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Electromagnetic resonance properties are uniquely defined at the pole and do not depend on the
separation of the resonance from background or the decay channel. Photon-nucleon branching ratios
are nowadays often quoted at the pole, and we generalize the considerations to the case of virtual
photons. We derive and compare relations for nucleon to baryon transition form factors both for the
Breit-Wigner and the pole positions. Using the MAID2007 and SAID SM08 partial wave analyses
of pion electroproduction data, we compare the GM , GE , and GC form factors for the ∆(1232)
resonance excitation at the Breit-Wigner resonance and pole positions up to Q2 = 5 GeV2. We also
explore the E/M and S/M ratios as functions of Q2. For pole and residue extraction, we apply the
Laurent + Pietarinen method.

PACS numbers: PACS numbers: 13.60.Le, 14.20.Gk, 11.80.Et

I. INTRODUCTION

As baryon resonance properties, evaluated at the pole
position, are now beginning to supersede and replace
quantities that historically have been determined using
Breit-Wigner (BW) plus background parameterizations,
we extend a recent study [1] of photo-decay couplings
at the pole to the regime of non-zero Q2. The shift to
pole-related quantities is reflected in the Review of Par-
ticle Properties (RPP) [2], with many pole values com-
ing from the Bonn-Gatchina multi-channel analyses [3].
Some plots of transition form factors at the BW position,
as a function of photon virtuality, are now also available
in the RPP.

Resonances are formally considered as poles in the S-
matrix, with a position independent of the reaction and
with a factorizable residue for different reaction channels.
The BW approach is more dependent on the formalism
used to provide the associated background. While BW
parameters have been fitted to electroproduction data in
early analyses, more sophisticated approaches (such as
dynamical models [11–13] and chiral effective theory) are
not directly comparable to these values. In the chiral
effective field theory calculation of Ref. [14], for exam-
ple, complex form factor results were determined at the
pole position. Comparisons to phenomenological fits pro-
viding real BW quantities were therefore ad hoc. Also,
in chiral unitary resonance dynamics, there is no gen-
uine resonance seed that would allow for the definition of
a meaningful, purely real helicity coupling [17–19]. See
also Refs. [15, 16] for related results. Proper comparisons
require pole parameters extracted from data with mini-
mal model bias. We revisit these comparison below, once
pole parameters have been determined.

While calculations at the pole are, in principle, well-
defined and less model-dependent than the BW ap-
proach, the continuation of fit amplitudes to the pole

is itself a possible source of error. With the aim to mini-
mize model dependence of the pole extraction procedure
this uncertainty has motivated numerous studies involv-
ing speed plots, regularization methods, contour integra-
tion [4–9], and the most recent Laurent series represen-
tations (L+P) based on separation of pole and regular
part, and using the conformal mapping variable to ex-
pand the regular part in power series [10]. Here we have
extracted pole parameters with the L+P method from
two energy-dependent (ED) partial wave analyses, MAID
and SAID, which were fitted to the world data base of
pion electroproduction. The differences observed by this
comparison will give an insight of the uncertainty of the
pole form factors due to the differences in the MAID and
SAID techniques and consequently also to the experimen-
tal database.

For the ∆(1232) state, considerable attention [20–33]
has been addressed to the Q2 evolution of amplitudes, as
well as differences in the Q2 dependence of bare cou-
plings, within models, and meson-cloud contributions.
For a review, see, e.g., Ref. [34]. Transition form fac-
tors are now also determined in lattice QCD simula-
tions [35, 36]. Here, the quark masses are so large that
the ∆(1232) appears as a bound state, but it has been
realized in Ref. [37] that in future simulations, close to
the physical point, the finite resonance width will com-
plicate the extraction. Therefore, in Ref. [37] a method
has been proposed to determine transition form factors
at the pole. This stresses again the relevance of provid-
ing pole values for existing phenomenological analyses,
which is the aim of this study.

The main focus of this paper is the ∆(1232) virtual-
photon decay amplitudes and related transition form fac-
tors. As the amplitudes themselves become infinite at the
pole, we are interested in residues. The connection be-
tween multipole residues and the photo-decay amplitudes
has been clarified in a previous paper [1] and in the Note
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on N and Delta Resonance mini-reviews of the 2012 and
2014 PDG listings [2].

Here we will compare BW and pole extractions, using
the MAID2007 and SAID SM08 partial wave analyses
of pion electroproduction data, utilizing the recent Lau-
rent + Pietarinen (L+P) pole extraction method [38–42]
which has proven to be a precise and very reliable tool
for the determination of pole positions and residues.

The ∆(1232) E/M and S/M ratios have been studied
for many decades. Interest in the E/M ratio, for real-
photon interactions, was largely motivated by the fact
that, in a simple non-relativistic quark model, this ra-
tio would be zero [43] and, thus, deviations from zero
would require more complicated interactions. The mea-
sured value of this ratio was small [2], −2.5± 0.5%, but
its precise value varied as photoproduction cross sections
and beam-asymmetry Σ measurements became more pre-
cise. The prediction for this ratio, at very large Q2 from
pQCD [44], has been more difficult to confirm. The ratio
is predicted to become unity, whereas, at the real-photon
point, it is small and negative. The variation of this ratio
with Q2 has also changed significantly as electroproduc-
tion data have improved.

In Section II, we first give definitions of the standard
BW quantities and then define the associated pole-valued
results we will be considering. In Section III, we then
give a brief overview of the BW and pole behavior of
the ∆(1232) amplitudes, which are constrained by Wat-
son’s theorem. The L+P fit is described in Section IV
and compared to results from a fit, generalized to non-
zero Q2, described in Ref. [1]. Finally, in Section IV, we
summarize our findings and prospects for future work.

II. BREIT-WIGNER VERSUS POLE
QUANTITIES

The total cross section of pion electroproduction can
be written as a semi-inclusive electron scattering cross
section

dσ

dΩedEf
= ΓV (σT + εσL) (1)

with the virtual-photon flux factor

ΓV =
α

2π2

Ef
Ei

κ`
Q2

1

1− ε
, (2)

where Ei and Ef are the initial and final electron energies
in the lab frame, the virtual-photon polarization ε and
the total transverse and longitudinal virtual-photon cross
sections

σT =
1

2
(σ

1/2
T + σ

3/2
T ) , (3)

σhT = 4π
q

κc

∑
α(`,J,I)

(2J + 1) |Ahα|2 C2 , (4)

σL = 4π
q

κc

Q2

k2

∑
α(`,J,I)

(2J + 1) |S1/2
α |2 C2 , (5)

with q and k being the center-of-mass pion and photon
momenta and κl = (W 2 −m2

N )/2mN and κc = (W 2 −
m2
N )/2W the so-called equivalent real photon energies in

the lab and c.m. frames. The factor C is
√

2/3 for isospin

3/2 and −
√

3 for isospin 1/2. The helicity multipoles
are given in terms of electric, magnetic and longitudinal
(time-like) multipoles

A1/2
`+ = −1

2
[(`+ 2)E`+ + `M`+] , (6)

A3/2
`+ =

1

2

√
`(`+ 2) [E`+ −M`+] , (7)

S1/2
`+ = −`+ 1√

2
S`+ , (8)

A1/2
(`+1)− = −1

2

[
`E(`+1)− − (`+ 2)M(`+1)−

]
, (9)

A3/2
(`+1)− = −1

2

√
`(`+ 2)

[
E(`+1)− +M(`+1)−

]
, (10)

S1/2
(`+1)− = −`+ 1√

2
S(`+1)− , (11)

with J = `+ 1/2 for ’+’ multipoles and J = (`+ 1)−1/2
for ’−’ multipoles, all having the same total spin J .

In analogy to photoproduction [1], we define the
virtual-photon decay amplitudes

ABWh = C

√
qr
κr

π(2J + 1)MrΓ2
r

mNΓπ,r
Ãhα , (12)

SBW1/2 = C

√
qr
κr

π(2J + 1)MrΓ2
r

mNΓπ,r
S̃1/2
α , (13)

where Ã1/2
α , Ã3/2

α , and S̃1/2
α are the imaginary parts of

the resonance amplitudes at the BW position Wr = Mr.
Similarly, we define the virtual-photon amplitudes at

the pole position

Apoleh = C

√
qp
κp

2π(2J + 1)Wp

mNResπN
ResAhα , (14)

Spole1/2 = C

√
qp
κp

2π(2J + 1)Wp

mNResπN
ResS1/2

α . (15)

where the subscript p denotes quantities evaluated at the
pole position.

The photon momenta, κr and κp, are photon equiva-
lent energies and can be written as virtual-photon mo-

menta at Q2 = 0. The amplitudes, Ahα and S1/2
α , as

well as the residues, Apoleh and Spole1/2 , are functions of the

photon virtuality Q2.
Through linear combinations, the helicity form factors

can also be related to electric, magnetic and charge form
factors. These so-called Sachs form factors, G∗

E , G∗
M ,

and G∗
C , are usually given in two different conventions

by Ash [45] and by Jones and Scadron [46]. Both are
related by a square-root factor, GJS(Q2) = GAsh(Q2)×√

1 +Q2/(mN +Mr)2.
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Here we will concentrate on the ∆(1232) transition
form factors and give the corresponding expressions. For
transitions with different spin and parity, similar rela-
tions can be found, see [47, 48].

For the γN∆ transition, Jones and Scadron [46] give
the following relations between the total cross sections
and the Sachs form factors:

σT + εσL =
2πα

Γrm2
N

kr(Q
2)2

κr(1 +Q2/(mN +M∆)2
(16)

(G∗
M

2(Q2) + 3G∗
E

2(Q2) + ε
Q2

4M2
∆

G∗
C

2(Q2)) .

In the convention of Ash, the Sachs form factors take
the form

G∗
M (Q2) = −c∆(A1/2 +

√
3A3/2) , (17)

G∗
E(Q2) = c∆(A1/2 −

1√
3
A3/2) , (18)

G∗
C(Q2) =

√
2c∆

2M∆

k∆
S1/2 , (19)

with Wr = M∆ and c∆ = [(m3
Nκ∆)/(4παM∆k

2
∆)]1/2,

where k∆ = k∆(Q2) = k(M∆, Q
2), and κ∆ = κc(M∆) =

k(M∆, 0) are the virtual-photon momentum and the pho-
ton equivalent energy at resonance. Because the ∆(1232)
is very close to an ideal resonance, the real parts of the
amplitudes vanish at W = M∆, and the form factors can
be directly expressed in terms of the imaginary parts of
the corresponding multipoles at the (Breit Wigner) res-
onance position,

G∗
M (Q2) = b∆(Q2) Im{M (3/2)

1+ (M∆, Q
2)} (20)

G∗
E(Q2) = −b∆(Q2) Im{E(3/2)

1+ (M∆, Q
2)} (21)

G∗
C(Q2) = −b∆(Q2)

2M∆

k∆(Q2)
Im{S(3/2)

1+ (M∆, Q
2)} ,

(22)

where b∆(Q2) = [(8m2
Nq∆Γ∆)/(3αk2

∆(Q2))]1/2 with
Γ∆ = 115 MeV and q∆ = q(M∆) being the pion mo-
mentum at resonance.

Similarly, we can define the Sachs form factors, using
Ash’s conventions, at the pole position

GpoleM (Q2) = bp(Q
2) ResM

(3/2)
1+ (Wp, Q

2) , (23)

GpoleE (Q2) = −bp(Q2) ResE
(3/2)
1+ (Wp, Q

2) , (24)

GpoleC (Q2) = −bp(Q2)
2Wp

kp(Q2)
ResS

(3/2)
1+ (Wp, Q

2) , (25)

where bp(Q
2) = [(16m2

N qp)/(3αk
2
p(Q2)ResπN )]1/2.

In the literature, the following ratios of multipoles have
been defined:

REM (Q2) =
E

3/2
1+ (Q2)

M
3/2
1+ (Q2)

= −G
∗
E(Q2)

G∗
M (Q2)

, (26)

RSM (Q2) =
S

3/2
1+ (Q2)

M
3/2
1+ (Q2)

= −k∆(Q2)

2M∆

G∗
C(Q2)

G∗
M (Q2)

. (27)

The ratios at the pole position are given accordingly

RpoleEM (Q2) =
ResE

3/2
1+ (Q2)

ResM
3/2
1+ (Q2)

= −
GpoleE (Q2)

GpoleM (Q2)
, (28)

RpoleSM (Q2) =
ResS

3/2
1+ (Q2)

ResM
3/2
1+ (Q2)

= −kp(Q
2)

2Wp

GpoleC (Q2)

GpoleM (Q2)
.

(29)

III. AMPLITUDES AT THE BREIT-WIGNER
POSITION AND AT THE POLE POSITION

In general, a pion photo- or electroproduction ampli-
tude Tγ,π, or any multipole, can be written as a sum of
resonance and background contributions

Tγ,π(W,Q2) = T resγ,π (W,Q2) + T bgγ,π(W,Q2) . (30)

In order to obtain the BW amplitudes at the resonance
position, the resonance part has to be modeled in BW
form with energy-dependent partial widths for all pos-
sible decay channels and with energy-dependent phases
in order to obey unitarity, see e.g. Ref. [49]. In gen-
eral, this resonance-background separation is only possi-
ble in a model dependent way [50]. Consequently, this
also leads to some model dependence in the mass Mr,

width Γr and for the amplitudes Ahα and S1/2
α . The

only exception in the baryonic spectrum is the ∆(1232),
which is purely elastic and therefore has a well-defined
K-matrix pole, M∆ = 1232 MeV, where the scattering
phase δ33(M∆) = π/2. For the ∆(1232) this coincides
with the Breit-Wigner resonance position. Due to Wat-
son’s theorem, also for pion photo- and electroproduc-
tion, the phase is exactly 90 degrees at resonance and
the resonance-background separation is unique, as the
background amplitude T bgγ,π(M∆, Q

2) = 0.
This situation is very different at the pole position.

Since only the resonance part of the total amplitude con-
tains a pole, a model-dependent resonance-background
separation is unnecessary. Therefore, the pole positions
and also the residues are model independent. However,
they can suffer from uncertainties arising from the ana-
lytical continuation of the amplitudes, determined from
data on the real energy axis, into the lower part of the
complex energy plane.

IV. L+P EXPANSION

Finding the pole positions and the residues of baryon
resonances can be a difficult task. Some first attempts,
applied to πN scattering amplitudes, were carried out
by Höhler [51] and Cutkosky [52]. The optimal method
would be an analytic continuation into the complex
plane, within a dynamical and analytical model, carefully
considering all branch cuts from open channels, that gen-
erally produce many poles on different Riemann sheets,
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where only the pole closest to the physical axis is relevant.
In many cases, however, this is not possible in practice,
e.g. when partial wave amplitudes can only be evaluated
on the physical axis. For these cases, Höhler proposed the
speed-plot technique [51], which was later extended by
the regularization method [53]. In the present study, we
apply the Laurent-plus-Pietarinen method (L+P) based
on separation of pole and regular part, and using the
conformal mapping variable to expand the regular part
in power series; the method which has proven to be most
reliable and has been applied to different processes [38–
42]. A major advantage of the L+P method is the fact
that it is a global method, describing the amplitudes over

a wide energy range, treating threshold effects in terms
of physical and effective branch points. Most other meth-
ods use only partial wave information in a local region
around the relevant resonance position.

In this study, we have adopted the multi-channel
Laurent-plus-Pietarinen method (MC L+P), developed
in Ref. [42], to the single-channel case where the E, M ,
and S multipoles must be treated simultaneously as they
share the same pole with associated πN resonance cou-
pling. One could therefore describe the method as a
coupled-multipole Laurent-plus-Pietarinen method (CM
L+P).
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T aγ,π(W ) =

Npole∑
j=1

xaj + ı yaj
Wj −W

+

+

Ka∑
k=0

cakX
a(W )k +

La∑
l=0

dal Y
a(W )l +

Ma∑
m=0

eam Z
a(W )m

Xa(W ) =
αa −

√
xaP −W

αa +
√
xaP −W

; Y a(W ) =
βa −

√
xaQ −W

βa +
√
xaQ −W

; Za(W ) =
γa −

√
xaR −W

γa +
√
xaR −W

Ddp =

all∑
a

Da
dp

Da
dp =

1

2Na
W

Na
W∑

i=1


[

ReT aγ,π(W (i))− ReT a,expγ,π (W (i))

ErrRe
i,a

]2

+

+

[
ImT aγ,π(W (i))− ImT a,expγ,π (W (i))

ErrIm
i,a

]2
+ Pa

ErrRe
i,a = 0.05 ·

∑Na
W

k=1 |Re T aγ,π(W (k))|
Na
W

+ 0.05 · |Re T aγ,π(W (i))|

ErrIm
i,a = 0.05 ·

∑Na
W

k=1 |Im T aγ,π(W (k))|
Na
W

+ 0.05 · |Im T aγ,π(W (i))|

Pa = λac

Ka∑
k=1

(cak)2 k3 + λad

La∑
l=1

(dal )2 l3 + λae

Ma∑
m=1

(eam)2m3

a ..... multipole index (El± ,Ml± , Sl±)

Npole ..... number of poles

Wj ,W ∈ C
xai , y

a
i , c

a
k, d

a
l , e

a
m, α

a, βa, γa... ∈ R
Ka, La, Ma ... ∈ N number of Pietarinen coefficients in multipole a.

Na
W ..... number of energies in multipole a

Ddp ..... discrepancy function; the quantity to be minimized

Pa ..... Pietarinen penalty function

λac , λ
a
d, λ

a
e ..... Pietarinen weighting factors

ErrRe, Im
i,a ..... minimization error of real and imaginary part respectively,

xaP , x
a
Q, x

a
R ∈ R (or ∈ C).

(31)

Here xaj + ı yaj are the channel (multipole) residua
which are left free for all three multipoles E, M , and S

and Wj = Mj − ı Γj

2 are the pole positions of resonances
“j”, which are kept fixed to the values obtained from L+P
fits of the single M-multipole obtained in the real photon
case [41]). In addition, as we expect a similar analytic
structure for all three multipoles, we have fixed the three
branch-points to have the same value: xEP = xMP = xSP ,
xEQ = xMQ = xSQ and xER = xMR = xSR.

The Pietarinen expansions formalize the simplest an-
alytic form of functions having branch-points at the

Pietarinen-expansion parameters, and in this paper we
use three Pietarinen expansions with expansion param-
eters, xaP , xaQ, and xaR, to describe analytic structure of
the non-resonant background.

The first coefficient, xaP , is restricted to the unphys-
ical region and effectively represents contributions from
all singular parts below πN threshold (all left hand cuts
including a circular cut). The second parameter, xaQ, is
fixed to the pion threshold at W = 1.077 GeV. The third
branch-point, xaR, for MAID multipoles is left free and
effectively accounts for all inelastic-channel openings in
the physical domain. Its values are above ππN threshold.
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For SAID multipoles, xaR is fixed at the complex branch-
point π∆ = (1.37 − ı 0.04) GeV, and it effectively pa-
rameterizes all inelastic-channel openings in the physical
domain and a resonance in the three-body intermediate
state.

In the fitting procedure we have used two poles for P33

MAID amplitudes, and we used only one pole and a com-
plex branch-point for P33 SAID amplitudes. However, as
a complex branch-point describes a pole hidden in a two-
body channel of a three-body intermediate state, SAID
is described by two poles as well.

The L+P fit was compared to a method used to extract
photo-decay amplitudes at the pole in Ref. [1]. Residues
were extracted from the SAID electroproduction multi-
poles for Q2 from 0.1 to 5.0 GeV2. Application to the
SAID multipoles had the benefit of a known pole and
cut structure and a narrower range of fit energies was
required. The values obtained in this way, and those
found using the L+P method, were not significantly dif-
ferent. This served as an independent test of the L+P
method applied to the electroproduction reaction. The
L+P method was subsequently used exclusively to obtain
results from both the SAID and MAID multipoles.

V. RESULTS AND CONCLUSIONS

In the L+P analysis, the pion electroproduction multi-

poles E
(3/2)
1+ (W,Q2), M

(3/2)
1+ (W,Q2), and S

(3/2)
1+ (W,Q2),

from MAID2007 and SAID SM08, were fitted from
threshold up to 2 GeV in the center-of-mass energy.
These multipoles, which are accessible via the MAID and
SAID web pages [54], are displayed in Fig. 1.
For Q2 values near the real-photon point, we fitted am-
plitudes from Q2 = 0 to 0.5 GeV2 in increments of 0.1
GeV2. We then examined Q2 values in increments of 1
GeV2 up to 5 GeV2, finding this region to have a less
rapid variation. At each value of Q2, amplitudes were
analyzed in steps of 10 MeV.

Representative fit results covering the ∆(1232) energy
range in Fig. 1 illustrate the very good fit quality and
also display the rapid fall off of these amplitudes with Q2.
Numerical results from the Q2 = 0 analyses are compiled
in Table I.

In Fig. 2, we plot the associated helicity transition
form factors, A1/2, A3/2, and S1/2 as functions of Q2.
The A1/2 and A3/2 amplitudes, being dominated by the
well-determined magnetic multipole, are very similar for
the MAID and SAID analyses. The S1/2 variation in Q2

is qualitatively similar but differs in detail. It is inter-
esting to note that, for the A1/2 and A3/2 amplitudes,
the BW values and real parts of the pole quantities are
nearly identical, particularly with increasing Q2.

In Fig. 3, we compare the quantities GM/GD, and
the E/M and S/M ratios as functions of Q2, where
GD = (1 + Q2/b2)−2, with b2 = 0.71 (GeV/c)2. Here
also, the MAID and SAID results for GM/GD agree very
closely, with only a small difference between the BW val-

ues and real parts of the pole quantities. This pole be-
havior has also been displayed, over a smaller Q2 range,
in the analysis of Ref. [9]. The MAID and SAID BW
results also agree well with the available single-Q2 anal-
yses of the E/M ratio. These plots give no indication
of a cross-over to positive E/M values, as expected from
Ref. [44]. Previously, both the MAID (2003) [55] and
SAID (2002) [56] fits had found indications for a cross
over. This trend has disappeared with the incorporation
of new and more precise measurements. The S/M ratios
of the MAID and SAID analyses display the only quali-
tative difference in Q2 variation. Here also the BW and
real part of the pole behavior is similar, with the SAID
(pole and BW) curves tending to approximately follow
the behavior of the single-Q2 fits, whereas the MAID
trend is for a slower Q2 variation. We note that in the
2003 MAID analysis [55], the S/M ratio was found to
have a more rapid Q2 variation, following the trend of
existing single-Q2 values.

For low values of Q2, we can also compare to the ex-
pectations from chiral effective theory [14]. In Fig. 4, the
MAID and SAID quantities from Fig. 3 are compared
to the predictions of Gail and Hemmert, Ref. [14] over a
restricted Q2 range. The range of applicability of their
approach was estimated to about Q2

max ≈ 0.2 GeV2. Due
to the lack of data at the pole position, single-Q2 data
extracted at the BW position were used to determine
the parameters of their approach. The result is a quali-
tatively good agreement between the real parts of pole-
valued quantities, especially for the dominant magnetic
transition, where even the imaginary part is reasonably
described. However, this is not the case for GE and GC .
The real parts of these transitions are still in a moder-
ate agreement, but the imaginary parts are off even by
a different sign. This is not too surprising because the
imaginary parts strongly depend on the parameters used
for the pion loop integrals. A revised relativistic ChPT
calculation in the complex mass scheme [57] is in progress
and may shed light on this issue.
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FIG. 1: (Color online) Figures showing the quality of the fit. From up to down we show all three multipoles at
three different photon virtualities Q2 = 0, 1, and 5 GeV2 for MAID2007 and SAID SM08 models. Black circles and
brown squares are real and imaginary part of multipoles respectively. Blue solid lines are real parts and red dashed

lines are imaginary parts of the L+P fit to the given model. Panels (a),(b),(c) show E
3/2
1+ ,M

3/2
1+ , S

3/2
1+ of the MAID

solution and (d),(e),(f) the same for the SAID solution.
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MAID Values SAID Values

BW pole BW pole

GM 2.97 3.20 −4.7◦ 3.11 3.38 −3.5◦

GE 0.064 0.202 49◦ 0.051 0.181 54◦

GC 1.18 2.11 35◦ 1.30 2.31 34◦

REM −0.022 −0.063 53◦ −0.016 −0.054 58◦

RSM −0.042 −0.067 33◦ −0.044 −0.069 30◦

A1/2 −0.131 −0.131 −20◦ −0.139 −0.142 −18◦

A3/2 −0.247 −0.261 −7.7◦ −0.258 −0.273 −6.8◦

S1/2 0.016 0.027 22◦ 0.018 0.030 21◦

TABLE I: Magnetic, electric and charge transition form factors, E/M , S/M ratios and photon decay amplitudes at
Q2 = 0 for the Breit-Wigner and for the pole position compared between MAID and SAID solutions. The BW

parameters used for the conversion factor are: M∆ = 1232 MeV and Γπ = Γr = 115 MeV, and the pole parameters
are: Wp = (1210− 50i) MeV and ResπN = 50 e−i47◦

. The form factors and ratios are dimensionless and the photon

decay amplitudes are given in units of GeV −1/2. For the complex values at the pole position, we give absolute
values with the same sign as for the BW values and a phase.
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FIG. 2: (Color online) Helicity transition form factors A1/2, A3/2 and S1/2 compared at the BW and pole position.
The black solid curves show the real BW results and the blue dashed and red dash-dotted lines show real and

imaginary parts of the complex pole form factors. The left column shows the results with the Mainz-MAID analysis
and the right column with the GWU-SAID analysis.
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[12] D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer,

U.-G. Meißner and K. Nakayama, Eur. Phys. J. A 51, 70
(2015).

[13] D. Rönchen et al., Eur. Phys. J. A 50, 101 (2014) Erra-
tum: [Eur. Phys. J. A 51, 63 (2015)].

[14] T.A. Gail and T.R. Hemmert, Eur. Phys. J. A 28, 91
(2006).

[15] V. Pascalutsa and M. Vanderhaeghen, Phys. Rev. D 73,
034003 (2006).

[16] V. Bernard, T. R. Hemmert and U. G. Meißner, Phys.
Lett. B 622, 141 (2005).
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