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The one-dimensional non-boost-invariant evolution of the quark-gluon plasma, presumably pro-
duced during the early stages of heavy-ion collisions, is analyzed within the frameworks of viscous
and anisotropic hydrodynamics. We neglect transverse dynamics and assume homogeneous condi-
tions in the transverse plane but, differently from Bjorken expansion, we relax longitudinal boost
invariance in order to study the rapidity dependence of various hydrodynamical observables. We
compare the results obtained using several formulations of second-order viscous hydrodynamics with
a recent approach to anisotropic hydrodynamics, which treats the large initial pressure anisotropy
in a non-perturbative fashion. The results obtained with second-order viscous hydrodynamics de-
pend on the particular choice of the second-order terms included, which suggests that the latter
should be included in the most complete way. The results of anisotropic hydrodynamics and vis-
cous hydrodynamics agree for the central hot part of the system, however, they differ at the edges
where the approach of anisotropic hydrodynamics helps to control the undesirable growth of viscous
corrections observed in standard frameworks.
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I. INTRODUCTION

The ultimate goal of the ultra-relativistic heavy-ion
collision experiments at the Relativistic Heavy Ion Col-
lider (RHIC) and the Large Hadron Collider (LHC) is to
investigate the properties of nuclear matter at extreme
conditions of very high temperature and energy density.
The collective behavior observed in these experiments has
been described, at first, using perfect-fluid relativistic hy-
drodynamics. Later, relativistic viscous hydrodynamics
was used based on general arguments that the shear vis-
cosity to entropy density ratio is bounded from below [1].
The causal theory of second-order viscous hydrodynam-
ics resulted in better agreement between hydrodynamic
predictions and the experimental data.

In contrast to the basic assumption of small devia-
tions from perfect-fluid hydrodynamics which is used in
the derivation of viscous hydrodynamic equations, the
rapid longitudinal expansion, typically found in relativis-
tic heavy-ion collisions, is the source of large pressure
anisotropies. To address such large pressure corrections
more accurately, a new framework called anisotropic hy-
drodynamics has been developed [2, 3]. The predic-
tions of anisotropic hydrodynamics have been compared
with the exact solutions of the Boltzmann equation for
longitudinally boost invariant and transversely homoge-
neous systems. It has been shown that anisotropic hydro-
dynamics describes the dynamics more accurately than
standard viscous frameworks [4, 5]. Very similar results
have been found also for the Gubser type of expansion [6–
8]. Also recently, it has been shown that anisotropic hy-
drodynamics shows better agreement with the data for
a completely different physical system, namely, an ultra-
cold Fermi gas [9–12].

Longitudinal boost invariance seems to be a reasonable

approximation for the midrapidity region during the ini-
tial stages of collisions [13, 14], but it must be broken
at large rapidities, because of the finite size of the ex-
panding fireball (finite available energy). The gradients
in the rapidity direction provide a new source of pres-
sure corrections that affect the hydrodynamical evolu-
tion. In this paper, we investigate how different formu-
lations of viscous hydrodynamics and anisotropic hydro-
dynamics deal with such corrections. We consider the
Müller-Israel-Stewart (MIS) formulation of the second-
order viscous hydrodynamics [15–17] that is most com-
mon in phenomenological studies [18–23], as well as two
alternative approaches, namely, the modified 14-moment
expansion developed by Denicol et al. [24–26] (DNMR)
and the gradient expansion presented in [27] (BRSSS).
For the anisotropic hydrodynamics framework, we choose
the latest construction of the leading-order terms, which
is based on the anisotropic matching principle [28]. Be-
low, we shall refer to this framework as AHYDRO. For
sake of simplicity, we consider all formulations in the con-
formal limit, with the kinetic coefficients obtained from
the kinetic theory in the relaxation time approximation
(RTA) [29] with classical statistics.

The non-boost-invariant one-dimensional expansion of
matter produced in heavy-ion collisions has been already
studied for perfect-fluid [30, 31], viscous [32], as well
as anisotropic hydrodynamics [33, 34], see also [35]. In
Ref. [30] the convective stability of matter was analysed
in the case with finite baryon number density. In Ref. [32]
the emphasis was placed on the reduction of the longi-
tudinal pressure due to the viscous effects as compared
to perfect-fluid case [31], with consequences for the esti-
mates of the initial energy density of the system created
in heavy-ion collisions.

In Refs. [33, 34] the first formulations of anisotropic hy-
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drodynamics for non-boost-invariant systems were intro-
duced. Compared to these works, the AHYDRO frame-
work used in this work is based on the more recent ap-
proach [28], that agrees with DNMR and BRSSS for sys-
tems approaching local thermal equilibrium. In fact, it
has been recently demonstrated that the gradient expan-
sions of DNMR, BRSSS and AHYDRO agree up to the
second order in gradients for boost-invariant systems [36].
More recently, the perturbations of the baryon number
density around the Bjorken solution were studied in [37].

In this work we investigate the generation of nega-
tive longitudinal pressure at large space-time rapidity ς
which, in all second-order viscous hydrodynamics con-
sidered, results in matter pile-up and the development of
a shock front. AHYDRO eliminates negative pressures
by construction and delays substantially the formation
of a shock (to times much larger than the typical time
span of heavy-ion collisions). The negative pressures are
physically not allowed in the kinetic calculations used to
extract the values of our transport coefficients, however,
they are present at the edges of the expanding system if
standard viscous hydrodynamics is used. We find that
MIS and BRSSS results are very similar and lead to the
largest negative pressures — a change from positive to
negative pressure has the character of a shock, where
pressure as well as the fluid rapidity change very suddenly
in a narrow range of ς. The DNMR prescription works
better, leading to smaller negative values of the pressure.
The overall better performance of DNMR may be related
to the fact that the DNMR equations are directly derived
from the underlying RTA kinetic theory. It should be
noted also that different treatment of the shear-to-shear
coupling terms in the evolution of the shear stress tensor
produces, contrary to common assumptions, a significant
difference in the evolution of the system, especially for
the flow profile at the edges of the system.

AHYDRO regulates the dynamics of the expanding
system. The system’s pressure at large space-time ra-
pidities is positive (although very close to zero), while
the fluid rapidity is continuous and very close to ς at the
system’s edges. This allows for a continuous and consis-
tent description of the produced system as consisting of
the hot central part together with a free-streaming halo.

The paper is organized as follows: In Sec. II the gen-
eral principles of relativistic hydrodynamics based on
the conservation laws are introduced. The constraints
coming from a simple (1+1)-dimensional expansion ge-
ometry are implemented in Sec. III. Different versions
of second-order viscous hydrodynamics are introduced
and discussed in Sec. IV, while anisotropic hydrodynam-
ics is presented in Sec. V. Our numerical results are
shown and discussed in Sec. VI. We summarize and con-
clude in Sec. VII. Throughout the paper we use natural
units with c = ~ = kB = 1 and the metric tensor is
gµν = diag(1,−1,−1,−1).

II. GENERAL PRINCIPLES

In the present work we neglect conserved charges (such
as baryon number), hence, the main hydrodynamic equa-
tions reflect the conservation of energy and momentum
in the system,

∂µT
µν(x) = 0, (1)

where Tµν is the energy-momentum tensor. We further
use the Landau definition of the four-velocity Uµ,

Uµ(x)Tµν(x) = E(x)Uν(x), (2)

where the eigenvalue E is the proper energy density.
Then, we make use of the most general decomposition
of Tµν in the Landau frame

Tµν = E UµUν −
(
P + Π

)
∆µν + πµν , (3)

where Π is the bulk pressure, πµν is the shear stress ten-
sor (the space-like, symmetric, and traceless part of Tµν),
and the projector ∆µν reads

∆µν = gµν − UµUν . (4)

The distinction between the hydrostatic (equilibrium)
pressure P and the bulk pressure Π requires a thermo-
dynamic input. A very common procedure is to define
an effective (point-dependent) temperature through the
Landau matching

E(x) = Eeq
(
T (x)

)
, (5)

where Eeq(T ) is the energy density of the system at global
equilibrium in the thermodynamic limit. In this way, the
hydrostatic pressure is defined through the effective tem-
perature, as the pressure that the system would have
in thermodynamical equilibrium with temperature T ,
namely

P(x) = Peq

(
T (x)

)
. (6)

Since we consider, for mathematical simplicity, only the
case of a conformal fluid, the equation of state takes the
form

P(x) =
1

3
E(x), (7)

and the bulk viscosity Π vanishes

Π = 0. (8)

Contracting (1) with the four-velocity Uν and the projec-
tor ∆α

ν , respectively, and taking into account the confor-
mal requirement (8), after some straightforward algebra
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one obtains the equations

DE = −
(
E + P

)
θ + πµνσ

µν , (9)

and (
E + P

)
DUα = ∇αP −∆α

µ∂νπ
µν , (10)

with D = Uµ∂µ being the convective derivative, θ =
∂µU

µ the expansion scalar, ∇µ = ∆µν∂ν the spatial gra-
dient, and σµν the shear flow tensor

σµν = ∂〈µUν〉. (11)

Here we make use of the notation

A〈µν〉 = ∆µν
αβ Aαβ ,

where

∆µν
αβ =

1

2

(
∆µ
α∆ν

β + ∆ν
α∆µ

β −
2

3
∆µν∆αβ

)
.

III. IMPLEMENTATION OF (1+1)D
NON-BOOST-INVARIANT EXPANSION

Due to translational invariance in the transverse plane
of the systems we study in this work, the considered evo-
lution of matter becomes effectively (1+1)-dimensional
[(1+1)D]. Hence, each scalar quantity must depend only
on the lab frame time t and on the lab frame longitu-
dinal direction z. It is convenient, however, to change
at this point to the (longitudinal) proper time τ and the
spacetime rapidity ς,

τ =
√
t2 − z2, ς =

1

2
ln

(
t+ z

t− z

)
, (12)

where t > |z|. Because of the rotational and translational
invariance in the transverse plane, the four-velocity vec-
tor Uµ must have vanishing components in the transverse
direction. Therefore, the four-velocity of the fluid can be
written as

Uµ =
(

cosh(ς + θ‖), 0, 0, sinh(ς + θ‖)
)
, (13)

with θ‖(τ, ς) being a scalar function. In the limit θ‖ = 0,
we recover the boost-invariant four-velocity profile. It is
convenient now to fix a complete orthonormal basis [38–
40]. In addition to the time-like four-velocity vector Uµ,
we introduce the longitudinal-direction four-vector

Zµ =
(

sinh(ς + θ‖), 0, 0, cosh(ς + θ‖)
)
, (14)

and two arbitrary four-vectors in the transverse plane,
Xµ and Y µ, which can be, without loss of generality,
identified with the unit vectors along the x and y direc-

tions in the lab frame. In the local rest frame (LRF) the
basis vectors read

Uµ = (1, 0, 0, 0), Xµ = (0, 1, 0, 0),

Y µ = (0, 0, 1, 0), Zµ = (0, 0, 0, 1). (15)

We can therefore write the projector (4) in the following
way

∆µν = gµν − UµUν = −XµXν − Y µY ν − ZµZν

= −
∑
I

IµIν , (16)

where the sum, hereafter, is meant to run over the space-
like basis vectors, I = X,Y, Z.

The directional derivatives read

D = Uµ∂µ = cosh θ‖∂τ +
sinh θ‖

τ
∂ς ,

Xµ∂µ = ∂x, Y µ∂µ = ∂y,

DL = Zµ∂µ = sinh θ‖∂τ +
cosh θ‖

τ
∂ς . (17)

Making use of (13) and (17), the four-acceleration DUµ

reads

DUµ =

(
Dθ‖ +

sinh θ‖

τ

)
Zµ. (18)

We note that in the limit θ‖ → 0 we recover the Bjorken
result, DUµ = 0. In the next step, we construct the
expansion tensor

θµν =
1

2
∆µα∆νβ

(
∂αUβ + ∂βUα

)
= −

∑
I

θI I
µIν ,

(19)
where

θI = Uµ(Iν∂ν)Iµ =

{
cosh θ‖
τ +DLθ‖ I = Z,

0 I = X,Y.
(20)

Then, we find the expansion scalar

θ = ∂µU
µ = ∆µν∂µUν

= ∆µνθµν = θZ =
cosh θ‖

τ
+DLθ‖, (21)

and the shear flow tensor

σµν = θµν − θ

3
∆µν =

∑
I

σI I
µIν , (22)

with

σI =
θ

3
− θI =

{
− 2

3θ I = Z,
1
3θ I = X,Y.

(23)

We note that the vorticity ωµν vanishes for the type of
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expansion considered in this work

ωµν =
1

2
∆µα∆νβ

(
∂αUβ − ∂βUα

)
= 0. (24)

The forms of the four-acceleration (18) and the direc-
tional derivatives (17), as well as the symmetry in the
transverse plane, imply that only the Zα projection of
Eq. (10) is not trivially satisfied, namely

−
(
E + P

)(
Dθ‖ +

sinh θ‖

τ

)
= DLP − Zµ∂νπµν . (25)

The symmetry of the system constrains further possible
forms of πµν . Indeed, in the {U,X, Y, Z} basis, the tensor
πµν must be diagonal and with equal values of the X and
Y components

πµν =
∑
I

πI I
µIν (26)

=
πs(τ, ς)

2

(
XµXν + Y µY ν

)
− πs(τ, ς)ZµZν .

Here πX = πY = πs/2 and πZ = −πs. The scalar πs
completely defines the shear pressure corrections in the
(1+1)D expansion.

Besides the components of the shear stress tensor, it is
convenient to introduce the transverse and longitudinal
pressure1, namely PT and PL, that are defined by the
expressions

PT = XµXνT
µν = YµYνT

µν = P +
πs
2
, (27)

PL = ZµZνT
µν = P − πs. (28)

In this way, Eqs. (9) and (25) reduce to the compact form

DE = −
(
E + PL

)
θ, DLPL = −

(
E + PL

)
θL,

(29)
where the divergence of the vector Zµ reads

θL = ∂µZ
µ = gµν∂µZν =

(
UµUν + ∆µν

)
∂µZν

= UµDZµ = −ZµDUµ = Dθ‖ +
sinh θ‖

τ
. (30)

Since in viscous hydrodynamics the shear pressure πµν

(and bulk pressure Π in the non-conformal case) correc-
tions are treated as independent variables, it is conve-

1We make use of the conformal equation of state. In the non-
conformal case one has to include the bulk pressure Π in the two
definitions

nient to explicitly maintain these variables in Eqs. (29),

DE = −
(
E + P − πs

)
θ, (31)

DL

(
P − πs

)
= −

(
E + P − πs

)
θL. (32)

IV. SECOND-ORDER VISCOUS
HYDRODYNAMICS

The system of equations (31) and (32) is clearly not
closed, having two independent equations for three in-
dependent variables: the effective temperature T (giv-
ing both the energy density E and the hydrostatic pres-
sure P through Eqs. (5) and (7)), the relative fluid ra-
pidity θ‖ (the only independent component of the four-
velocity), and πs (expressing the shear pressure correc-
tion). In second-order viscous hydrodynamics, this sys-
tem is closed with additional dynamic equations for the
shear stress tensor which is treated as a new hydrody-
namic variable.

A. Müller-Israel-Stewart (MIS) approach

Since the original works by Müller in 1967 [15] and
Israel and Stewart in 1976 [16, 17], second-order hydro-
dynamics has been gradually evolving into a more and
more complete theory that includes various terms deter-
mining the dynamics of the bulk pressure and the shear
stress tensor. One popular version of this theory, used in
many phenomenological applications and denoted below
as MIS, is based on the formula [18–20]

Dπ〈µν〉 +
πµν

τπ
= 2βπσ

µν − πµν Tβπ
2
∂ρ

(
1

Tβπ
Uρ
)
.

(33)

Here τπ is the shear relaxation time, while βπ = η/τπ is
the ratio of the first-order transport coefficient and its
respective relaxation time. In the particular case of the
(1+1)D non-boost-invariant expansion considered in this
work, Eqs. (33) reduce, as expected, to three degenerate
equations for πI ’s

DπI +
πI
τπ

= 2βπσI − πI
Tβπ

2
∂µ

(
1

Tβπ
Uµ
)
, (34)

or, equivalently, to a single equation for πs

Dπs +
πs
τπ

=
4

3
βπθ − πs

Tβπ
2
∂µ

(
1

Tβπ
Uµ
)
. (35)

A closer examination of Eq. (35) shows that it includes
higher-order terms in gradients (see App. A for the de-
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tails). If they are neglected, Eq. (35) reduces to the form

Dπs +
πs
τπ

=
4η

3τπ
θ − 4

3
θπs. (36)

Summing up, given the symmetry constraints, the three
MIS equations for the hydrodynamical evolution are the
energy and momentum conservation equations (31)-(32),
and the relaxation-type equation (36).

B. Denicol-Niemi-Molnar-Rischke (DNMR)
approach

In the recent works [24–26], starting from kinetic
theory, Denicol, Niemi, Molnar and Rischke have de-
rived equations for viscous hydrodynamics in an expan-
sion controlled by the Knudsen number and the inverse
Reynolds number. In the conformal case and the re-
laxation time approximation (RTA) for the collisional
kernel, this approach leads to the evolution equations
which are equivalent to the ones resulting from the mod-
ified Chapman-Enskog prescription proposed by Jaiswal
[41, 42]. The situation in the DNMR case is similar to
that seen previously for MIS, however, some terms ap-
pearing in the final DNMR equation for πs are different
from those used in MIS, namely, the DNMR approach in
the conformal limit, with vorticity neglected once again,
yields

Dπs +
πs
τπ

=
4η

3τπ
θ− δππ θ πs−

1

3
θ τππ πs +

φ7
2τπ

π2
s . (37)

The quantities δππ, τππ, and φ7 are second-order coeffi-
cients. In order to compare uniformly various approaches
we use the values obtained from the RTA kinetic theory
in the conformal case:

δππ =
4

3
, τππ =

10

7
, φ7 = 0. (38)

This allows us to simplify (37) to

Dπs +
πs
τπ

=
4η

3τπ
θ − 38

21
θ πs. (39)

C. Baier-Romatschke-Son-Starinets-Stephanov
(BRSSS) approach

The BRSSS approach [27] uses arguments of confor-
mal symmetry to construct the shear stress tensor out of
gradients of the hydrodynamic variables T and Uµ (up
to the second order in gradients). To obtain the dynamic
equation for πµν the Navier-Stokes (NS) equations are
used. This procedure leads to a structure similar to (37),
namely

Dπs +
πs
τπ

=
4η

3τπ
θ − 4

3
θ πs −

λ1
2τπη2

π2
s , (40)

where [43]

λ1 =
5ητπ

7
. (41)

V. ANISOTROPIC HYDRODYNAMICS
FORMALISM

Equations (29) must be fulfilled by any hydrodynamic
approach, since they describe energy and momentum
conservation. Within the anisotropic hydrodynamics
framework, we express the energy density, the longitudi-
nal pressure, and the transverse pressure by the formulas

E = Eeq(Λ)R(ξ) = 3Peq(Λ)R(ξ),

PL = Peq(Λ)RL(ξ),

PT = Peq(Λ)RT (ξ), (42)

where the functions R, RL, and RT have been defined
in Ref. [3]. The quantity Λ is the transverse momen-
tum scale, while ξ is the anisotropy parameter. In the
limit ξ → 0, the transverse momentum scale Λ may be
identified with the temperature of the system in local
equilibrium.

The two non-trivial equations (29) that follow from the
energy-momentum conservation can be written in this
case as

R(ξ)D lnPeq(Λ) +R′(ξ)Dξ

+
2

3

[
RT (ξ) +RL(ξ)

]
θ = 0 (43)

RL(ξ)DL lnPeq(Λ) +R′L(ξ)DLξ

+2
[
RT (ξ) +RL(ξ)

]
θL = 0. (44)

The primes in R′ and R′L denote the partial derivative
with respect to the argument ξ.

It has been demonstrated in Ref. [28] that extra dy-
namical equations for anisotropic hydrodynamics can be
most optimally derived from the exact equation for the
shear stress tensor, which is obtained directly from the
Boltzmann equation (this procedure requires however a
truncation of the expansion of the phase-space distribu-
tion function and keeping the leading anisotropic term
only). The method proposed in Ref. [28] yields the best
agreement with the exact solutions of the Boltzmann
equation in the case of a one-dimensional, longitudinally
boost-invariant flow (although the very same method can
be applied to derive anisotropic hydrodynamics equations
in a general (3+1)D case).

In this work we use the results obtained in [28]. It
is straightforward to check that for anisotropic hydro-
dynamics the five independent equations for the shear
stress tensor reduce to a single independent equation for
πs = 2(PT − PL)/3, in the similar way as it happens in
viscous hydrodynamics. Thus, one can take, without loss
of generality, the longitudinal projection of Eq. (40) in
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Ref. [28] as a supplementary equation. The latter reads

D(PT − PL) +
1

τeq
(PT − PL)

= θPeq(Λ)
{

2
√

1 + ξ ∂ξ

[√
1 + ξRT (ξ)

]
− 2√

1 + ξ
∂ξ

[(√
1 + ξ

)3
RL(ξ)

]}
(45)

−θ(PT − PL) + 2θPL,

which can be further simplified dividing both sides by
the positive quantity Peq. After some algebra, the last
equation can be rewritten as[

RT (ξ)−RL(ξ)
] [
D lnPeq(Λ) +

1

τeq

]
+
[
R′T (ξ)−R′L(ξ)

] [
Dξ − 2(1 + ξ)θ

]
= 0. (46)

VI. NUMERICAL RESULTS

Dealing with the conformal case, one obtains three in-
dependent equations, for example, for T , θ‖, and πs (in
the case of viscous hydrodynamics) or for Λ, θ‖, and ξ
(for anisotropic hydrodynamics). The appropriate selec-
tion of equations is: (31), (32) and (36) for MIS; (31),
(32) and (39) for DNMR; (31), (32) and (40) for BRSSS,
and, finally, (43), (44), and (46) for AHYDRO.

In all cases the relaxation time depends inversely on
the temperature τπ = τeq = 5η̄/T , where η̄ = η/s is
the shear viscosity to entropy density ratio. We use the
values 4πη̄ = 1 and 4πη̄ = 3, which correspond to the
range of present experimental estimates. We initialize
the energy density with a Gaussian space-time rapidity
profile E(τ0, ς) = E0 exp

(
−ς2/(2a2)

)
, where a = 0.9 and

E0 = 100 GeV/fm3 at the initial proper time τ0 = 0.3 fm.
The initial pressure is taken in the equilibrium (confor-
mal) form P(τ0, ς) = E(τ0, ς)/3. The temperature is ob-
tained from the relation αT 4 = E , where α = 15.63. The
initial longitudinal rapidity is very close to the Bjorken
formula, namely, θ‖(τ0, ς) = bς with b = 10−10. We
start with a practically isotropic pressure in the sys-
tem, taking πs(τ0, ς) = cP(τ0, ς) where c = 10−10.
The initial anisotropy parameter for anisotropic hydro-
dynamics calculations is extracted from the equation
πs(τ0, ς)/P(τ0, ς) = 1−RL(ξ(τ0, ς))/R(ξ(τ0, ς)).

In Figs. 1 and 2 we present the relative fluid rapidity
θ‖ (left) and the ratio r = πs/P (right) as functions of
spacetime rapidity at different values of the proper time,
τ = 1 fm (top), τ = 5 fm (middle), and τ = 10 fm (bot-
tom), obtained within perfect-fluid hydrodynamics (thin
solid black lines), MIS (dashed purple lines), BRSSS
(dotted blue lines), DNMR (dashed dotted green lines),
and AHYDRO (solid red lines). In Fig. 1 we use the
lower bound value of η̄ = 1/(4π), while in Fig. 2 the
value η̄ = 3/(4π) is used.

In the central rapidity region we observe that mat-
ter is accelerated outwards in the forward/backward ra-
pidity directions during the entire considered evolution
time. This property is qualitatively similar for all con-
sidered formalisms. On the other hand, at large values
of rapidity, |ς| > 5, due to long relaxation times (be-
ing inversely proportional to the temperature of the sys-
tem, τeq ∼ 1/T ), large dissipative corrections are quite
quickly being built up. In the various dissipative hydro-
dynamics formalisms these large dissipative corrections
are handled in different ways, according to the specific
evolution equations used for πs. It turns out that in all
approaches, except for AHYDRO, the dissipative correc-
tions lead to the values of r = πs/P exceeding unity. One
should stress here that, according to Eq. (28), in second-
order viscous hydrodynamics having r > 1 is equivalent
to the generation of a negative longitudinal pressure in
the system. This situation has no physical interpretation
in the kinetic theory background, which all formalisms
considered are based on, unless there are fields in the
system (which are explicitly neglected in all cases). By
construction, the AHYDRO prescription does not allow
for negative pressures, thus it regulates dissipative phe-
nomena at large values of ς.

At this point it should be noted that, in the present
study, the break down of standard viscous hydrodynam-
ics formalisms at large rapidities is expected. In fact,
already in the region |ς| > 3, both the Knudsen num-
ber, Kn = τπθ, as well as the inverse Reynolds number,
R−1π =

√
πµνπµν/P signal the break down of the hydro-

dynamic description, giving Kn > 2 and R−1π > 1 2. In
the spirit of [44], in the subsequent discussion we accept
the break down of the studied viscous hydrodynamic ap-
proaches considered herein as inevitable and explore its
possible consequences.

In all formalisms considered, the phenomena taking
place at small and large spacetime rapidities lead even-
tually to the creation of a shock-wave in both θ‖ and πs.
This shockwave can cause problems in numerical simu-
lations due to the large spatial gradients induced. As a
result, for our numerical simulations we use the weighted
LAX (wLAX) algorithm with λLAX = 0.01 to handle
spurious oscillations arising when using center-differences
schemes in high-gradient regions [39].3 For temporal up-
dates, we use standard fourth-order Runge-Kutta. We
would like to stress here that although the shock-waves
are sometimes expected natural phenomena, their cre-
ation in the presented results strongly depends on the
formalism used. Therefore, their creation may affect the
interpretation of the final results and increase numeri-
cal difficulties, especially if event-by-event fluctuations

2As a matter of fact the ratio r = πs/P is directly related to

Reynolds number through R−1
π =

√
3/2r ≈ 1.2r.

3We note here that, without wLAX smoothing, all codes, except for
AHYDRO, crash within the evolution time.
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FIG. 1: (Color online) Pseudorapidity profiles of the relative flow rapidity θ‖ (left) and the ratio r = πs/P (right) at the proper
time τ = 1 fm (top), τ = 5 fm (middle), and τ = 10 fm (bottom) obtained within perfect fluid hydrodynamics (thin solid
black lines), MIS (dashed purple lines), BRSSS (dotted blue lines), DNMR (dashed dotted green lines) and AHYDRO (solid
red lines) with η̄ = 1/(4π).
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FIG. 2: (Color online) Same as Fig. 1 but with η̄ = 3/(4π).

in rapidity are considered. Based on the observed be-
havior, we may state that the time needed for creation
of a shock-wave is ordered as follows: τBRSSS

shock < τMIS
shock <

τDNMR
shock � τAHYDRO

shock . Moreover, comparing Figs. 1 and

2 we find that larger times are required to build up a
shock-wave in the case with larger viscosity.

In Figs. 3 and 4 we show the ratio πs/P calculated
along the freeze-out curve of constant temperature of
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FIG. 3: (Color online) Ratio πs/P calculated for the case
4πη̄ = 1 along the freeze-out hypersurface of constant tem-
perature of T = 0.15 GeV.
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FIG. 4: (Color online) Same as Fig. 3 but for 4πη̄ = 3.

T = 0.15 GeV (by the freeze-out curve we mean the pro-
jection of the freeze-out 3D hypersurface on the plane
with fixed transverse coordinates). We observe differ-
ences between the values of r obtained with different hy-
drodynamics frameworks at large rapidities. Such differ-
ences grow with increasing viscosity. We note that dif-
ferences in the freeze-out curves introduce uncertainties
in the spectra of the particles emitted at large rapidities.

It is interesting to plot the freeze-out curves in the
space-time diagram spanned by the ς and τ coordinates,
which is shown for the case 4πη̄ = 3 in Figs. 5 and 6 for
MIS and AHYDRO, respectively. One can notice that
the extracted freeze-out curve for MIS goes very closely
to the region with unphysical negative pressure; note the
red dashed lines corresponding to the boundary value
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FIG. 5: (Color online) Freeze-out curve of T = 0.15 GeV
(dotted black line) shown in the space-time diagram of r(τ, ς)
for MIS with 4πη̄ = 3.
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FIG. 6: (Color online) Same as Fig. 5 but for AHYDRO.

where r = 1. In this case, small perturbations may push
the freeze-out curve into unphysical region, leading to
unphysical results. On the other hand, the freeze-out
curves obtained with AHYDRO, see Fig. 6, do not suf-
fer from such problems, as the longitudinal pressure in
the system smoothly approaches zero in this framework
(being always positive).

An interesting result of our numerical analysis at large
rapidities is that the BRSSS formulation, as compared
to DNMR, is closer to MIS. The difference between
Eqs. (36), (37), and (40) resides in the terms governed
by τππ in (37) and by λ1 in (40). Both of them cor-
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respond to a shear-shear second-order coupling which is
missing in the MIS approach. These terms are supposed
to give a significant contribution far off equilibrium. In
our case, although we start from a local equilibrium state,
the rapid expansion of the system produces flow and pres-
sure anisotropy very quickly and, especially at the edges
of the system, both the shear flow tensor σµν and the
shear stress tensor πµν become significantly large.

We note that in the derivation of second-order hydro-
dynamic equations, the last term in (40), describing the

π
〈µα

π
ν〉
α correction, is originally a σ

〈µα
σ
ν〉
α second-order

term in the formula for πµν , see Eq. (3.11) in [27], while

in the DNMR formulation the σ
〈µα

π
ν〉
α term appears

from the beginning as a direct consequence of using the
kinetic theory. For systems being close to equilibrium,

one may argue that the terms π
〈µα

π
ν〉
α and σ

〈µα
π
ν〉
α , if

multiplied by the appropriate kinetic coefficients, become
equivalent (if one uses the first-order NS hydrodynamics
approximation, πµα = 2ησµα). This has been recently
confirmed by performing the gradient expansion for these
hydrodynamics frameworks [36]. On the other hand, as
our numerical calculations illustrate, in the situations far

off equilibrium, the terms π
〈µα

π
ν〉
α and σ

〈µα
π
ν〉
α cannot

be simply exchanged with the help of the Navier-Stokes
formula. This further indicates that the results of hydro-
dynamic equations may depend not only on the values of
the kinetic coefficients but also on the very special choice
of the terms included in the equations. A natural solu-
tion to this problem is the use of the most complete form
of such equations.

VII. CONCLUSIONS

In this work we have analyzed the non-boost-invariant
hydrodynamic evolution of matter produced in heavy-ion
collisions. The results obtained with several popular im-
plementations of second-order dissipative hydrodynam-
ics have been compared. In addition, a newly developed
framework of anisotropic hydrodynamics has been also
used.

Our numerical calculations, assuming initial local equi-
librium conditions and gaussian rapidity profiles, indicate
that all hydrodynamic approaches yield consistent results
for the evolution of the central (mid rapidity) part of
the created system. On the other hand, they vary sub-
stantially in their predictions for large rapidities. In this
region, all standard formulations of relativistic hydrody-
namics predict the appearance of a large and negative
longitudinal pressure, which may lead to misleading con-
clusions concerning particle production. The largest neg-
ative pressures appear if one uses the MIS and BRSSS
frameworks. The DNMR prescription works better, lead-
ing to smaller negative values of the pressure. Such dif-
ferences may be connected with different treatment of the
shear-shear coupling in various approaches. In all studied

cases, a change from positive to negative pressure has the
character of a shock, where pressure as well as the fluid
rapidity change very suddenly in a narrow range of space-
time rapidity ς. The regions with negative pressure may
be also an obstacle for the determination of the freeze-out
hypersurfaces, especially for event-by-event simulations
and small systems.

The approach of anisotropic hydrodynamics is free of
this problem as all the pressure components are posi-
tive by construction in this framework. As a result,
anisotropic hydrodynamics may be used as a practical
tool to regulate unphysical behavior at large rapidities.
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Appendix A: Third-order terms in the
Israel-Stewart theory

In this Section we discuss Eq. (35) that, using Eq. (31),
may be cast in the form

−πs
Tβπ

2
∂µ

(
1

Tβπ
Uµ
)

= −πs
θ

2

[
1 +

(
E + P
E

)
E
T

dT

dE

(
1 +

T

βπ

dβπ
dT

)]
+πs

θ

2

(πs
E

) E
T

dT

dE

(
1 +

T

βπ

dβπ
dT

)
(A1)

where in the last line we singled out the term propor-
tional to π2

sθ which is of the third-order in gradients, see
also [19, 23] . In this case we may use the equilibrium
expressions P = E/3 and E ∝ T 4. Moreover, for the RTA
kinetic equation one obtains βπ = 4P/5 and τπ = 5η̄/T .
Hence, the right-hand side of Eq. (A1) can be rewritten
as

−4

3
πsθ +

5

24

π2
s

P
θ. (A2)

This result used in Eq. (35) leads to the equation

Dπs +
πs
τπ

=
16

15
Pθ − 4

3
πsθ +

5

24

π2
s

P
θ, (A3)

which, after neglecting the last term, reproduces (36).
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