix elements of
the one-body current between free nucleon states. The
resulting expression is

Wµν
A =

∫
d3p dE P (p, E)

∑
i

〈p|jµi |p + q〉〈p + q|jνi |p〉

× m2

E(p)E(|p + q|)
δ [ω̃ + E(p)− E(|p + q|)] ,

(18)

with

ω̃ = ω +m− E − E(p) = ω +MA − ER − E(p) . (19)

The factors m2/(E(p)E(|p + q|)) have been included to
take into account the implicit covariant normalization of
quadrispinors of the initial and final nucleons in the ma-
trix element of jµi . The right hand side of Eq.(18) can be
further rewritten in terms of the quantity

wµνi = 〈p|jµi |p + q〉〈p + q|jνi |p〉
× δ [ω̃ + E(p)− E(|p + q|)] , (20)

to obtain

Wµν
A =

∫
d3p dE P (p, E)

m2

E(p)E(|p + q|)
× [Zwµνp + (A− Z)wµνn ] , (21)

A and Z being the target mass number and charge, re-
spectively.

Note that wµνp(n) can be directly related to the tensor

describing electron scattering off a free proton (neu-
tron), carrying momentum p, at four momentum transfer
q̃ ≡ (ω̃,q). The effect of nuclear binding is taken into ac-
count through the replacement

q ≡ (ω,q)→ q̃ ≡ (ω̃,q) , (22)

reflecting the fact that a fraction δω of the energy trans-
fer goes into excitation energy of the spectator system.
Therefore, the elementary scattering process is described
as if it took place in free space, but with energy transfer
ω̃ = ω − δω.

Within the IA, the non relativistic expression of the
longitudinal response reads

RL =

∫
dEdp P (p, E)

[ZGpE(Q̃2) + (A− Z)GnE(Q̃2)

1 + Q̃2/(4m2)

]
× δ [ω +MA − ER − E(|p + q|)] θ(|p + q| − kF )

(23)

where E(|p + q|) = m+ |p + q|2/(2m) and ER = MR +
p2/(2MR) are the energies of the knocked out nucleon
and the recoiling system, whose mass is given by MR =
MA −m+ E, respectively.

Note that in the spectral function the state describing
the initial nucleon in the interaction vertex is completely
antisymmetrized with respect to the other particles in
the target nucleus. On the other hand, in the final state
only the antisymmetrization of the spectator system is
present, while according to the factorization scheme the
antisymmetrization of the struck nucleon with respect to
the spectator particles is disregarded. As a consequence,
the nuclear initial and final states are not orthogonal to
one another. In Eq. (23) Pauli’s principle is accounted
for by requiring the momentum of the knocked out nu-
cleon to be larger than the nuclear Fermi momentum
kF = 211 MeV, determined following the procedure de-
scribed in Ref. [20]. While this prescription is admittedly
rather crude, being based on the local Fermi gas model
of the nuclear ground state, it has to be kept in mind
that the effect of Pauli blocking rapidly decreases with
increasing momentum transfer, and vanishes altogether
at |q| >∼ 2kF .

Using Eq. (14), we obtain the transverse response

RT =

∫
dEdp P (p, E)

[
ZrpT + (A− Z)rnT

]
× δ [ω +MA − ER − E(p + q)] θ(|p + q− kF ) ,

(24)

where

rpT =
[
−GpE

2
(Q2)

p2
T

m2
+
GpM

2
(Q2)q2

2m2

]
,

rnT =
[
−GnE

2(Q2)
p2
T

m2
+
GnM

2(Q2)q2

2m2

]
. (25)
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The relativistic form of the nuclear responses is written
in terms of the one-body current

jµi =
(εi + τµi)

(1 + τ)
γµ +

(µi − εi)
(1 + τ)

iσµνqν
2m

(26)

where τ = Q̃2/(4m2) and εi, µi are defined in Eq.(15).
In this case, the argument of the energy-conserving δ-
function, determining the integration limits of the phase-
space integration, has to be written using the relativistic
expression of the kinetic energies of both the knocked out
nucleon and the recoiling spectator system, i.e. setting
E(|p + q|) =

√
|p + q|2 +m2 and ER =

√
|p|2 +M2

R.
The GFMC and SF approaches consistently account

for NN correlations both in the nuclear ground state
and among the (A-1) spectator particles. The contin-
uum contribution to the SF is in fact obtained from the
same hamiltonian employed in the GFMC’s imaginary
time evolution. The main assumption implied in the fac-
torization ansatz underlying the IA is that FSI between
the struck particle and the spectator system, as well as
orthogonality between the initial and final nuclear states,
can be neglected in the limit of high momentum transfer.
Because the nuclear response is only sensitive to FSI tak-
ing place within a distance ∼ 1/|q| of the electromagnetic
vertex, at high momentum transfer this assumption ap-
pears to be largely justified. However, FSI effects can be
sizable at low momentum transfer, and their effect must
be consistently taken into account [19]. In this work, we
have followed the scheme developed by the authors of
Ref. [20], which proved very effective in describing FSI in
electron-carbon scattering in a broad kinematical range.
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tainty arising from the inversion of the Euclidean response.
All the remaing curves have been obtained within the SF
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been obtained performing hybrid calculations: non relativistic
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III. RESULTS

In Figs. 1, 2, and 3 we show the results of the GFMC
and SF calculations of the electromagnetic responses of
Carbon in the longitudinal channel, for momentum trans-
fer |q| = 300, 380 and 570 MeV.

Overall, the emerging pattern suggests that—once
Pauli blocking and FSI are accounted for—the agreement
between the two methods is quite good, provided the non
relativistic expression for the current operators and the
phase space are consistently employed.

The four different curves labelled SF correspond to the
different prescriptions to include relativistic effects. The
lines marked with dots and hollow squares represent the
non relativistic and fully relativistic results, respectively,
while those marked with triangles and filled squares have
been obtained performing hybrid calculations, in which
the non relativistic expressions have been only used either
for the current or for the phase space.

It is apparent that at |q| = 300 and 380 MeV rela-
tivistic effects are small. There is little spread between
the four SF curves, which are all very close to that cor-
responding to the GFMC calculation.

At |q| = 570 MeV, SF and GFMC still give very simi-
lar results provided the SF calculation is carried out us-

ing relativistic currents and non relativistic phase space.
On the other hand, the results of the fully relativistic
calculation and those obtained using non relativistic cur-
rents and relativistic phase space clearly show that in
this kinematical setup relativistic effects—comprised in
the energy conserving δ-function—are sizable, and lead
to a shift and an enhancement of the peak, whose width
is reduced.

In Figs. 4, 5, and 6 we show the electromagnetic re-
sponse of Carbon in the transverse channel for the same
three values of |q|.

The agreement between the GFMC and the SF results
is not as good as in the longitudinal case. Furthermore,
the different behaviour of the curves corresponding to
the three SF calculations deserves some comments. As
already pointed out in the discussion of the longitudi-
nal responses, a comparison between the relativistic and
the hybrid calculations performed with the non relativis-
tic phase space clearly shows that using relativistic ki-
netic energies in the argument of the energy-conserving
δ-function results in a shift and an enhancement of the
peak of the response. However, unlike the longitudinal
one, the transverse response is strongly affected by rela-
tivistic effects arising from the treatment of the current
operator. This feature clearly manifests itself in the dif-
ferent shapes exhibited by the results of the non relativis-
tic SF calculations and those of the hybrid calculations
performed using relativistic currents and non relativistic
kinetic energies.

IV. CONCLUSIONS

The electromagnetic response functions of carbon in
the longitudinal and transverse channels have been evalu-
ated within the GFMC and SF approaches at momentum
tranfer |q| = 300, 380 and 570 MeV.

Because all calculations have been carried out using
the same nuclear Hamiltonian and current operator, the
resulting response functions can be can be meaningfully
compared, to shed light on the limits of applicability of
both the IA, providing the basis of the SF formalism, and
the non relativistic approximation inherent in the GFMC
method.

Overall, we find that the GFMC results are in remark-
ably good agreement with those obtained from the SF
approach using non relativistic kinetic energies and cur-
rents, provided corrections arising from FSI and Pauli
blocking are taken into account.

The emerging pattern strongly suggests that the fac-
torization approximation can be safely used down to mo-
mentum transfer as low as ∼ 300 MeV. This is the first
important finding of our study.

In the longitudinal channel relativistic effects are quite
small at momentum transfer 300 and 380 MeV. At
|q| = 570 MeV they become sizable, and arise mainly
from the use of relativistic kinetic energies in the argu-
ment of the energy-conserving δ-function. The significant
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reduction of the width can be easily understood consider-
ing that its value, while increasing linearly with |q| in the
non relativistic case, becomes constant and independent
of momentum transfer in the relativistic regime.

The interpretation of the results in the transverse chan-
nel is more complex. Within the factorization scheme,
the main elements entering the definition of the nuclear
response are the nuclear amplitudes and the matrix ele-
ments of the nuclear current operators. Hence, the accu-
racy of the results obtained from this approach depends
on the treatment of these two quantities. In particular,
the degree of complexity of the interaction vertex deter-
mines the level of accuracy required in the calculation of
the nuclear spectral function.

As an example, consider that in the transverse channel
the matrix element of the current contains terms linear
in the momentum of the struck particle. However, since
the spectral function of Ref. [32], employed to carry out
our calculations, is spherically symmetric, they do not
contribute to the responses. A more accurate treatment
of the carbon ground state, taking into account its defor-
mation, would allow to include the contributions arising
from these terms.

Contrary to what is observed in the longitudinal chan-
nel, in the transverse responses, relativistic effects are
to be ascribed not only to the arguments of the energy-
conserving δ-function, but also to the treatment of the
current operator. The fact that for large values of the
momentum transfer relativistic corrections to the trans-

verse one-body current are important suggests that im-
proving the non relativistic expansion with the inclusion
of terms O[(|q|/m)2] may be needed obtain a more accu-
rate prediction of the response.

The analysis reported in this paper provides valuable
and novel information, much needed to reach a better
understanding of the description of the nuclear cross sec-
tion obtained from different ab initio approaches. Our
study obviously needs to be completed including the con-
tributions of two-nucleon currents, which are known to
be important in the transverse channel. Work towards
the achievement of this goal is underway.
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