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We derive the free energy for fermions and bosons from fragmentation data. Inspired by the
symmetry and pairing energy of the Weizsäcker mass formula we obtain the free energy of fermions
(nucleons) and bosons (alphas and deuterons) using Landau’s free energy approach. We confirm
previously obtained results for fermions and show that the free energy for alpha particles is negative
and close to the free energy for ideal Bose gases and in perfect agreement with the free energy
of an interacting Bose gas under the repulsive Coulomb force. Deuterons behave more similarly
to fermions (positive free energy) rather than bosons, which is probably due to their low binding
energy. We show that the α-particle fraction is dominant at all temperatures and densities explored
in this work. This is consistent with their negative free energy, which favors clusterization of nuclear
matter into α-particles at subsaturation densities and finite temperatures.

PACS numbers: 25.70.–z, 21.65.–f, 25.70.Mn, 42.50.Lc

I. INTRODUCTION

Dilute mixed systems composed of fermions and bosons
exhibit a large variety of interesting features that have
been the subject of several theoretical and experimen-
tal works. Although generally considered as made of
strongly interacting fermions (protons and neutrons), nu-
cleonic systems have been observed to display some prop-
erties relevant of bosons. Some of these aspects are the
α-decay in heavy nuclei, preformed α-particles in the
ground state of nuclei [1] and the cluster structure of
N=Z=even light nuclei [2]. While the tunneling through
the Coulomb barrier is well understood, the preformation
of the α-particle is still a difficult task for theoretical
model descriptions. Recently, ab initio lattice simula-
tions have shown that, depending on the form of the in-
teraction between nucleons, the ground states of certain
light nuclei lie near a quantum phase transition between
a Bose-condensed gas of alpha particles and a nuclear
liquid [3, 4].

Experiments in heavy-ion reactions at energies around
the Fermi energy have revealed the creation of dilute nu-
clear matter in which the strong interaction has led to
the emergence of correlated states of nucleons (clusters).
These few-body correlations remain substantial even at
very small densities (v 0.01ρ0 or less; ρ0=0.15 nucl/fm3)
and at moderate temperatures [5–9]. In fact, at low
densities the system can minimize its energy by form-
ing light clusters such as deuterons or strongly bound α-
particles. Clustering effects are expected to modify the
density dependence of the symmetry energy of nuclear
matter [10, 11], and the structure of atomic nuclei [2].
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The thermodynamic properties of nuclear matter play
an important role in studies of various astrophysical phe-
nomena [12–15]. Knowledge of thermodynamic quan-
tities such as the free energy of fragments is needed
when considering a wide range of temperatures, densities
and/or proton fractions. In fact, the free energy of frag-
ments defines the balance between denser fragments and
the more dilute nucleonic gas. Its changes with temper-
atures and densities are of crucial importance to better
understand the properties of dense nuclear matter.

In this paper, we report on experimental free en-
ergy (density) for fermions and bosons from the frag-
mentation of quasiprojectiles by application of Landau’s
free-energy approach. The temperature and density of
the produced quasiprojectile systems are determined us-
ing the quantum-fluctuation method, fully described in
Refs. [16–20]. We notice, and it is an important result,
that the free-energy density for alphas is negative. In
contrast, it is positive for deuterons, and close to that
for fermions. The free-energy density for ideal Bose gases
gives results similar to those for alphas but has opposite
sign for those of deuterons. This demonstrates that al-
phas behave indeed as bosons while deuterons do not and
are suppressed, probably due to their low binding energy.
The fact that the free-energy density is negative means
that if N=Z=even systems will ‘live’ long enough, all
the particles will cluster into alphas while deuterons will
disappear.

II. EXPERIMENT, EVENT SELECTION AND
RECONSTRUCTION

The experiment was performed at the Cyclotron In-
stitute, Texas A&M University. Beams at 35 MeV/A of
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64Zn, 70Zn, and 64Ni from the K-500 superconducting cy-
clotron were used to respectively irradiate self supporting
targets of 64Zn, 70Zn, and 64Ni. The 4π NIMROD-ISiS
setup [21, 22] was used to collect charged particles and
free neutrons produced in the reactions. A detailed de-
scription of the experiment can be found in Refs. [23–25].
For events in which all charged particles were isotopically
identified, the quasiprojectile (QP) was reconstructed us-
ing the charged particles and free neutrons. This recon-
struction includes, therefore, determination of the QP
composition, both A and Z. The neutron ball provided
event-by-event experimental information on the free neu-
trons emitted during a reaction [26, 27]. Particles with
Z=1, 2 and Z ≥3, detected by NIMROD-ISiS setup were
attributed to QP decay when their longitudinal velocities
lay within the range of ±65%, ±60%, ±40%, respectively,
of the coincident QP residue velocity in the event [26, 28].
Thermally equilibrated QP events were selected by re-
quiring the QP to be on average spherical, in a narrow
range of shape deformation. The sum of the masses of
the collected and accepted fragments was constrained to
be in the range of 54 ≤ AQP ≤ 64. Events were then
sorted in 8 QP excitation energy bins, 1 MeV/A wide,
ranging from 2.5 to 9.5 MeV/A.

III. METHOD, RESULTS AND DISCUSSION

Recently, we have analyzed fragment yield data to in-
vestigate the nuclear phase transition using the Landau
free energy technique [29–32]. This approach is based on
the assumption that, in the vicinity of the critical point,
the fragment free energy per nucleon (FA) relative to the
system temperature (T ) can be expanded in a power se-
ries in the fragment’s neutron-proton asymmetry m as

FA
T

=
1

2
am2 +

1

4
bm4 +

1

6
cm6 − H

T
m , (1)

where m=(N − Z)/A, and N , Z, and A are the neu-
tron, proton, and mass numbers of the fragment, re-
spectively. The quantity m behaves as an order pa-
rameter, H is its conjugate variable and the coefficients
a, b, and c are fitting parameters. Notice that the in-
clusion of higher order terms have been deemed neces-
sary in statistical models due to the formation of clus-
ters in low density nuclear matter (see Eqs. 79, 80 and
the following discussion in Ref. [33]). According to the
modified Fisher model [29, 34, 35], the fragment yield
is given by Y=y0A

−τ
f e−(FA/T )A near the critical point;

with τ=2.3 ± 0.1 the critical exponent [29, 36] and y0 a
constant.

Figure 1(a) shows the fragment free energy (FA/T ) val-
ues as a function of their neutron-proton asymmetry m at
an excitation energy of 5.5 MeV/A of the QP. One clearly
sees that FA/T values for N=Z fragments (m=0) signif-
icantly deviate from the regular behavior of the N 6=Z
fragments. This shows the significant role of odd-even
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FIG. 1. (Color online) FA/T for fragments as a function of
fragment’s neutron-proton asymmetry m for an excitation en-
ergy of 5.5 MeV/A of the QP. (a) FA/T values calculated
from fragment yield data normalized to the yield of 12C. Data
points corresponding to deuteron and α are colored in red and
black, respectively. (b) FA/T values calculated after correct-
ing for pairing effects using ap/T values obtained from the
analysis of N=Z nuclei [29–32]. The dashed line (Landau
Fit1) is a fit to data using only the first and last terms of
Eq. (1). The solid line (Landau Fit2) represents a fit to data
using the complete Landau free energy [Eq. (1)] with a, b,
H/T as free parameters, and fixing c = 115 that was ob-
served to be almost constant, within uncertainties, over the
entire range of the QP excitation energy [32]. The values of a,
b, and H/T corresponding to the solid line were obtained as
16.289±0.024, -102.871±0.058 and 0.808±0.002, respectively.
Error bars corresponding to statistical errors are smaller than
the symbols.

effects, which we will loosely refer to as pairing. We can
generalize the Landau approach to include the free energy
for m=0 particles, i.e., bosons. Inspired by the pairing
energy per particle for a fragment with mass number A
(Ep=apδ/A

3/2), one obtains the following linear equation
for the analysis of N=Z fragments

ln(Y Aτ ) = ln(y0) +
ap
T

δ

A1/2
, (2)

where ap/T is the slope and ln(y0) the intercept, and
it is discussed in more details in Refs. [31, 32, 37]. The
quantity δ=-1, 0 and +1 for odd-odd, odd-even and even-
even fragments, respectively; the term Π=δ/A3/2 to be
the order parameter in Landau’s description and plays
the same role as the order parameter m for the free en-
ergy. Higher order terms in Π might be possible but a
good fit is obtained at this lowest order with the available
data. A linear fit to the N=Z data allows the extraction
of the values of ap/T and y0 [32].
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In Fig. 1(b), FA/T values corrected by “pairing” are
shown. The dashed line (Landau Fit1) represents a fit to
data using only the first and last terms of Eq. (1), a case
corresponding to a single phase as in the Weizsäcker mass
formula. The solid line (Landau Fit2) is a fit to data us-
ing the complete Landau free energy as given by Eq. (1).
As the efficiency for measuring neutrons differs from the
efficiency for measuring charged particles, neutron yields
were excluded from the fitting. It is observed in the fig-
ure that the complete form of Eq. (1) provides a better
fit to the free energy data. The appearance of the three
minima is a signature of a first-order phase transition
of the system [29–32, 38]. Of course no data points are
present in the region of the minima thus the constraint
is poor. We notice that nuclei having such values of the
order parameter m are very exotic (for instance 10He)
and will decay quickly before reaching the detector.

The temperatures and densities of the QP are deter-
mined from the fluctuations of the transverse momen-
tum quadrupole Qxy=p2x− p2y, average multiplicities and
multiplicity fluctuations. These observables are used to
correct for Coulomb effects as well. Further details can
be found in Refs. [16–20]. We have applied the method
of correcting for Coulomb effects to experimental data
in Ref. [40], and it was observed that the Coulomb cor-
rections lower temperature values by almost 2 MeV, but
the effects on the densities were observed to be small.
A similar procedure was also applied to the data from
INDRA-collaboration for p, d and α [41] and their re-
sults are consistent with ours. In Ref. [42], the error
in applying the Coulomb corrections which arises from
the uncertainty in the source charge was estimated to
be respectively ±2% for the densities and ±6% for the
temperatures.

E*/A [MeV]
2 4 6 8 10

T
 [

M
eV

]

5

10

15  p
 d
α 

(a)

E*/A [MeV]
2 4 6 8 10

]3
 [

n
u

cl
/f

m
ρ

3−10

2−10

1−10

(b)

 

T [MeV]
5 10 15

]
-3

 [
fm

ρ

3−10

2−10

1−10

(c)

Mott Point for d
αMott Point for 

 

FIG. 2. (Color online) (a) and (b) Temperatures and densities
sampled by three probe light particles (p, d and α) emitted
by the QP as a function of its excitation energy. (c) Density
plotted as a function of temperature for p, d and α. Error
bars corresponding to statistical errors are smaller than the
symbols. For comparison, experimentally derived Mott points
for d (empty square) and α (empty circle) are also shown [39].

The QP temperatures (T ) and densities (ρ) sampled
by protons (p), deuterons (d) and alphas (α) as a func-
tion of the excitation energy per nucleon of the recon-
structed QP, E*/A, are shown in Fig. 2(a) and Fig. 2(b).
Since the evaluation of associated errors on T and ρ was
not straightforward, we have estimated the physical val-
ues from the difference in extracted values between the
full and half datasets. Estimated statistical errors on T
and ρ are smaller than the symbols (better than 3%).
These errors do not, however, include the uncertainty
from Coulomb corrections. T and ρ values for the three
light particles are observed to rise with E*/A. While T
values for d and α are very close, the densities seen by
the two particles are very different from each other. We
also observe that densities probed by alphas are slightly
higher than ρ0 at highest E*/A values, which we will dis-
cuss further later. We have to stress that densities and
temperatures of bosons are derived under the assump-
tion of Coulomb repulsion among fragments. Of course
at higher densities these fragments will start to overlap
and the attractive nuclear force might become dominant.
Boson systems below the critical point (condensate) be-
come unstable if an attractive force is at play [38], thus
we expect our approximation to break down at some den-
sity and temperature. Since the temperature for which
near ground-state densities are reached is rather high, the
kinetic energy might be dominant with respect to the in-
teractions and our approximation should still be valid. In
fact, very recent ab initio nuclear structure calculations
have shown that for particular interactions the nuclear
ground state undergoes a quantum phase transition from
BEC to a nuclear liquid [3, 4].

The correlation between the density and the tempera-
ture, as probed by p, d and α, is presented in Fig. 2(c).
It is interesting to see that p and d display one single
curve, even though there is a clear difference for the be-
havior of their sampled T and ρ with E*/A. The binding
energy of a cluster relative to the medium vanishes at a
point known as the Mott point[33]. Since we observe al-
phas coming from high densities, we have shown the Mott
points for d and α obtained in Ref. [39] for comparison.
Note that the method to derive the Mott point [39] is
based on classical approximations at variance with our
quantum approach and we have used a different way to
correct for Coulomb effects [40]. It is also useful to stress
that fragments can still be formed above the Mott point
due to quantum fluctuations [11].

After deriving T values, we apply Eq. (1), using the
extracted Landau’s fitting parameters, to determine the
fragment free energy per nucleon, FA, for fermions.
For bosons (d and α), we adopt the parametrization
FA=−apδ/A3/2 to easily derive the free energy. Figures
3(a)-(b) depict the temperature and density dependence
of the derived values of FA for p, d and α. Estimated
statistical errors on FA for protons are 10% while those
for d and α are smaller than the symbols (better than
3%). There is a strong correlation of increasing FA with
increasing T and ρ, for p and d. In contrast to p and d
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FIG. 3. (Color online) Free energy for p, d and α calculated
within the framework of Landau’s approach as a function of
their sampled temperature (a) and density (b). Error bars are
shown when statistical errors exceed the size of the symbols.
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FIG. 4. (Color online) Free-energy density (fA=FA × ρ) as
a function of temperature for the three light particles. Er-
ror bars are shown when statistical errors exceed the size of
the symbols. Solid lines refer to the Coulomb corrected free-
energy density for d and α − Eq. (A.11) in the Appendix.
The dashed lines are the corresponding ideal Bose gas limit
[43], Eq. (3).

results, FA values for α are negative and weakly depend
on T and ρ. From the values of FA and ρ, we examine
in Fig. 4 the free energy density (fA=FA × ρ) against
T . It is observed that fA approaches zero in the limit
T → 0 MeV, as expected, and differences between p and
d curves seen in Fig. 3(a)-(b) are less pronounced. In
Fig. 4, both the fA results obtained for an ideal Bose

TABLE I. Densities, temperatures, free energies and mass
fractions for p, d and α.

p

E*/A [MeV] ρ [nucl/fm3] T [MeV] FA [MeV] Xp

2.5 0.0047 3.2 7.73 0.016

3.5 0.0068 4.2 10.58 0.020

4.5 0.0100 4.9 12.69 0.024

5.5 0.0137 5.7 14.56 0.029

6.5 0.0179 6.5 16.54 0.034

7.5 0.0228 7.2 18.18 0.039

8.5 0.0275 7.9 19.70 0.044

9.5 0.0326 8.5 20.93 0.049

d

E*/A [MeV] ρ [nucl/fm3] T [MeV] FA [MeV] Xd

2.5 0.0080 4.7 4.401 0.012

3.5 0.0144 5.8 5.237 0.018

4.5 0.0224 6.9 5.936 0.024

5.5 0.0326 8.0 6.610 0.030

6.5 0.0443 9.1 7.190 0.036

7.5 0.0583 10.3 7.790 0.043

8.5 0.0734 11.3 8.357 0.049

9.5 0.0896 12.4 8.856 0.055

α

E*/A [MeV] ρ [nucl/fm3] T [MeV] FA [MeV] Xα

2.5 0.0507 5.9 -1.973 0.114

3.5 0.0693 6.7 -2.140 0.143

4.5 0.0890 7.5 -2.280 0.171

5.5 0.1084 8.2 -2.389 0.193

6.5 0.1268 8.8 -2.465 0.210

7.5 0.1443 9.4 -2.528 0.225

8.5 0.1603 9.9 -2.578 0.237

9.5 0.1756 10.4 -2.618 0.245

gas (dashed lines) and for a Coulomb corrected Bose gas
(solid lines) are shown. Recall that the free energy den-
sity for an ideal Bose gas is given by:

fA = −0.085gA
m

3/2
A T 5/2

~3
, (3)

where gA is the degeneracy factor, T refers to the tem-
perature sampled by the fragment species A and mA its
mass. When Coulomb correction is taken into account,
Eq. (3) is modified as given in the Appendix and can be
solved numerically. Eq. (3) displays no density depen-
dence of the free energy density which is an unphysical
result [43]. This well-known negative feature of the ideal
Bose gas [38] is easily corrected if there is a repulsive in-
teraction among the Bosons. In fact when implementing
the Coulomb correction in the free-energy density calcu-
lation, Appendix, the result is in very good agreement
to the experiment, Fig. 4. The good agreement between
the calculation and the experimental results is quite in-
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FIG. 5. (Color online) Mass fractions of p, d and α are shown
as a function of E*/A (a) and of the ‘kinetic pressure’ ρ× T
(b). Statistical errors are smaller than the symbols.

teresting since they have been obtained in completely
different manners, one from the experimental yield dis-
tribution and the other from the Coulomb corrected free
energy density for Bosons. The ideal gas limit displays
a similar behavior of the data but slightly shifted down-
wards. Notice also the different theoretical behavior of
d and α with and without Coulomb corrections. The
positive experimentally-derived fA values for d indicate
that these particles behave much like fermions, proba-
bly because of their low binding energy. For a system in
equilibrium, this implies that the system of nucleons will
predominantly coalesce into α-particles.

In theoretical models cluster mass fractions are com-
monly used to characterize the degree of clusterization
in low-density matter. Figure 5(a) shows mass fractions,
Xi=niAi/AQP , of the three light particles as a function
of E*/A, derived directly from data. The quantities ni
and Ai are, respectively, the multiplicity and mass of par-
ticle i, and AQP denotes the mass of the reconstructed
fragmenting source (AQP ≈60). While a higher α-cluster
fraction is seen for all E*/A values, p and d have sim-
ilar mass fractions. In Fig. 5(b), the behavior of Xi is
displayed as a function of the ‘kinetic pressure’ ρ × T .
In Ref. [33], in which a microscopic quantum statistical
approach and a generalized relativistic mean-field model
were employed, it was reported that complex particles
may still appear beyond the Mott point, and Xα was
found to decrease at high ρ. However, our results show
that Xα is enhanced at high E*/A and, correspondingly,
at high T and ρ. An increase of the α-particle frac-
tion with density (and temperature) very similar to our
findings has been observed in calculations of symmetric
nuclear matter using the virial expansion [10]. A less
marked increase with mass fraction values below the one
reported in Fig. 5 has been found in the nuclear sta-

tistical equilibrium model [33]. Other models such as
the EOS of Shen et al. [44], the relativistic mean field
model and quantum statistical approaches [33, 45] dis-
play a rather sharp dissolution of alpha particles with
densities above some 10−2 fm−3. Such a sharp disso-
lution is due to Pauli blocking [33] or excluded volume
effects [44, 45]. For reference, compare Fig. 15 in Ref. [33]
and Fig. 13 in Ref. [45] to Fig. 5. Some of these mod-
els predict also the survival of d at higher densities than
α-particles. This feature has never been reported in the
literature of multifragmentation data to our knowledge,
including this work− Fig. 5, where α-particles are very
abundantly produced at variance with deuterons. As we
have stressed before, the assumption of only a repulsive
Coulomb interaction is valid at low densities. For increas-
ing densities the nuclear attraction makes the BEC [3]
unstable. However, in our case we obtain densities (espe-
cially for α-particles) near the ground state densities for
temperatures higher than 5 MeV. For such temperatures
the (attractive) nuclear interactions become negligible;
thus our approximations could remain valid. However,
it is necessary to investigate this point further in order
to asses the role of nuclear interactions in the determina-
tion of the density (near and above the ground state) and
the temperature. The high-density results reported in
this work, even though in reasonable agreement with the
free (and the Coulomb corrected) Bose gas limit, Fig. 3,
should be taken cum grano salis. Our results are sum-
marized in Table I which includes all quantities discussed
here.

IV. SUMMARY

In summary, we have extracted the free energy (den-
sity) for fermions and bosons in finite nuclei at subsat-
uration densities and finite temperatures using the Lan-
dau free energy technique. It was found that free-energy
results for α-particles are negative and close to those
of ideal (and Coulomb corrected) Bose gases, whereas
deuterons behave much like fermions. The α-particle
fraction was shown to be favored at all temperatures and
densities explored in this work. The present results are
consistent with the clusterization of nuclear matter into
α-particles. In the limit of zero temperature and ground-
state density, the free energy discussed above reduces to
the symmetry and pairing terms in the Weizsäcker mass
formula.

Appendix

Let us assume particles follow the Bose-Einstein dis-
tribution modified by the Coulomb correction,

f(p) =
1

e
[ p

2

2m+
1.44×4π~2q1q2

V p2
−µ]/T − 1

, (A.1)
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where µ is the chemical potential and T is the temper-
ature, V the volume, q1 and q2 the particle and source
charges respectively. The free energy of a Bose gas is

F = E − TS = Nµ− PV, (A.2)

which can be easily transformed as

F

V
=
N

V
µ− P

= ρµ− P. (A.3)

Therefore, we need to calculate the pressure P for a Bose
gas with Coulomb correction. From Ref. [46] [section 6.4
(for boson case)], the pressure P can be obtained as

P =
gT

−1

∫ ∞
0

ln[1− ze−βε(p)] 4πp
2

h3
dp

= −4πgT

h3

{
p3

3
ln[1− ze−βε(p)]

∣∣∣∣∞
0

−
∫ ∞
0

p3

3

−ze−βε(p)

1− ze−βε(p)
(−β)

∂ε(p)

∂p
dp

}
=

4πg

3h3

∫ ∞
0

ze−βε(p)

1− ze−βε(p)
p3
∂ε(p)

∂p
dp

=
4πg

3h3

∫ ∞
0

1

z−1eβε(p) − 1
p
∂ε(p)

∂p
p2dp

=
4πg

3h3

∫ ∞
0

p
∂ε(p)

∂p
p2f(p)dp, (A.4)

where z = exp( µT ), β = 1
T and g is the degeneracy factor.

In our case, see Eq. (A.1)

ε(p) =
p2

2m
+

1.44× 4π~2q1q2
V p2

, (A.5)

and

p
∂ε(p)

∂p
= 2

[
p2

2m
− 1.44× 4π~2q1q2

V p2

]
. (A.6)

Therefore, the pressure is given as

P =
4πg

3h3

∫ ∞
0

2

[
p2

2m
− 1.44× 4π~2q1q2

V p2

]
p2f(p)dp

=
8πg

3h3

{
1

2m

∫ ∞
0

p4f(p)dp

−1.44× 4π~2q1q2
V

∫ ∞
0

f(p)dp

}
=

8πg

3h3

{
1

2m

∫ ∞
0

p4
1

e
[ p

2

2m+
1.44×4π~2q1q2

V p2
−µ]/T − 1

dp

−2m
A′

V

∫ ∞
0

1

e
[ p

2

2m+
1.44×4π~2q1q2

V p2
−µ]/T − 1

dp

}

=
8πg

3h3

 1

2m

∫ ∞
0

p4
1

e
[ p

2

2m+ A′

V
p2

2m

−µ]/T
− 1

dp

−2m
A′

V

∫ ∞
0

1

e
[ p

2

2m+ A′

V
p2

2m

−µ]/T
− 1

dp

 , (A.7)

where A′ = 1.44×4π~2q1q2
2m is introduced. Let us make

twice the integral variable transformations,

ε =
p2

2m
, p = (2mε)

1
2 , dp =

m√
2mε

dε, (A.8)

and

x =
ε

T
, ν =

µ

T
. (A.9)

The pressure P of a Bose gas with Coulomb correction
becomes

P =
8πg

3h3

{
1

2m

(2mT )
5
2

2

∫ ∞
0

dxx
3
2

1

ex+
A′

xV T2−ν − 1

−2m
A′

V

(2mT )
1
2

2

∫ ∞
0

dxx−
1
2

1

ex+
A′

xV T2−ν − 1

}

=
4πg

3h3
(2mT )

3
2

∫ ∞
0

dx

(
Tx

3
2 − A′

TV x
1
2

)
× 1

ex+
A′

xV T2−ν − 1
. (A.10)

Substituting Eq. (A.10) into Eq. (A.3), the free energy
density becomes

F

V
= ρµ− 4πg

3h3
(2mT )

3
2

∫ ∞
0

dx

(
Tx

3
2 − A′

TV x
1
2

)
1

ex+
A′

xV T2−ν − 1

= ρTν − 4πg

3h3
(2mT )

3
2

∫ ∞
0

dx

(
Tx

3
2 − A′

TV x
1
2

)
× 1

ex+
A′

xV T2−ν − 1
. (A.11)

In the limit of no Coulomb correction (A′ = 0) and
µ = 0, ν = µ

T = 0, the free energy density is given as

F

V
= −4πg

3h3
(2mT )

3
2

∫ ∞
0

dxTx
3
2

1

ex − 1

= −0.085g
m3/2T 5/2

~3
, (A.12)

which is the result for an ideal Bose gas at the BEC.
When A′ is different from zero and µ = 0, Eq. (A.11)
can be solved numerically and the results are plotted in
Fig. 4 for the d and α BEC.
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