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Metastable CP-odd domains of the hot QCD matter are coupled to QED via the chiral anomaly.
The topology of electromagnetic field in these domains is characterized by magnetic helicity. It is
argued, using the Maxwell-Chern-Simons model, that spatial inhomogeneity of the domains induces
spontaneous transitions of electromagnetic field between the opposite magnetic helicity states.

I. INTRODUCTION

A possible existence of the metastable CP-odd domains in hot QCD matter has been actively discussed, especially in
the context of the relativistic heavy-ion collisions [1]. These domains are described by a scalar field θ whose interaction
with the electromagnetic field Fµν is given by the anomalous term in the QED Lagrangian [2–6]

LA = −cA
4
θF̃µνF

µν , (1)

where F̃µν = 1
2ǫµνλρF

λρ is the dual field tensor and

cA =
Nce

2

2π

∑

f

q2f (2)

is a constant. Together with the Maxwell’s term −(1/4)F 2
µν , Eqs. (1),(2) constitute the Maxwell-Chern-Simons (MCS)

model [1, 4–6], which is a useful tool for systematic study of the CP-odd effects in QED. The anomalous term (1)
induces a number of remarkable effects, some of which may have already been experimentally observed, see reviews
[7, 8].
As has been recently pointed out in [9, 11] the electromagnetic field inside the CP-odd domains is described by

Chandrasekhar-Kendall (CK) states [12, 13] which are spherical waves with definite magnetic helicity. Magnetic
helicity determines the topology of the CK state and is a topological invariant proportional to the number of twisted
and linked flux tubes.
The θ-field is usually modeled by a spatially homogenous time-dependent function θ(t), which is suitable to study the

temporal evolution of topological configurations of electromagnetic field in matter with chiral asymmetry [9, 10, 14, 15].
Indeed, in the presence of the chiral imbalance, magnetic helicity is not conserved, hence an initial CK state, as well
as θ, undergo non-trivial topological evolution [9, 10, 14, 15] that manifests itself in transitions of electromagnetic
field between the states with different magnetic helicity. A significant change of the θ-field typically occurs over the
time τ which is of the order of the inverse electrical conductivity of the QCD matter. The lattice calculations indicate
that near the critical point τ ∼ 36 fm. [16–18]. At significantly shorter time intervals the time-dependence of θ can
be neglected. Thus, θ can be approximated by a constant for processes that occur at distances much shorter than the
domain size R, [19, 20].
The main subject of this paper is interaction of electromagnetic fields with a CP-odd domain at time intervals

shorter than τ and distances of order R. Since the CK states are spatially extended configurations, they are sensitive
to the spatial variations of θ, in particular to the finite size of the domain. Interaction of the electromagnetic field with
the spatial gradient of θ induces transitions between different CK states. Calculation of the corresponding transition
rates is the main subject of this paper. The main result is given by (33). It shows that the the only possible transitions
are {l → l ± 1, h → h} and {l → l, h → −h} with m → m in both cases. In particular, the transition rate between
the states of opposite magnetic helicity is described by (36). It indicates a possibility of spontaneous generation of
magnetic helicity independently of the presence of the chiral imbalance.∗

∗ Another mechanism that does not require the initial chirality imbalance for the magnetic helicity generation was recently discussed in
[21].
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II. TRANSITIONS BETWEEN THE CK STATES

A. Maxwell-Chern-Simons model

Integrating by parts and dropping the full derivative, the anomalous term (1) can be cast in a more convenient
form

LA =
cA
2
ǫµνλρ∂

µθAν∂λAρ . (3)

Under the gauge A0 = 0 (3) can be written as

LA =
cA
2

[

θ̇A ·B −∇θ · (A×E)
]

. (4)

As the precise spatial distribution of θ is not known, it makes sense to reduce the complexity of the problem, while
keeping its essential features, by assuming that θ is time-independent and its gradient given by

∇θ = P f(r) , (5)

where “the chiral polarization” P is a constant, and f is a smooth dimensionless function of the radial coordinate r
obeying the boundary conditions f(0) = 1 and f(∞) = 0.

B. Chandrasekhar-Kendall states

The CK photons are elementary excitations of the electromagnetic field that have energy ω orbital angular momen-
tum l, its projection m and magnetic helicity h. It satisfies the dispersion relation ω = k, where k is the magnitude
of the momentum that does not have a definite direction in the CK state. In the radiation gauge A0 = 0, ∇ ·A = 0
the CK photons are described in the coordinate representation by the wave functions

Ah
klm(r, t) =

1√
2kR

hkW h
klm(r)e−ikt , (6)

where W h
klm(r) are the eigenfunctions of the curl operator

∇×W h
klm(r) = hkW h

klm(r) (7)

obeying the orthogonality conditions
∫

W h′∗
k′l′m′(r) ·W h

klm(r)d3r =
π

k2
δ(k − k′)δll′δmm′δhh′ . (8)

For a typical photon energy, the domain radius R is so large, that kR ≫ 1. This allows one to treat the CK photon
energy spectrum as approximately continuous. The electromagnetic potential can be written as

A(r, t) =
∑

lmh

∫ ∞

0

Rdk

π
√
2kR

(

hkahklmW h
klm(r)e−ikt + h.c.

)

, (9)

where ahklm is the operator obeying the usual bosonic commutation relations
[

ah
′

k′l′m′ , (ahklm)†
]

=
π

R
δ(k′ − k)δll′δmm′δhh′ , (10)

etc. It is convenient to choose the quantization axis z as the direction of vector P and define the spherical coordinates
θ and φ with respect to it. The functions W h

klm(r) can be expressed in terms of the spherical harmonics and the
orbital angular momentum operator L = −i(r ×∇) as [22]

W h
klm(r) = T h

klm(r)− ihP h
klm(r) , (11)

where

T h
klm(r) =

jl(kr)
√

l(l+ 1)
L[Ylm(θ, φ)] , P h

klm(r) =
i

k
∇× T h

klm(r) , l ≥ 1 . (12)

Although functions Tklm and Pklm also form a complete set on a unit sphere (at fixed k), they do not have definite
magnetic helicity.
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C. Transition rate

The scattering matrix element describing the scattering of the CK photon off the θ-field is

〈k′l′m′h′|SA|klmh〉 = cA
2

∫

d4x〈k′l′m′h′|θ̇A · (∇×A) +∇θ · (A× Ȧ)|klmh〉 , (13)

where |klmh〉 6= |k′l′m′h′〉. Substituting (9) into (13) and using (7)-(8) one derives

〈k′l′m′h′|SA|klmh〉 = cA
2

1

2R

∫

d4xei(k
′−k)t 1√

kk′

{

θ̇(hkk′2 + h′k′k2)W ·W ′∗

+∇θ · (W ×W ′∗)(ikk′2 + ik′k2)hh′
}

, (14)

where a shorthand notation is used: W h
klm = W , W h′

k′l′m′ = W ′. In the case of the time-independent domain of
radius R described by (5), (14) simplifies

〈k′l′m′h′|SA|klmh〉 = πcAδ(k
′ − k)

k2

2R

∫ ∞

0

drr2f(r)

∫

dΩ2iP · (W ×W ′∗)hh′ (15)

= πcAδ(k
′ − k)

k2

2R

∫ ∞

0

drr2f(r) 2ihh′P ·C , (16)

where

C =

∫

W ×W ′∗ dΩ =

∫

(T × T ′∗ + hh′P × P ′∗ − ihP × T ′∗ + ih′T × P ′∗)dΩ . (17)

The eigenfunctions W ′ in (16) and (17) are evaluated at k′ = k. The first integral in (17) is proportional to
∫

ǫijk(LjYlm)(L∗
kY

∗
l′m′) dΩ =

∫

ǫijkY
∗
l′m′LkLjYlm dΩ =

1

2

∫

ǫijkY
∗
l′m′ [Lk, Lj]Ylm dΩ

= −i

∫

Y ∗
l′m′LiYlmdΩ ≡ −i〈l′m′|Li|lm〉 , (18)

where the commutator [Lk, Lj] = iǫkjsLs was used. The explicit expression for the matrix element of the angular
momentum is

〈l′m′|Li|lm〉 = δll′
(

mδmm′ez +
√

l(l + 1)−m(m− 1)δm′,m−1e+

+
√

l(l + 1)−m(m+ 1)δm′,m+1e−
)

, (19)

where e± = 1
2 (ex ± iey). Eq. (18) implies that

∫

T × T ′∗dΩ = −i
j2l (kr)

l(l+ 1)
〈l′m′|L|lm〉 . (20)

The second integral in (17) reads
∫

ǫijkPjP
′∗
k dΩ =

1

k2

∫

ǫijk(∇× T )j(∇× T ′∗)k dΩ =
1

k2

∫

ǫkjsT
′∗
s ∇j∇iTk dΩ , (21)

= − jl(kr)jl′ (kr)
√

l(l + 1)
√

l′(l′ + 1)

1

k2

∫

ǫkjs(L
∗
sY

∗
l′m′)(pjpiLkYlm) dΩ , (22)

where p = −i∇. Integrating by parts and using p ·L = 0 and [Li, pj ] = iǫijkpk, the integral in (22) can be rendered
as

−
∫

ǫkjs(L
∗
sY

∗
l′m′)(pjpiLkYlm) dΩ = −i

∫

Y ∗
l′m′p2LiYlm dΩ = − il(l+ 1)

r2
〈l′m′|Li|lm〉 , (23)

where I used p2Ylm = l(l+ 1)Ylm/r2. Thus,
∫

P × P ′∗ dΩ = − i

k2r2
[jl(kr)]

2〈l′m′|L|lm〉 . (24)
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Actually, integration by parts in (22) yields another term proportional to

∫ ∞

0

∇[r2f(r)jl(kr)jl′ (kr)]dr .

However, it vanishes due to the boundary conditions imposed on f(r), see (5).
Turning to the third and fourth terms in (17) one obtains after integrating by parts and using the gauge condition

∇ · T = 0
∫

(−ihP × T ′∗ + ih′T × P ′∗) dΩ = −h+ h′

k

∫

T ′∗
i ∇Ti dΩ

= −i
jl(kr)jl′ (kr)

√

l(l + 1)
√

l′(l′ + 1)

h+ h′

k
〈l′m′|LipLi|lm〉 . (25)

Collecting (17),(20),(24) and (25) yields

C =− i

[

j2l (kr)〈l′m′|L|lm〉
(

1

l(l+ 1)
+

hh′

k2r2

)

+
jl(kr)jl′ (kr)

√

l(l + 1)
√

l′(l′ + 1)

h+ h′

k
〈l′m′|LipLi|lm〉

]

. (26)

The symmetry properties of the matrix elements imply that the first term in (26) describes transitions between the
states with the same angular momentum l → l, while the second one between the states with angular momentum
different by one unit l → l ± 1.
Plugging (26) into (16) and bearing in mind that h2 = h′2 = 1 one derives

〈k′l′m′h′|SA|klmh〉 = πcAδ(k
′ − k)

k2

R

∫ ∞

0

drr2f(r)

×
{

j2l (kr)

[

P · 〈l′m′|L|lm〉
(

hh′

l(l + 1)
+

1

k2r2

)]

δll′

+
h+ h′

k
P · 〈l′m′|LipLi|lm〉 jl(kr)jl′ (kr)

√

l(l+ 1)
√

l′(l′ + 1)

}

. (27)

The explicit expression for the matrix element 〈l′m′|LipzLi|lm〉 is given by (A8) in the Appendix (recall that P =
Pez). It is helpful to define the auxiliary functions

Rll′ (k) =

∫ ∞

0

drr2f(r)jl(kr)jl′ (kr) , (28)

R′
ll′ (k) =

l(l+ 1)

k2

∫ ∞

0

drf(r)jl(kr)jl′ (kr) , (29)

R′′
ll′ (k) =

1

k

∫ ∞

0

drrf(r)jl(kr)jl′ (kr) . (30)

Using all these equation and (19) in (27) one gets

〈k′l′m′h′|SA|klmh〉 = πcAδ(k
′ − k)

k2

R
δm′m

{

Pm

l(l + 1)
[hh′Rll′(k) +R′

ll′ (k)] δll′

+i(h+ h′)P [almδl′,l−1 + blmδl′,l+1]R′′
ll′ (k)

}

, (31)

where the coefficients alm and blm are given by (A9) and (A10). It is convenient to separate the part of the matrix
element that describes the magnetic helicity flip h′ = −h. To this end one can multiply the first term in the curly
brackets by the identity 1 = δhh′ + (1 − δhh′). The term diagonal in all quantum numbers only contributes to the
wave function renormalization and can be dropped at the leading order.
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The transition rate form the initial CK state with quantum numbers l, m, h to the final CK state with quantum
numbers l′, m′ and h′ is given by

w(lmh → l′m′h′) =
1

t
|〈k′l′m′h′|SA|klmh〉|2Rdk′

π
(32)

=
c2Ak

4

2R
δm′m

{

4P 2(R′′
ll′ (k))

2δh′h

[

a2lmδl′,l−1 + b2lmδl′,l+1

]

+
P 2m2

l2(l + 1)2
[

R′
ll′(k)−Rll′ (k)

]2
(1− δhh′)δll′

}

. (33)

where the identity (h + h′)2 = 4δhh′ was used and one of the delta functions is replaced by t/2π. In particular, the
rate of spontaneous magnetic helicity-flip h → −h is

wflip(lm → l′m′) =
c2Ak

4

2R

P 2m2

l2(l + 1)2
[

R′
ll(k)−Rll(k)

]2
δl′lδm′m . (34)

It is not difficult to verify that since kR ≫ 1, Rll ≫ R′
ll with the main contribution to the integral over r arising

from the distances 1/k < r < R. Since at large kr the spherical Bessel function can be approximated as jl(kr) ≈
(kr)−1 sin(kr − πl/2), one finds

R′
ll(k)−Rll(k) ≈ − 1

2k2

∫ ∞

0

fdr . (35)

Thus, the helicity-flip transition rate is given by

wflip =
1

8R

(

cA
Pm

l(l + 1)

∫ ∞

0

fdr

)2

. (36)

It is proportional to the domain radius and is independent of the CK state energy.

D. Estimates

To estimate the transition rate for the quark-gluon plasma produced in relativistic heavy-ion collisions, one needs
to know the value of P . Alternatively, one can solve (5) to obtain

θ(r) = P

∫ r

0

f(r′)dr′ + θ0 , (37)

where θ(0) = θ0 is the value of θ in the domain’s center. From the requirement that θ vanishes as r → ∞ it follows
that

∫ ∞

0

f(r)dr = −θ0
P

. (38)

Eq. (36) can now be written as

wflip =
1

8R

(

cA
m

l(l+ 1)
θ0

)2

. (39)

In [25] the magnitude of the charge separation effect in a typical heavy-ion collision with l = 4 is reproduced with
θ0 ≃ π for Nf = 2. The domain size can be roughly approximated by the the sphaleron size R = 0.4 fm [24].
Substituting these estimates into (39), yields for l = m the magnetic helicity flip rate

wflip ∼ 0.7 · 10−4 fm−1 . (40)
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III. SUMMARY

In quark-gluon plasma, the electromagnetic field is initially in a state which is a superposition of states with
definite angular momentum l, its projection m and magnetic helicity h (CK states). The main result of this paper are
Eqs. (32)-(36) that give the transition rate between two CK states due to the spatial inhomogeneity of the CP-odd
domain. Eq. (36) indicates that the spatially inhomogeneous CP-odd domains induce spontaneous flip of magnetic
helicity. Thus, initially chirally symmetric electromagnetic field can spontaneously acquire magnetic helicity by means
of interaction with hot QCD matter. Another possible way of magnetic helicity generation without any initial chirality
imbalance was recently proposed in [21].
The magnetic helicity evolution studied in [9, 10, 14, 15] requires finite electrical conductivity of the quark-gluon

plasma. In the ideally conducting medium (with infinite electrical conductivity) the magnetic helicity evolution of
[9, 10, 14, 15] is not possible. This is because the spatially homogeneous anomalous current is proportional to magnetic
field and thus does not mix the CK states. What is argued in this paper is that even in the ideally conducting medium,
spatial inhomogeneities in the anomalous current cause magnetic helicity evolution. Clearly, in a more comprehensive
approach to magnetic helicity evolution both effects should be taken into account.
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Appendix A: The matrix element 〈l′m′|LipzLi|lm〉

It is advantageous to employ the raising and lowering operators L± = Lx± iLy that act on the angular momentum
eigenstates |lm〉 as

L±|lm〉 =
√

(l ∓m)(l ±m+ 1)|l,m± 1〉 . (A1)

Using (A1) one can reduce the matrix element of LipzLi to the matrix elements of momentum:

〈l′m′|LipzLi|lm〉 = 〈l′m′|LzpzLz|lm〉+ 1

2
〈l′m′|L+pzL−|lm〉+ 1

2
〈l′m′|L−pzL+|lm〉 (A2)

= mm′〈l′m′|pz|lm〉+ 1

2

√

(l′ +m′)(l′ −m′ + 1)
√

(l +m)(l −m+ 1)〈l′,m′ − 1|pz|l,m− 1〉

+
1

2

√

(l′ −m′)(l′ +m′ + 1)
√

(l −m)(l +m+ 1)〈l′,m′ + 1|pz|l,m+ 1〉 . (A3)

The matrix elements of the momentum operator can be written as

〈l′m′|pz|lm〉 = −i〈l′m′| ∂
∂z

|lm〉 = − i

r
〈l′m′| sin2 θ ∂

∂ cos θ
|lm〉 (A4)

=
i

r
(l + 1)

√

(l +m)(l −m)

(2l+ 1)(2l − 1)
δmm′δl′,l−1 −

i

r
l

√

(l −m+ 1)(l +m+ 1)

(2l + 1)(2l+ 3)
δmm′δl′,l+1 , (A5)

where the following recursive relation for the associate Legendre polynomials was used, see 8.731 in [26]

sin2 θ
d

d cos θ
Pm
l (cos θ) =

1

2l + 1

[

(l + 1)(l +m)Pm
l−1(cos θ)− l(l −m+ 1)Pm

l+1(cos θ)
]

. (A6)

Substituting (A5) into (A3) yields

〈l′m′|LipzLi|lm〉 = i

r
δm′m

{

(l − 1)(l + 1)2

√

(l −m)(l +m)

(2l + 1)(2l− 1)
δl′,l−1

+l2(l + 2)

√

(l −m+ 1)(l +m+ 1)

(2l + 3)(2l+ 1)
δl′,l+1

}

. (A7)
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It is convenient to introduce a shorthand notation

〈l′m′|LipzLi|lm〉
√

l(l+ 1)
√

l′(l′ + 1)
=

i

r
δm′m [almδl′,l−1 + blmδl′,l+1] , (A8)

where

alm =

√

(l −m)(l +m)(l − 1)(l + 1)3

l2(2l+ 1)(2l − 1)
(A9)

blm =

√

(l −m+ 1)(l +m+ 1)(l + 2)l3

(2l+ 3)(2l + 1)(l + 1)2
. (A10)
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