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Abstract

We develop a theoretical approach for nuclear spectral functions at high missing momenta and

removal energies based on the multi-nucleon short-range correlation (SRC) model. The approach is

based on the effective Feynman diagrammatic method which allows us to account for the relativistic

effects important in the SRC domain. In addition to two-nucleon SRC with center of mass motion

we also derive the contribution of three-nucleon SRCs to the nuclear spectral functions. The latter

is modeled based on the assumption that 3N SRCs are a product of two sequential short range NN

interactions. This approach allows us to express the 3N SRC part of the nuclear spectral function

as a convolution of two NN SRCs. Thus the knowledge of 2N SRCs allows us to model both

two- and three-nucleon SRC contributions to the spectral function. The derivations of the spectral

functions are based on two theoretical frameworks for evaluating covariant Feynman diagrams:

In the first, referred to as virtual nucleon approximation, we reduce Feynman diagrams to the

time ordered non-covariant diagrams by evaluating nucleon spectators in the SRC at their positive

energy poles, neglecting explicitly the contribution from vacuum diagrams. In the second approach,

referred to as light-front approximation, we formulate the boost invariant nuclear spectral function

in the light-front reference frame in which case the vacuum diagrams are generally suppressed and

the bound nucleon is described by its light-front variables such as momentum fraction, transverse

momentum and invariant mass.

PACS numbers: 24.10.Jv, 21.60.-n, 25.30.Fj, 25.30.-c
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I. INTRODUCTION

The knowledge of the nuclear spectral functions at high momenta of bound nucleon

becomes increasingly important for further studies of nuclear QCD such as medium modifi-

cation effects (EMC effects) or evolution equation of partons in nuclear medium measured

at very large Q2.

The importance of the high momentum properties of bound nucleon for nuclear EMC

effects follows from the recent observations of apparent correlation between medium mod-

ification of partonic distributions and the strength of the two-nucleon short range correla-

tions (SRCs) in nuclei[1, 2]. Concerning to the QCD evolution of nuclear partonic distribu-

tions (PDFs), one expects that at very largeQ2 the knowledge of high momentum component

of the nuclear spectral function becomes important due to contribution of quarks with mo-

mentum fractions larger than the ones provided by an isolated nucleon (i.e. partons with

x > 1)[3, 4]. The same is true for the reliable interpretation of neutrino-nuclei scatterings

in which case both medium modification of PDFs as well as realistic treatment of SRCs

are essential[5, 6]. All these require a reasonably well understanding of the nuclear spectral

functions at high momenta and removal energies of bound nucleon. With the advent of the

Large Hadron Collider and expected construction of electron-ion colliders as well as several

ongoing neutrino-nuclei experiments the knowledge of such spectral functions will be an

important part of the theoretical interpretation of the data involving nuclear targets.

Despite impressive recent progress in ”ab-initio” calculations of nuclear structure (see e.g.

Ref.[7]) their relevance to the development of the spectral functions at large momenta and

removal energies is rather limited. Not only the absence of relativistic effects but also the

impossibility of identifying the relevant NN interaction potentials makes such a program

unrealistic. One way of progress is to develop theoretical models based on the short range

NN correlation approach in the description of the high momentum part of the nuclear wave

function (see. e.g. [8–17]). In such approach one will be able to take into account the

empirical knowledge of SRCs acquired from different high energy scattering experiments

thus reducing in some degree the theoretical uncertainty related to the description of the

high momentum nucleon in the nucleus.

Our current work is such an attempt, which is based on the several phenomenologi-

cal observations obtained in recent years in studies of the properties on two-nucleon(2N)
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SRCs[18, 19, 22–28, 33]. We first develop the model describing nuclear spectral function

at large momenta and missing energies dominated by 2N SRCs with their center of mass

motion generated by the mean field of the A-2 residual nuclear system. We then develop a

theoretical framework for calculating the contribution of three-nucleon SRCs to the nuclear

spectral function based on the model in which such correlations are generated by sequential

short range NN interactions. As a result in our approach the phenomenological knowledge

of the properties of NN SRCs is sufficient to calculate both 2N and 3N SRC contribution

to the nuclear spectral function. We expect the considered approach to be valid for nucleon

momenta p ≥ ksrc, where ksrc -momentum characteristic to NN SRC- is sufficiently large

that NN short-range interaction can be factorized from residual mean field interaction. As

a result our approach has limited validity in the transitional region of kF ≤ p < ksrc (kF is

the Fermi momentum) where the role of the long-range correlations are more relevant.

In Sec.II we give a brief summary of recent advances in studies of the structure of NN

SRCs which provides us with the phenomenology for developing the 2N and 3N SRC models

of nuclear spectral functions.

Since the domain of multi-nucleon SRCs is characterized by relativistic momenta of the

probed nucleon, special care should be given to the treatment of relativistic effects. To

identify the relativistic effects, in Sec.III, we first formulate the nuclear spectral function

as a quantity which is extracted in the semi-exclusive high energy process whose scattering

amplitude can be described through the covariant effective Feynman diagrams. The covari-

ance here is important since it allows consistently trace the relativistic effects related to the

propagation of the bound nucleon. We then identify the part of the covariant diagram which

reproduces the nuclear spectral function. Doing so, we adopt two approaches for modeling

the nuclear spectral function: Virtual Nucleon and Light-Front, general features of which

are described in Sec.III. Sec.IV outlines the calculation of nuclear spectral functions based

on the effective Feynman diagrammatic method, identifying diagrams corresponding to the

mean-field, 2N-SRC with center of mass motion and 3N- SRC contributions.

In Secs.V and VI we present the detailed derivation of the spectral functions within

virtual nucleon and light-front approximations. In Sec. VII we discuss briefly the set of

parameters which will be used for numerical estimates of the spectral functions to be pre-

sented in Ref.[34]. Sec.VIII summarizes the results. This work represents the theoretical

foundation and derivation of spectral functions, the follow-up paper[34] will present numer-
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ical estimates and parameterizations that can be used in practical calculations of different

nuclear processes.

II. PHENOMENOLOGY OF TWO NUCLEON SHORT RANGE CORRELA-

TIONS IN NUCLEI

Recent experimental studies of high energy eA and pA processes[18–23, 25, 28] resulted

in a significant progress in understanding the dynamics of 2N SRCs in nuclei. The series of

electron-nucleus inclusive scattering experiments[18, 19, 25] confirmed the prediction[35, 36]

of the scaling for the ratios of inclusive cross section of a nucleus to the deuteron cross

section in the kinematic region dominated by the scattering from the bound nucleons with

momenta p > kF ∼ 250 MeV/c. Within the 2N SRC model, these ratios allowed to extract

the parameter a2(A,Z) which characterizes the probability of finding 2N SRC in the nucleus

relative to the deuteron.

High energy semi-inclusive experiments[22, 23] allowed for the first time to probe the

isospin composition of the 2N SRCs, observing strong (by factor of 20) dominance of the pn

SRCs in nuclei, as compared to the pp and nn correlations, for internal momentum range

of ∼ 250− 650 MeV/c. This observation is understood[22, 37, 38] based on the dominance

of the tensor forces in the NN interaction at this momentum range corresponding to the

average nucleon separations of ∼ 1.1 fm. The tensor interaction projects the NN SRC

part of the wave function to the isosinglet - relative angular momentum, L = 2, state,

almost identical to the high momentum part of the D-wave component of the deuteron wave

function. As a result pp and nn components of the NN SRC are strongly suppressed since

they are dominated by the central NN potential with relative angular momentum L = 0.

Based on the observation of the strong dominance of pn SRCs in Ref.[39, 40] it was

predicted that single proton or neutron momentum distributions in the 2N SRC domain

are inverse proportional to their relative fractions in nuclei. This prediction is in agreement

with the results of variational Monte-Carlo calculation of momentum distributions of light

nuclei[41] as well as for medium to heavy nuclei based on the SRC model calculations of

Ref.[15]. The recent finding of the pn dominance in heavy nuclei (up to 208Pb)[28] validates

the universality of the above prediction for the whole spectrum of atomic nuclei. The inverse

proportionality of the high momentum component to the relative fraction of the proton or
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neutron is important for asymmetric nuclei and they need to be included in the modeling of

nuclear spectral functions in the 2N SRC region.

The pn dominance in the SRC region and its relation to the high momentum part of

the deuteron wave function makes the studies of the deuteron structure at large internal

momenta a very important part for the SRC studies in nuclei. In this respect the recent

experiments[42, 43] and planned new measurements[44] of high energy exclusive electro-

disintegration of the deuteron opens up new possibilities in the extraction of the deuteron

momentum distribution at very large momenta. The measured distributions can then be

utilized in the calculation of the nuclear spectral functions in the multi-nucleon SRC region.

Finally, another progress relevant to the SRC studies was the extraction of the center

of mass momentum distribution of 2N SRCs from the data on triple coincidence scattering

in A(p, ppn)X[29] and A(e, e′, pn)X[30, 31] reactions. The Gaussian form and the width of

the extracted distributions were in a good agreement with the predictions made in Ref.[10],

which were based on the estimate of the mean kinetic energy of the NN pair in shell-model

description of the nuclei. Similar results have been also obtained within the correlated wave

function method of Ref.[32].

As it will be elaborated in the text, all above discussed results will provide us with the

necessary empirical input for modeling nuclear spectral function in the SRC region.

III. FORMULATION OF NUCLEAR SPECTRAL FUNCTION

Our approach in the definition of nuclear spectral functions is based on identifying a

nuclear “observable” which can be extracted from the cross section of the large momentum

(�MN , the nucleon mass) transfer semi-inclusive h+A→ h′+N+(A−1)∗ reaction in which

the N can be unambiguously identified as a struck nucleon carrying almost all the energy and

momentum transferred to the nucleus by the probe h. The reaction is specifically chosen to

be semi-inclusive that allows us, in the approximation in which no final state interactions are

considered, to relate the missing momentum and energy of the reaction to the properties of

bound nucleon in the nucleus. With above conditions satisfied the extracted “observable”,

referred to as a nuclear spectral function, represents a joint probability of finding bound

nucleon in the nucleus with given missing momentum and energy.

In Ref.[45–47] we developed an effective Feynman diagrammatic approach for calculation
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of the h + A → h′ + N + (A − 1)∗ reactions. In this approach the covariant Feynman

scattering amplitude is expressed through the effective nuclear vertices, vertices related to

the scattering of the probe h with the bound nucleon, as well as vertices related to the final-

state NN interactions. The nuclear vertices with the propagator of bound nucleon can not be

associated a priori with the single nucleon wave function of the nucleus, since they contain

negative energy components which are related to the vacuum fluctuations rather than the

probability amplitude of finding nucleon with given momentum in the nucleus. This problem
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FIG. 1: Representation of the covariant Feynman amplitude through the sum of the time ordered

amplitudes. The part (b) corresponds to the scenario in which first, the bound nucleon is resolved

in the nucleus which interacts with the incoming probe h. In part (c), initially, the incoming probe

produces N̄N pair with N̄ being subsequently absorbed in the nucleus.

is illustrated in the diagrammatic representation of the reaction shown in Fig.1, in which

the covariant diagram (a) is a sum of two non-covariant time ordered scattering diagrams

(b) and (c). Here, for the calculation of the Lorentz invariant amplitude of Fig.1(a) one

can use the Feynman diagrammatic rules given in Ref.[47]. However the nuclear spectral

function can only be formulated for the diagram of Fig.1(b), where the time ordering is

such that it first exposes the nucleus as being composed of a bound nucleon and residual

nucleus, followed by an interaction of the incoming probe h off the bound nucleon. The

other time ordering (Fig.1(c)) presents a very different scenario of the scattering in which

the probe produces a N̄N pair with subsequent absorption of the N̄ in the nucleus. The

later is usually referred to as a Z-graph and is not related to the nuclear spectral function.

It is worth noting that the Z-graph contribution is a purely relativistic effect and does not

appear in the non-relativistic formulation of the nuclear spectral function. Its contribution

however increases with an increase of the momentum of the bound nucleon (see e.g. Ref.[8]).

The above discussion indicates that while defining nuclear spectral function is straight-

forward in the non-relativistic domain (no Z-graph contribution), its definition becomes
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increasingly ambiguous with an increase of bound nucleon momentum. This ambiguity is

reflected in the lack of uniqueness in defining the nuclear spectral function in the domain

where one expects to probe SRCs.

In the present work we consider two approaches in defining the nuclear spectral func-

tion from the covariant scattering amplitude. In the first approach we neglect the Z-graph

contribution considering only the positive energy pole for the nucleon propagators in the

nucleus. The energy and momentum conservation in this case requires the interacting nu-

cleon to be virtual which renders certain ambiguity in treating the propagator of the bound

nucleon. The approach we follow is to recover the energy and momentum of the interacting

nucleon from kinematic parameters of on-shell spectators (see Ref.[48] for general discussion

of the spectator model of relativistic bound states.) The advantage of this approximation

is that the spectral function is expressed through the nuclear wave function defined in the

rest frame of the nucleus which in principle can be calculated using the conventional NN

potentials. One shortcoming of the approximation is that while it satisfies baryonic number

conservation, the momentum sum rule is not satisfied reflecting the virtual nature of the

probed nucleon in the nucleus. We will refer to this approach as Virtual-Nucleon (VN)

approximation[49, 50].

In the second approach the nuclear spectral function is defined on the light front which

corresponds to a reference frame in which the nucleus has infinite momentum. In this

approach, referred to as Light-Front (LF) approximation, the Z-graph contribution is kine-

matically suppressed[55] and as a result the invariant sum of the two light-cone time ordered

amplitudes in Fig.1 is equal to the contribution from the graph of Fig.1 (b) only (see e.g.

Refs[8, 51–53]). This situation allows us to define boost invariant LF spectral function in

which the probed nucleon is the constituent of the nucleus with given light-front momentum

fraction, transverse momentum and invariant mass. It is worth noting that the LF approxi-

mation satisfies both baryonic and momentum sum rules, thus providing a better framework

for studies of the effects associated with nuclear medium modification of interacting particles.

Our approach is field-theoretical in which Feynman diagrams are constructed with effective

interaction vertices and the spectral functions are extracted from the imaginary part of the

covariant forward scattering nuclear amplitude. Another approach, in LF approximation,

is the construction of the nuclear spectral function based on the relativistic hamiltonian

dynamics representing the interaction of fixed number on-mass shell constituents[54].
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IV. DIAGRAMMATIC METHOD OF CALCULATION OF NUCLEAR SPEC-

TRAL FUNCTION

In both VN and LF approximations we can use the diagrammatic approach of Ref.[47]

to calculate the spectral functions. For this we identify the effective interaction vertices V̂

such that imaginary part of the covariant forward scattering nuclear amplitude will reduce

to the nuclear spectral function either in VN or LF approximations. The specific form of

these vertices can be established by considering amplitude of Fig.1(b), taking into account

the kinematics of mean field, 2N- and 3N SRC scattering within VN and LF approximations,

with subsequent factorization of the scattering factors related to the external probe h. As

a result the V̂ vertices will be different for mean field, 2N- and 3N- SRCs. They will also

depend on the VN or LF approximations used to calculate the scattering amplitude.

In applying the diagrammatic approach one can express the forward nuclear scattering

amplitude as a sum of the mean-field and multi-nucleon SRC contributions as presented in

Fig.(2), with (a), (b) and (c) corresponding to the contributions from mean-field, 2N and

3N short-range correlations.

Since the mean-field contribution is dominated by the momenta of interacting nucleon

below the characteristic Fermi momentum, kF , one can approximate the corresponding spec-

tral function to the result following from non-relativistic calculation. In this case both VN

and LF approximations are expected to give very close results.

(A−1)

A A
N N

p p1 1

(A−2)

A ANN NN
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1 1

(A−3)

A A
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FIG. 2: Expansion of the nuclear spectral function into the contributions of mean field (a), 2N (b)

and 3N (c) SRCs. For each case the initial nuclear transition vertices are different, corresponding

to transition of A → N,A − 1; A → NN,A − 1 and A → NNN,A − 3 for the mean field, 2N

and 3N SRCs respectively. The ”NN” (b) and ”NNN” (c) labels identify 2N and 3N SRCs with

effective NN and NNN vertices elaborated in the text.

For 2N SRCs, the momenta of probed nucleon is kF < p ≤ 600 − 700 MeV/c and the
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non-relativistic approximation is increasingly invalid. Currently there is a rather robust

phenomenology on 2N SRCs in nuclei[18, 19, 22, 23, 25, 26, 28], which should be taken into

account in the calculation of 2N SRC contribution to the nuclear spectral function.

Finally, (Fig.(2)(c)), corresponds to 3N SRCs. Currently, there are few rather contra-

dictory experimental evidences on 3N SRCs[19, 25, 56] and the first high-energy dedicated

studies are expected in the near future[57]. In the present work we develop a model for 3N

SRC which is based on the assumption that 3N SRCs are a result of the sequential short

range NN interactions. The final result represents a convolution of two 2N SRCs. In this way

just the knowledge of 2N SRCs will be sufficient to account for both two- and three-nucleon

short range correlation contributions to the nuclear spectral function.

In the calculation we apply the effective Feynman rules[47] to the covariant forward scat-

tering amplitudes corresponding to mean-field, two- and three-nucleon SRC contributions

(Fig.2) separately. Then, within VN or LF approximation, we estimate the loop-integrals

through the on-mass shell conditions of intermediate states. Doing so we absorb nuclear to

nucleon transition vertices into the definition of nuclear wave functions. Such definition is

based on the identification of the interaction diagrams for the bound sates with the corre-

sponding equations for the bound state wave function. For example in the non-relativistic

limit, the interaction diagrams for the bound state, calculated based on effective Feynman

diagrammatic rules, is identified with the Lippmann-Schwinger equation[58, 59] in the non-

relativistic limit. In the relativistic case, similar identifications are made with Bethe-Salpeter

type[48] (for VN approximation) or Weinberg type[51] (for LF approximation) equations for

the relativistic bound state wave function.

In the following calculations we express the covariant forward scattering amplitude, A,

in the following form:

A = AMF + A2N + A3N + · · · , (1)

where AMF , A2N and A3N correspond to the contributions from the diagrams of Fig.2 (a),(b)

and (c) respectively, and then consider each contribution separately.

A. Mean Field Contribution

In the mean field approximation the probed nucleon interacts with the nuclear field in-

duced by the A−1 residual system. In such approximation the spectral function corresponds
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to the nuclear configuration in which the residual nuclear system is identified as a coherent

A− 1 state with excitation energy in the order of tens of MeV.

Applying the effective Feynman rules to the diagram of Fig.2(a) corresponding to the

mean field contribution of nuclear spectral function one obtains:

ImAMF = −Im
∫
χsA,†A Γ†A→N,A−1

p/1 +MN

p2
1 −M2

N

V̂ MF p/1 +MN

p2
1 −M2

N

[
GA−1(pA−1, α)

p2
A−1 −M2

A−1 + iε

]on
× ΓA→N,A−1χ

sA
A

d4pA−1

i(2π)4
, (2)

where MN and MA−1 are the masses of nucleon and residual A−1 nuclear system, χA is the

nuclear spin wave function, ΓA→N,A−1 represents the covariant vertex of A → N + (A − 1)

transition, GA−1 describes the propagation of the A− 1 residual nucleus in the intermediate

state having an excitation α. The label [· · · ]on indicates that one estimates the cut diagram

in which the residual nuclear system is on mass shell.

B. Two Nucleon SRC Contribution

In two nucleon SRC model one assumes that the intermediate nuclear state consists

of two correlated fast (> kF ) nucleons and slow (< kF ) coherent A − 2 nuclear system.

The corresponding Feynman diagram is presented in Fig.2(b), for which using the same

diagrammatic rules[47] one obtains:

ImA2N =

Im

∫
χsA,†A Γ†A→NN,A−2

G(pNN)

p2
NN −M2

NN

Γ†NN→NN
p/1 +MN

p2
1 −M2

N

V̂ 2N p/1 +MN

p2
1 −M2

N

[
p/2 +MN

p2
2 −M2

N + iε

]on
× ΓNN→NN

G(pNN)

p2
NN −M2

NN

[
GA−2(pA−2)

p2
A−2 −M2

A−2 + iε

]on
ΓA→NN,A−2χ

sA
A

d4p2

i(2π)4

d4pA−2

i(2π)4
, (3)

where MNN is the mass of the 2N SRC system, ΓA→NN,A−2 now describes the transition

of the nucleus A to the NN SRC and coherent A − 2 residual state, while the ΓNN→NN

vertex describes the short range NN interaction that generates two-nucleon correlation in

the spectral function.

C. Three Nucleon SRC Contribution in Collinear Approximation

The spectral function due to 3N short-range correlations is described in Fig.2(c) on which

the intermediate state consists of three fast (> kF ) nucleons and a slow (< kF ) coherent
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A−3 residual system. The dynamics of 3N SRCs allow more complex interactions than that

of 2N SRCs. One of the complexities is the irreducible three-nucleon forces that can not be

described by NN interaction only. Such interactions may contain inelastic transitions such

as NN → N∆. As our early studies demonstrate[37, 60] irreducible three-nucleon forces

predominantly contribute at very large magnitudes of missing energy characteristic to the

∆ excitations ∼ 300 MeV/c. Thus for spectral functions for which the missing energy does

not exceed the ∆ resonance threshold ∼ M∆ −MN , one can consider the contributions of

NN → NN interactions only. In the present work we will follow the two sequential NN

p
p p

2

1 1

V^

p3
x
x

k

k
k
k

k
k
3

1 1
2 2
3

3N

FIG. 3: Diagram corresponding to 3N SRC contribution to the spectral function.

short-range interaction scenario of the generation of 3N SRCs. In this approximation, the 3N

SRC contribution to the spectral function can be represented through the diagram of Fig.3.

Here we factored out the low momentum residual A−3 system from the consideration. This

is justified by the fact that much larger momenta are involved in the 3N SRCs as compared

to the one in the 2N SRCs discussed in the previous section. As a result the effects due to

center of mass motion of the A−3 system are neglected. The present approximation assumes

that initial three collinear nucleons undergo two short range NN interactions generating one

nucleon with much larger momenta than the other two. The collinear approximation is

commonly used in the calculation of the quark structure function of the nucleon in valence

quark region. In this respect, our calculations for the LF approximation are analytically

similar to the QCD calculation of the nucleon structure function. Here one assumes that the

momentum fractions of 3N SRCs carried by each initial nucleon is unity and their transverse

momenta are neglected. Within VN approximation the collinear approximation assumes

that the initial momenta of the three nucleons are much smaller than ksrc -momentum

characteristic to NN SRC- and therefore can be neglected. Note that the momenta of all

three nucleons in the intermediate state of the scattering in Fig.3 should exceed the nuclear
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Fermi momentum kF to satisfy the 3-particle-3-hole condition in the Fermi distribution of

nucleons in the nucleus.

Using the effective Feynman diagrammatic rules for the diagram of Fig.3 one obtains:

ImA3N = Im

∫
ū(k1, λ1)ū(k2, λ2)ū(k3, λ3)Γ†NN→NN

p/2′ +MN

p2
2′ −M2

N

Γ†NN→NN
p/1 +MN

p2
1 −M2

N

V̂ 3N p/1 +MN

p2
1 −M2

N

×
[

p/2 +MN

p2
2 −M2

N + iε

]on
ΓNN→NN

p/2′ +MN

p2
2′ −M2

N

[
p/3 +MN

p2
3 −M2

N + iε

]on
ΓNN→NN

× u(k1, λ1)u(k2, λ2)u(k3, λ3)
d4p3

i(2π)4

d4p2

i(2π)4
, (4)

where “2′” labels the intermediate state of the nucleon “2” after the first short-range NN

interaction, λi is the spin of the i’th nucleon and the ΓNN→NN is the same short range NN

interaction vertex included in Eq.(3). Note that there are several other 3N SRC diagrams

which differ from that of Fig.3 by the ordering of the two sequential NN short range inter-

actions. In collinear approximation these diagrams result in the same analytic form both in

VN and LF approximations (see e.g. Ref.[3]), thus their contribution can be absorbed in the

definition of the parameter nN3N (see Eq.(36)), which defines the contribution of the norm of

the 3N SRCs to the total normalization of the nuclear wave function.

D. Models of Calculation

To calculate the spectral functions from the forward scattering amplitudes in Eqs.(2), (3)

and (4) one needs to define the effective vertices V̂ which identify the bound nucleon in the

mean field, 2N and 3N SRCs, as well as to define the poles at which the cut propagators of

the intermediate states are estimated. Both depend on the approximation used to reduce

the covariant diagrams to the time ordered diagrams which allow an introduction of the

nuclear spectral function. In the following section we will derive these spectral functions

from the covariant forward scattering amplitudes AMF , A2N and A3N within VN and LF

approximations.

V. SPECTRAL FUNCTION IN VIRTUAL NUCLEON APPROXIMATION

Our first approach is VN approximation which describes the nucleus in the Lab frame

treating interacting bound nucleon as a virtual particle while spectators are put on their
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mass-shells. In VN approximation the spectral function, SNA (p, Em) defines the joint proba-

bility of finding a nucleon in the nucleus with momentum p and removal energy Em defined

as

Em = EA−1 +MN −MA −
p2

2MA−1

, (5)

where EA−1 and MA−1 are the energy and the mass of the residual A − 1 nuclear system.

Note that in the above expression we followed the conventional definition of Em, in which the

non-relativistic expression for the kinetic energy of A− 1 system is subtracted. However in

our calculation the kinetic energy of the (A− 1) system depends on the mean field, 2N-SRC

or 3N- SRC picture of nuclear wave function. For each particular case, the kinetic energy of

the (A− 1) system is accordingly defined in the text.

The normalization condition for the spectral function can be fixed from the condition

of the conservation of baryonic number of the nucleus in hadron-nucleus scattering[62] or

from the condition for the charge form-factor of nucleus at vanishing momentum transfer,

FA(0) = Z[49] which yields:

A∑
N=1

∫
SNA (p, Em)αd3pdEm = A, (6)

where α is the ratio of the flux factors of the (external probe) -(bound nucleon) and (external

probe)-(nucleus) systems, which in high momentum limit of the probe (hadron or virtual

photon) yields

α =
EN + pz
MA/A

= A
p+

pA+

. (7)

Here, p+ and pA+ are the light front longitudinal momenta of the nucleon and nucleus

respectively, EN is the energy of the bound nucleon and the z direction is defined opposite

to the direction of the incoming probe.

Following the decomposition of Fig.2 we consider the mean-field, 2N and 3N SRC contri-

butions to the nuclear spectral function separately. In VN approximation the cut diagrams

of Fig.2 and Fig.3 will be evaluated at positive energy poles of the spectator residual system.

For the mean field contribution it corresponds to the positive energy pole of the coherent A-1

system. For the case of 2N SRC it corresponds to the positive energy poles of the correlated

nucleon and A − 2 system, whereas for the 3N SRC case these are positive energy poles of

the two correlated nucleons and A− 3 system.
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A. Mean Field Contribution

In the mean-field approximation the missing momentum pm = −p ≡ −p1 and missing

energy Em characterizes the total momentum and excitation energy of the residual A − 1

system. In the nuclear shell model, Em also defines the energy needed to remove the nucleon

from the particular nuclear shell. For such a situation we can define the effective vertex V̂MF

in Eq.(2) as

V̂ MF = iā(p1, s1)δ3(p1 + pA−1)δ(Em − Eα)a(p1, s1), (8)

where Eα is the characteristic energy of the given nuclear shell. The creation and annihilation

operators are defined in such a way that:

a(p1, s1)(p/1 +MN) = ū(p1, s1) and (p/1 +MN)ā(p1, s1) = u(p1, s1). (9)

Hereafter the a(p1, s1) and ā (p1, s1) represent the annihilation and creation operators in

the Dirac space. We follow the convention (see e.g. Ref.[61]) for which the product of the

annihilation operator, the nucleon propagator projected to the positive energy state and the

nuclear transition vertex produces the Fock component of the nuclear wave function. Note

that this definition is different from the conventional definition (see e.g. Ref.[16]) in which

the annihilation operator acts on the nuclear wave function to produce nucleon-hole states.

However the final results in both approaches are similar in the non-relativistic limit.

Next, in Eq.(2) we take the integral by d0pA−1 through the positive energy pole of the

propagator of the A− 1 state:

dp0
A−1

p2
A−1 −M2

A−1 + iε
= − 2πi

2EA−1

∣∣∣EA−1=
√
M2

A−1+p2A−1
, (10)

and for the on-shell (A-1) spectator state we use the sum rule:

GA−1(pA−1, α) =
∑
sA−1

χA−1(pA−1, sA−1, Eα)χ†A−1(pA−1, sA−1, Eα), (11)

where χA−1 is the spin wave function of the residual (A-1) nucleus. Note that in relativistic

treatment the spin wave functions are momentum dependent as indicated in the argument

of χA−1. Such a momentum dependence is also accounted for the spin wave function of other

particles discussed in the text. The above relations allow us to introduce the single nucleon

wave function for the given nuclear shell Eα, ψN/A in the form:

ψsAN/A(p1, s1, pA−1, sA−1, Eα) =
ū(p1, s1)χ†A−1(pA−1, sA−1, Eα)ΓA→N,A−1χ

sA
A

(M2
N − p2

1)
√

(2π)32EA−1

, (12)
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which, inserting into Eq.(2) and taking the d3pA−1 integration through the δ3(p1 + pA−1),

results in the mean-field nuclear spectral function, SNA,MF in the VN approximation:

SNA,MF (p1, Em) =
∑
α

∑
s1,sA−1

| ψsAN/A(p1, s1, pA−1, sA−1, Eα) |2 δ(Em − Eα) (13)

which defines the joint probability of finding a nucleon in the mean field of the nucleus with

momentum p and removal energy Em.

For numerical estimates of the above spectral function we note that in the mean-field

approximation, the substantial strength of the VN wave function ψN/A comes from the

momentum range of p1 ≤ kF . Therefore in this case the non-relativistic approximation is

valid, which allows us to approximate this wave function by the non-relativistic wave function

obtained from the conventional mean field calculations of single nucleon wave functions.

Additionally, in the non-relativistic limit α ≈ 1 + p1,z
MA/A

, and from Eq.(6) one observes

that the p1,z
MA/A

part does not contribute to the integral resulting to the condition for non-

relativistic normalization: ∫
SNA,MF (p, Em)dEmd

3p = nNMF , (14)

where nNMF is the norm of the mean field contribution of nucleon N to the total normalization

of the nuclear spectral function.

B. Two Nucleon Short-Range Correlations

We consider now Eq.(3) with the effective vertex V̂2N identified as

V̂2N = iā(p1, s1)δ3(p1 + p2 + pA−2)δ(Em − E2N
m )a(p1, s1), (15)

where ā(p1, s1) and a(p1, s1) are creation and annihilation operators of nucleon with four-

momentum p1 and spin s1 satisfying the relations of Eq.(9).

The magnitude of E2N
m follows from the NN correlation model (in which the correlated

NN pair has a total momentum −pA−2 in the mean field of A− 2 residual nuclear system)

according to which:

E2N
m = E

(2)
thr + TA−2 + T2 − TA−1 = E

(2)
thr + EA−2 −MA−2 + T2 −

p2
1

2MA−1

, (16)

where E
(2)
thr is the threshold energy needed to remove two nucleons from the nucleus. In

numerical evaluations, we estimate it as E
(2)
thr ≈ 2MN + MA−2 −MA. Furthermore, T2 and
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TA−2 are kinetic energies of the correlated nucleon “2”, and the residual (A − 2) nucleus

respectively, that add up to the actual kinetic energy of the A − 1 residual system in the

2N SRC model. The additional subtraction of the
p21

2MA−1
term follows from the definition of

missing energy in Eq.(5).

According to VN prescription we perform integrations by dp0
2 and dp0

A−2 in Eq.(3) through

the positive energy poles of the propagators of ”2” and ”A− 2” particles. This yields

dp0
2

p2
2 −M2

N + iε
= − 2πi

2E2

∣∣∣
E2=
√
M2

N+p22

dp0
A−2

p2
A−2 −M2

A−2 + iε
= − 2πi

2EA−2

∣∣∣EA−2=
√
M2

A−2+p2A−2
(17)

Since “2” and “A-2” are now on mass shell, we can write the sum rule relations for the

numerator of their propagators as:

p/2 +MN =
∑
s2

u(p2, s2)ū(p2, s2)

G(pA−2) =
∑
sA−2

χA−2(pA−2, sA−2)χ†A−2(pA−2, sA−2), (18)

where χA−2 is the spin wave function of the A − 2 nucleus. The s2 and sA−2 are the spin

projections of the nucleon “2” and “A− 2” nucleus respectively.

In the 2N SRC model we assume that the center of mass momentum of the NN SRC is

small which justifies the use of the on-mass-shell sum rule condition:

G(pNN) =
∑
sNN

χNN(pNN , sNN)χ†NN(pNN , sNN), (19)

where χNN is the spin wave function and sNN is the projection of the total spin of the NN

correlation with the three-momentum, pNN = pA−pA−2. As one will see below, the above

equation allows us to introduce the wave function of the center of mass motion of the 2N

SRC thus decoupling the center of mass and relative motions of the NN correlation.

Inserting Eqs.(9),(17),(18), and (19) in Eq.(3) reduces the latter to the NN SRC part of
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the nuclear spectral function, for which one obtains:

SNA,2N(p1, Em) =
∑

s2,sA−2,sNN ,s
′
NN

∫
χsA,†A Γ†A→NN,A−2

χNN(pNN , sNN)χ†NN(pNN , sNN)

p2
NN −M2

NN

Γ†NN→NN

u(p1, s1)

p2
1 −M2

N

δ3(p1 + p2 + pA−2)δ(Em − E2N
m )

ū(p1, s1)

p2
1 −M2

N

u(p2, s2)ū(p2, s2)

2E2

ΓNN→NN
χNN(pNN , sNN)χ†NN(pNN , sNN)

p2
NN −M2

NN

χA−2(pA−2, sA−2)χ†A−2(pA−2, sA−2)

2EA−2

ΓA→NN,A−2χ
sA
A

d3p2

(2π)3

d3pA−2

(2π)3
. (20)

which defines the joint probability of finding a nucleon in NN SRC with momentum p1 and

removal energy Em.

Now we introduce A→ (NN) + (A− 2) and (NN)→ N +N transition wave functions

defined in the rest frame of the nucleus A and the 2N SRC respectively (see e.g. Ref.[47]):

ψsACM(pNN , sNN , pA−2, sA−2) =
χ†NN(pNN , sNN)χ†A−2(pA−2, sA−2)ΓA→NN,A−2χ

sA
A

(M2
NN − p2

NN)
√

2EA−2(2π)3

ψsNN
NN (p1, s1, p2, s2) =

ū(p1, s1)ū(p2, s2)ΓNN→NNχNN(pNN , sNN)

(M2
N − p2

1)
√

2E2(2π)3
(21)

which allows us to present the 2N SRC part of the nuclear spectral function in the following

form:

SNA,2N(p1, Em) =
∑

s1,s2,sA−2,sNN ,s
′
NN

∫
ψsA,†CM (pNN , s

′
NN , pA−2, sA−2)ψ

s′NN ,†
NN (p1, s1, p2, s2)

ψsACM(pNN , sNN , pA−2, sA−2)ψsNN
NN (p1, s1, p2, s2)

δ3(p1 + p2 + pA−2)δ(Em − E2N
m )d3p2d

3pA−2. (22)

We use pNN = −pA−2 and integrate by d3p2 through δ3(p1 +p2 +pA−2). Furthermore based

on the 2N SRC model in which the wave function of the relative motion is dominated by the

pn component with spin-1 with the low momentum CM wave function being in the S state,

one can perform the summation by sA−2 resulting in δsNN ,s
′
NN

. Using the latter relation one

obtains:

SNA,2N(p1, Em) =
∑

s1,s2,sA−2,sNN

∫
| ψsACM(pNN , sNN , sA−2) |2| ψsNN

NN (p1, s1, p2, s2) |2

×δ(Em − E2N
m )d3pNN , (23)
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where p2 = pNN − p1. The above expression is simplified further by introducing effective

momentum distribution of the nucleon in the NN SRC, nNN , as well as distribution of the

center of mass momentum of the NN correlation, nCM , which results in,

SNA,2N(p1, Em) =

∫
nCM(pNN)nNN(prel)δ(Em − E2N

m )d3pNN , (24)

where prel = p1−p2

2
.

The normalization of this spectral function should be related to the total probability of

finding a nucleon in such a correlation. This can be defined from the normalization condition

of Eq.(6) which yields: ∫
SNA,2N(p1, Em)α1dEmd

3p1 = nN2N , (25)

where for the 2N SRC model α ≡ α1 = MN−Em−TA−1+p1,z
MA/A

and nN2N is the norm of the 2N

SRC contribution of nucleon N in the total normalization of the nuclear wave function.

As it follows from Eq.(24), given the relative and center of mass momentum distributions

of the NN correlations we can numerically calculate the 2N SRC part of the nuclear spectral

function. Since it is assumed that the center of mass momenta of the NN SRCs are small,

for nCM we use the distribution obtained in Ref.[10] through the overlap of two Fermi

momentum distributions which results in the simple gaussian distribution:

nCM(pNN) = N0(A)e−β(A)p2NN (26)

normalized to unity:
∫
nCM(pNN)d3pNN = 1. The parameter β(A) is estimated from the

nuclear mean-field distribution, while N0(A) is found from the normalization condition. The

relative momentum distribution of the NN SRC, nNN(prel), can be modeled according to

Ref.[39, 40], where the high momentum strength of the nucleon momentum distribution is

predicted to be inverse proportional to the relative fraction of the nucleon in the nucleus.

Such a distribution is in agreement with the recently observed dominance of pn SRCs[22,

23, 28] and can be expressed in the form:

nNNN(prel) =
a2(A,Z)

(2xN)γ
nd(prel)Θ(prel − ksrc)

MN−Em−TA−1

MA/A

, (27)

where xN = N/A with N being the number of protons (Z) and neutrons (A-Z) in the

nucleus A, the parameter a2(A,Z) is related to the probability of finding 2N SRC in the

nucleus, A, relative to the deuteron, and γ is a free parameter γ . 1. The nd(prel) is the
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high momentum distribution in the deuteron, and ksrc & kF is the momentum threshold

at which a NN system with such relative momentum can be considered in the short-range

correlation. The factor MN−Em−TA−1

MA/A
is the generalization of the normalization scheme of

[62] which enforces the normalization condition of Eq.(6). The normalization of the above

defined distribution,
∫
nNNN(p)d3p = nN2N , defines the contribution of the 2N SRCs to the

total norm of the momentum distribution for the nucleon N .

It is worth mentioning that in the non-relativistic limit, and assuming an equal 2N SRC

contributions from proton and neutron: nNNN(prel) = a2(A)nd(prel), the expression in Eq.(24)

reduces to the ”NN SRC-CM motion” model of Ciofi-Simula[10].

C. Three Nucleon Short-Range Correlations

For the 3N SRC model in collinear approximation we consider the covariant amplitude

of Eq.(4) in which the effective vertex V̂3N is defined as:

V̂3N = iā(p1, s1)δ3(p1 + p2 + p3)δ(Em − E3N
m )a(p1, s1), (28)

where ā(p1, s1) and a(p1, s1) are the creation and annihilation operators defined in Eq.(9).

The magnitude of E3N
m is calculated based on the considered 3N SRC model in which the

recoil nuclear system consists of two fast nucleons and a slow A − 3 nuclear system whose

excitation energy is neglected. In this case

E3N
m = E

(3)
thr + T3 + T2 −

p2
1

2MA−1

, (29)

where E
(3)
thr is the threshold energy needed to remove three nucleons from the nucleus. Similar

to the case of 2N SRC, we estimate it as E
(3)
thr ≈ 3MN +MA−3−MA. Within the considered

3N SRC model the kinetic energy of residual nucleus is due to kinetic energies of correlated

spectator nucleons, T2 and T3 which are treated relativistically. Here, as in the case of 2N

SRC, the additional subtraction of the
p21

2MA−1
follows from the definition of missing energy

in Eq.(5).

According to VN prescription we take integrations by dp0
2 and dp0

3 in Eq.(4), at the

positive energy poles of propagators of ”2” and ”3” particles, i.e.,

d0p2,3

p2
2,3 −M2

N + iε
= − 2πi

2E2,3

∣∣∣E2,3=
√
M2

N+p22,3
. (30)
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Using this and the relations of Eq.(9), as well as assuming the sum rule relations (similar

to Eq.(18)) for the spinors of 2′ intermediate state, from Eq.(4) one obtains for the 3N SRC

contribution to the nuclear spectral function:

SNA,3N(p1, Em) =
∑

s2′ ,s̃2′ ,s2,s3

∫
ū(k1, λ1)ū(k2, λ2)ū(k3, λ3)Γ†NN→NN

u(p2′ , s2′)ū(p2′ , s2′)

p2
2′ −M2

N

× Γ†NN→NN
u(p1, s1)

p2
1 −M2

N

δ3(p1 + p2 + p3)δ(Em − E3N
m )

ū(p1, s1)

p2
1 −M2

N

u(p2, s2)ū(p2, s2)

2E2

× ΓNN→NN
u(p2′ , s̃2′)ū(p2′ , s̃2′)

p2
2′ −M2

N

u(p3, s3)ū(p3, s3)

2E3

ΓNN→NN

× u(k1, λ1)u(k2, λ2)u(k3, λ3)
d3p3

(2π)3

d3p2

(2π)3
. (31)

which defines the joint probability of finding a nucleon in 3N SRC with momentum p1 and

removal energy Em.

Introducing 2N SRC wave functions in analogy with Eq.(21):

ψNN(p1, s1, p2, s2; p1i, s1i, p2i, s2i) =
ū(p1, s1)ū(p2, s2)ΓNN→NNu(p1i, s1i)u(p2i, s2i)

(M2
N − p2

1)
√

2
√

2E2(2π)3
, (32)

where subscript “i” indicates incoming nucleons with their spin projections, Eq.(31) can be

expressed as follows:

SNA,3N(p1, Em) =
∑

s2′ ,s̃2′ ,s2,s3

∫
ψ†NN(p1, s1, p2, s2; k1, λ1, p2′ , s2′)ψ

†
NN(p2′ , s2′ , p3, s3; k2, λ2, k3, λ3)

ψNN(p1, s1; p2, s2; k1, λ1, p2′ , s2′)ψNN(p2′ , s̃2′ ; p3, s3; k2, λ2, k3, λ3)

δ3(p1 + p2 + p3)δ(Em − E3N
m )d3p3d

3p2. (33)

Based on the assumption that NN SRC is dominated by spin-1 short range pn configuration,

and using similar arguments as in Eq.(23), one can sum over the polarizations of “2” and

“3” particles resulting in s2 = s2′ = s̃2′ . Then, taking the d3p2 integration through the

δ3(p1 + p2 + p3) function, one obtains:

SNA,3N(p1, Em) =
∑

s1,s2,s3

∫
| ψNN(p2′ , s2, p3, s3; k2, λ2, k3, λ3) |2

| ψNN(p1, s1; p2, s2; k1, λ1, p2′ , s2) |2 δ(Em − E3N
m )d3p3. (34)

The above expression can be represented in a more simple form by noticing that the NN

correlation wave functions depend on their relative momenta and we sum over the final and

average by all possible initial polarization configurations. This yields:

SNA,3N(p1, Em) =

∫
nNN(p2′,3) · nNN(p12)δ(Em − E3N

m )d3p3, (35)
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where p12 = p1−p2

2
= p1 + p3

2
and p2′,3 =

p2′−p3

2
≈ −p3. The normalization condition for

the 3N SRC spectral function is defined as follows:∫
SNA,3N(p1, Em)α1d

3p1dEm = nN3N , (36)

where nN3N is the norm of the 3N SRC contributing to the total normalization of the nuclear

wave function for the given nucleon N.

Within the model of pn dominance of two-nucleon SRCs one predicts that the 3N SRCs

are generated predominantly through the two sequential short range pn interactions. As a

result our model of 3N SRCs predicts that the overall probability of finding such correlations

is proportional to the factor a2
2(A,Z), where a2(A,Z) is defined in Eq. (27). Using the

relations similar to Eq.(27), one approximates:

nNN(p2′,3) · nNN(p12) = a2
2(A,Z)C(A,Z)

nd(p2′,3)nd(p12)
MN−Em−TA−1

MA/A

Θ(p2′,3 − ksrc)Θ(p12 − ksrc), (37)

where ksrc > kF is the relative momentum threshold at which the NN system can be

considered as a short-range correlation. Here C(A,Z) is a function which accounts for

the effects associated with the isospin structure of two-nucleon recoil system. Namely, in

the collinear approximation two recoil nucleons emerge with small relative momenta (or

invariant mass). In Ref.[37] it was demonstrated that the NN system with small relative

momenta is strongly dominated in the isosinglet pn channel. This situation introduces an

additional restriction on the isospin composition of the 3N SRCs, in which the recoil NN

system predominately consists of a pn pair. For example, one direct consequence of such

dynamics is that high momentum neutrons in 3He nucleus can not be generated in 3N SRCs

while protons can.

VI. SPECTRAL FUNCTION IN LIGHT-FRONT APPROXIMATION

The nuclear spectral function on the light-front was first formulated in Ref.[35] however

its calculation from the first principles is impossible due to the lack of the knowledge of

nuclear light-front wave functions. The current work uses two assumptions which allow us

to obtain calculable LF nuclear spectral functions. The first assumption is that the nuclear

mean field contribution to the light-front spectral function corresponds to the non-relativistic

limit of the momentum and missing energy of a bound nucleon. As a result the mean-field
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part of the LF spectral function can be related to the mean-field contribution of conventional

nuclear spectral function discussed in the previous section. The second assumption is that

the dynamics of the LF spectral function in the high momentum domain is defined mainly

by the pn interaction at short distances. Thus to obtain the calculable spectral function in

relativistic domain one will need only a LF model for the deuteron wave function at short

distances.

Before to proceed with the above approach we first define the kinematic parameters that

characterize the bound nucleon in the light-front as well as the sum rules that the light-front

nuclear spectral function should satisfy.

In defining the light-front nuclear spectral function the primary requirement is that it

is a Lorentz boost invariant function in the direction of the large CM momentum of the

nucleus pA. To satisfy this condition we require that the bound nucleon, N , is described

by a light-front ”+”, momentum fraction αN = ApN+

pA+
, transverse (to pA) momentum pN⊥

and invariant mass M̃2
N = pN−pN+ − p2

N,⊥. As it will be shown below M̃N is related to the

excitation energy of the residual nucleus. For future derivations it is useful to present the

invariant phase space of bound nucleon, d4pN , through these light-front variables as follows:

d4pN =
1

2
dpN−, dpN+d

2pN,⊥ =
dαN
2αN

d2pN,⊥dM̃
2
N . (38)

After identifying the kinematic variables describing the bound nucleon, one now defines

the light-front nuclear spectral function, PA(αN , pN,⊥, M̃
2
N), as a joint probability of finding

a bound nucleon in the nucleus with light-front momentum fraction αN , transverse mo-

mentum pN,⊥ and invariant mass M̃2
N . The normalization condition for such spectral func-

tions is defined from the requirements of baryonic number and total light-front momentum

conservations[35, 62]:

A∑
N=1

∫
PN
A (αN , pN,⊥, M̃

2
N)
dαN
2αN

d2pN,⊥dM̃
2
N = A,

A∑
N=1

∫
αNP

N
A (αN , pN,⊥, M̃

2
N)
dαN
2αN

d2pN,⊥dM̃
2
N = A, (39)

where the second relation is exact if one assumes that the all momentum in the nucleus is

carried by the constituent nucleons. From Eq.(39) one deduces the relation between the LF

spectral function and the light-front density matrix, ρNA (αN , pN,⊥), in the form:

ρNA (αN , pN,⊥) =

∫
PN
A (αN , pN,⊥, M̃

2
N)

1

2
dM̃2

N . (40)
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To proceed with the derivations, similar to the VN approximation, we follow the decom-

position of Fig.2 considering mean-field, 2N and 3N SRC contributions separately. In LF

approximation the cut diagrams of Fig.2 and Fig.3 will be evaluated at the positive light-

front (”-” component) energy poles of the spectator residual system. For the mean field

contribution the spectator residual system consists of A-1 nucleus, while for the SRC case

it consists of one or two on-energy-shell nucleons correlated with the bound nucleon, as well

as A− 2 and A− 3 uncorrelated nuclear systems for 2N and 3N correlations respectively.

A. Mean Field Approximation

To calculate the light-front nuclear spectral function in mean field approximation one

needs in principle to start with Eq.(2) and proceed by evaluating the integral at the pole of

the ”minus” component of four-momentum of the A−1 residual nucleus. Such an integration

will express the spectral function through the unknown light-front mean-field wave function

of the nucleus.

We adopt a different approach in which one uses the fact that the mean field nuclear

spectral function is dominating at small momenta and missing energies of bound nucleon, for

which the non-relativistic limit of light-front approximation is well justified. Then we need

only to relate the mean field light-front spectral function PN
A,MF (α1, p1,⊥, M̃

2
N) to the above

discussed VN mean-field spectral function, SNA,MF (Em, p) in the non-relativistic limit[63].

The relation between PN
A,MF and SNA,MF (Em, p) can be found by using the normalization

condition:∫
PN
A,MF (α1, p1,⊥, M̃

2
N)
dα1

2α1

d2p1,⊥dM̃
2
N =

∫
SNA,MF (Em, p)dEmd

3p1 = nNMF , (41)

where we need to relate the LF phase space to dEmd
3p. For this, we use the relation between

the total energy of A− 1 nucleus and missing energy Em in mean field approximation:

EA−1 =
√
M2

A−1 + p2
A−1 = MA −MN + Em +

p2
1

2M0
A−1

, (42)

where the last part of the equation follows from the definition of the missing energy Em

(Eq.(5)) which is inherently non-relativistic. In the above expression MA−1 is the mass of

the A − 1 residual nucleus which can be in the excited state, while M0
A−1 represents the
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ground state mass of the residual nucleus. With the above equation one obtains for α1:

α1 = A− EA−1 − p1,z

MA/A
(43)

and for M̃2
N :

M̃2
N =

α1

A

(
M2

A −
M2

A−1 + p2
1,⊥

(A− α1)/A

)
− p2

1,⊥. (44)

These relations allow us to relate:

dM̃2
Ndα1 = 2α1dEmdp1,z. (45)

This, together with Eq.(38) results in d4p1 = dα1

2α1
d2p1,⊥dM̃

2
N = dEmd

3p1, which substituting

in Eq.(41) allows us to obtain for the mean-field approximation

PN
A,MF (α1, p1,⊥, M̃

2
N) = SNA,MF (Em, p1), (46)

where α1 and M̃2
N are expressed through Em and p1 according to Eqs.(42), (43) and (44).

Note that above equation is valid for up to the overall normalization factor, since VN and

LF approximations result in different normalizations for the mean field contribution to the

spectral function. (For more details see Sec.VII).

B. Two Nucleon Short Range Correlations

To calculate 2N SRC contribution to the light-front spectral function PN
A,2N(α1, p1,⊥, M̃

2
N)

we start with Eq.(3), with the vertex operator defined, as follows (see also [3]):

V̂2N = iā(p1, s1)2α2
1δ(α1 + α2 + αA−2 − A)δ2(p1,⊥ + p2,⊥ + pA−2,⊥)δ(M̃2

N − M̃
(2N),2
N )a(p1, s1),

(47)

where (α2, p2,⊥), (αA−2, pA−2,⊥) are light-front momentum fractions and transverse momenta

of correlated second nucleon and residual (A-2) nucleus. In the considered 2N SRC model:

M̃
(2N),2
N = p1+(pA− − p2− − pA−2,−)− p2

1,⊥ =

α1

A

(
M2

A − A
M2

N + (pA−2,⊥ − p1⊥)2

A− α1 − αA−2

− A
M2

A−2 + p2
A−2,⊥

αA−2

)
− p2

1⊥, (48)

where we consider the reference frame with the z-axis in ~pA direction. To proceed, in Eq.(3)

we treat the nucleon, “2”, and residual nucleus, “A-2”, on light-front energy shells. This is

achieved by integrating their respective “− ” components through the positive pole value of
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the propagators, provided that their “ + ” components are large and positive. For the “2”

nucleon the integration is performed as follows:

d4p2

p2
2 −M2

N + iε
=

1
2
dp2−dp2+d

2p2,⊥

p2+p2− − p2
2,⊥ +M2

N + iε
=

1
2
dp2−dp2+d

2p2,⊥

p2+(p2− −
p22,⊥+M2

N

p2+
+ iε)

= −iπdα2

α2

d2p2,⊥

∣∣∣∣∣p2−=
p2
2,⊥+M2

N
p2+

. (49)

Similarly for the “A-2” residual nucleus:

d4pA−2

p2
A−2 −M2

A−2 + iε
= −iπdαA−2

αA−2

d2pA−2,⊥

∣∣∣∣∣pA−2,−=
p2
A−2,⊥+M2

A−2
pA−2,+

. (50)

Note that the above integrations project the intermediate state to the positive light-front

energy state thus excluding the contribution from the Z - graph of Fig.1(c). The Z diagram

in this scheme will be suppressed by the inverse power of large ” + ” component of the

nucleon’s four-momentum (see e.g. [51]). With the diminished contribution from the Z

graph the Eq.(3) will result in the light-front spectral function, PN
A,2N(α1, p1,⊥, M̃

2
N) of the

2N SRC.

The on-shell conditions for the nucleon “2” and residual nucleus “A− 2” allows us to use

the sum rule relations:

p/2 +MN =
∑
s2

u(p2, s2)ū(p2, s2) and G(pA−2) =
∑
sA−2

χA−2(pA−2, sA−2)χ†A−2(pA−2, sA−2).

(51)

Using also the non-relativistic limit for the center of mass motion of 2N SRC, kCM �MNN

(for kCM see Eq.(65) below), we approximate:

G(pNN , sNN) ≈
∑
sNN

χNN(pNN , sNN)χ†NN(pNN , sNN), (52)

where χNN is the spin wave function of the center of mass motion of the 2N SRC. Using

also the relations a(p1, s1)(p/1 + MN) = ū(p1, s1) and (p/1 + MN)ā(p1, s1) = u(p1, s1) for the
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light-front spectral function, from Eq.(3) one obtains:

PN
A,2N(α1, p1,⊥, M̃

2
N) =

∑
s2,sNN ,sA−2

∫
χsA,†A Γ†A→NN,A−2χA−2(pA−2, sA−2)

× χNN(pNN , sNN)χ†NN(pNN , sNN)

p2
NN −M2

NN

Γ†NN→NN
u(p1, s1)u(p2, s2)

p2
1 −M2

N

×
[
2α2

1δ(α1 + α2 + αA−2 − A)δ2(p1,⊥ + p2,⊥ + pA−2,⊥)δ(M̃2
N − M̃

(2N),2
N )

] ū(p1, s1)ū(p2, s2)

p2
1 −M2

N

× ΓNN→NN
χNN(pNN , sNN)χ†NN(pNN , sNN)

p2
NN −M2

NN

χ†A−2(pA−2, sA−2)ΓA→NN,A−2χ
sA
A

× dα2

α2

d2p2,⊥

2(2π)3

dαA−2

αA−2

d2pA−2,⊥

2(2π)3
. (53)

Light-front wave function of the NN SRC: We now focus on the following combination

in Eq.(53):
ū(p1, s1)ū(p2, s2)

p2
1 −M2

N

ΓNN→NN · χNN(pNN , sNN), (54)

which enters in Eq.(53) in a direct and complex-conjugated form. For the propagator in

Eq.(54), using light-front momentum and energy conservation at the ΓNN→NN vertex, one

obtains:

p2
1 −M2

N = (pNN − p2)2 −M2
N = (pNN,+ − p2,+)

(
pNN,− − p2,− −

M2
N + p2

1⊥
pNN,+ − p2,+

)
= α1(pA+/A)

(
M2

NN + p2
NN,⊥

αNNpA+/A
−
M2

N + p2
2,⊥

α2pA+/A
−
M2

N + p2
1,⊥

α1pA+/A

)
, (55)

where in the last part of the equation we used the on-shell conditions for the nucleon

“2” (p2− =
M2

N+p22,⊥
p2+

) and the condition, kCM � MNN , which justifies the approximation,

pNN− ≈
M2

NN+p2NN,⊥
pNN+

. Eq.(55) can be further simplified using relations α1 + α2 = αNN and

p1⊥ + p2⊥ = pNN,⊥ yielding:

p2
1 −M2

N =
α1

αNN

(
M2

NN −
α2
NN

α1α2

[
M2

N + (p2
1⊥ −

α1

αNN
pNN,⊥)2

])
. (56)

The above propagator can be completely expressed though the internal momenta of the NN

system by introducing the momentum fraction of the 2N SRC carried by the nucleon “1”,

β1, and the relative transverse momentum, k1,⊥, as follows:

β1 = 2− β2 =
2α1

αNN
and k1,⊥ = p1,⊥ −

β1

2
pNN,⊥. (57)
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With these definitions Eq.(54) can be written as:

ū(p1, s1)ū(p2, s2)

β1
1
2
[M2

NN − 4
β1(2−β1)

(M2
N + k2

1,⊥)]
ΓNN→NN · χNN(pNN , sNN), (58)

where one observes that the term in the denominator which is subtracted from M2
NN rep-

resents the invariant energy of the NN system, sNN . This allows us to introduce relative

momentum, k1, in the NN system, which is invariant with respect to the Lorentz boost in

the pNN direction, in the form:

sNN =
4

β1(2− β1)
(M2

N + k2
1,⊥) = 4(M2

N + k2
1). (59)

The above defined relative momentum, k1, will be used to set a momentum scale for the 2N

SRCs, requiring k1 ≥ ksrc similar to Eq.(24).

The expression in Eq.(58) can be presented in a more compact form if one introduces the

light-front wave function of the NN SRC[3, 8] in the form:

ψsNN
NN (β1, k1,⊥, s1, s2) = − 1√

2(2π)3

ū(p1, s1)ū(p2, s2)ΓNN→NN · χNN(pNN , sNN)
1
2
[M2

NN − 4(M2
N + k2

1)]
, (60)

where χNN represents the spin wave function of the NN pair emerging from the nuclear

vertex ΓA,NN,A−2. With this definition for Eq.(54) one obtains:

ū(p1, s1)ū(p2, s2)

p2
1 −M2

N

ΓNN→NN · χNN(pNN , sNN) = −
√

2(2π)3

β1

ψsNN
NN (β1, k1,⊥, s1, s2). (61)

Light-front wave function of the NN - (A-2) System: Next we consider the combina-

tion that defines the wave function of the “NN - (A-2)” system that will describe the motion

of the center of mass of the NN correlation:

χ†NN(pNN , sNN)χ†A−2(pA−2, sA−2)

p2
NN −M2

NN

ΓA→NN,A−2χA. (62)

We first elaborate the propagator of the NN system using the on-shell conditions for the

initial A and residual A− 2 nucleus:

p2
NN −M2

NN = pNN+(pA− − pA−2,− −
M2

NN + p2
NN,⊥

pNN,+
) =

αNN
A

(M2
A − sNN,A−2), (63)

where in the last part of the equation we used the on-energy shell relations pA− =
M2

A+p2A,⊥
pA,+

,

pA−2,− =
M2

A−2+p2A−2,⊥
pA−2,+

, the definition, αNN =
ApNN,+

pA+
, as well as introduced the invariant

energy of the NN − (A− 2) system as follows:

sNN,A−2 = A2

[
M2

NN + αNN

A
(M2

A−2 −M2
NN) + (pNN,⊥ − αNN

A
pA,⊥)2

]
αNN(A− αNN)

. (64)
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This invariant energy can be used to estimate the relative three-momentum in the NN −

(A− 2) system:

kCM =

√
(sNN,A−2 − (MNN +MA−2)2)(sNN,A−2 − (MNN −MA−2)2)

2
√
sNN,A−2

, (65)

where, kCM,⊥ = pNN,⊥. Note that kCM can be used to calculate the light-front momentum

fraction of the NN pair as follows:

αNN =
A(ENN + kCM,z)

ENN + EA−2

, (66)

where ENN =
√
M2

NN + k2
CM and EA−2 =

√
M2

A−2 + k2
CM .

With the above definitions, similar to Eq.(60), one introduces the light-front wave function

of the NN − (A− 2) system:

ψsACM(αNN , kNN,⊥, sNN , sA−2) = − 1√
A−2

2

1√
2(2π)3

χ†NN(pNN , sNN)χ†A−2(pA−2, sA−2)ΓA→NN,A−2χ
sA
A

2
A

[M2
A − sNN,A−2]

(67)

The coefficients in the above equation are chosen such that in non-relativistic limit, kCM �

MNN :

ψsACM(αNN , kNN,⊥, sNN , sA−2) ≈ ψNRCM(kCM) · 2MN . (68)

Substituting Eqs.(67) and (63) in Eq.(62) one obtains:

χ†NN(pNN , sNN)χ†A−2(pA−2, sA−2)

p2
NN −M2

NN

ΓA→NN,A−2χA = −

√
A−2

2

√
2(2π)3

αNN/2
ψsACM(αNN , kNN,⊥, sNN , sA−2)

(69)

Using Eqs.(61) and (69) in Eq.(53), for the 2N SRC unpolarized light-front spectral function

one obtains:

PN
A,2N(α1, p1,⊥, M̃

2
N) =

A− 2

2

∑
s2,sNN ,sA−2

∫
ψsA,†CM (αNN , kNN,⊥, sNN , sA−2)

× ψsNN ,†
NN (β1, k1,⊥, s1, s2)

[
2δ(α1 + α2 + αA−2 − A)δ2(p1,⊥ + p2,⊥ + pA−2,⊥)δ(M̃2

N − M̃
(2N),2
N )

]
× ψsACM(αNN , kNN,⊥, sNN , sA−2)ψsNN

NN (β1, k1,⊥, s1, s2)
dβ2

β2

d2p2,⊥
dαA−2

αA−2

d2pA−2,⊥. (70)

To obtain the spin averaged spectral function, using similar arguments as in Eq.(23), the

above equation can be diagonalized in terms of spin projections and simplified further by
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introducing spin averaged density matrices for the relative motion in the 2N SRC (Ref[3, 8]):

ρNNN(β1, k1,⊥) =
1

2

1

2sNN + 1

∑
sNN ,s1,s2

| ψsNN
NN (β1, k1,⊥, s1, s2) |2

2− β1

, (71)

and for the center of mass motion of the 2N SRC:

ρCM(αNN , kNN,⊥) =
1

2

A− 2

2sA + 1

∑
sNN ,sA−2

| ψsACM(αNN , kNN,⊥, sNN , sA−2) |2

A− αNN
. (72)

With the above definitions, for the 2N SRC unpolarized light-front spectral function one

obtains:

PN
A,2N(α1, p1,⊥, M̃

2
N) =

1

2

∫
ρNNN(β1, k1,⊥)ρCM(αNN , kNN,⊥)2δ(α1 + α2 − αNN)

δ2(p1,⊥ + p2,⊥ − pNN,⊥)δ(M̃2
N − M̃

(2N),2
N )dβ2d

2p2,⊥dαNNd
2pNN,⊥. (73)

The normalization conditions for the above introduced density matrices are defined from

the sum-rule conditions of Eqs.(39) and (40). For the density matrices of NN SRC, ρNNN ,

the normalization conditions to satisfy the baryonic and momentum sum rules[8] yield:∫
ρNNN(β, k⊥)

dβ

β
d2k⊥ =

∫
ρNNN(β, k⊥)β

dβ

β
d2k⊥ = nN2N , (74)

where nN2N is the contribution of the 2N SRCs to the total norm of the spectral function.

Similar to Eq.(27) we can model the light-front density matrix of the 2N SRC through the

high momentum part of the light-front density matrix of the deuteron ρd(β1, k1,⊥) in the

form:

ρNNN(β1, k1,⊥) =
a2(A,Z)

(2xN)γ
ρd(β1, k1,⊥)Θ(k1 − ksrc), (75)

where k1 is defined in Eq.(59), and a2(A,Z) in Eq. (27). In the second part of the current

work[34] we will discuss the specific models for ρd(β1, k1,⊥) which will allow us to perform

numerical estimates.

For the light-front density function of the center of mass motion the conditions of Eq.(39)

require the following normalization relations:∫
ρCM(αNN , kNN,⊥)

dαNN
αNN

d2kNN,⊥ = 1 and

∫
ρCM(αNN , kNN,⊥)αNN

dαNN
αNN

d2kNN,⊥ = 2.

(76)

Since in the considered 2N SRC model the CM motion is non-relativistic (kNN � 2MN),

we can use the momentum distribution used in VN approximation (Eq.(26)) which can be
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related to ρCM as follows:

ρCM(αNN , kNN,⊥) =
ENNEA−2

(ENN + EA−2)/A

nCM(kCM)

A− αNN
≈ 2MNnCM(kCM), (77)

where nCM is defined in Eq.(26). Note that for the ”middle” form of the ρCM the first

normalization condition of Eq.(76) is exact while the second one is approximate satisfying

it only in the non-relativistic limit (last part of the equation).

Finally, it is worth mentioning that in the non-relativistic limit of the density matrix of

2N SRC, ρ(β1, k1,⊥) ≈ nNN(p1) ·MN and Eq.(73), similar to VN approximation, reduces to

the SRC model of spectral function of Ref.[10].

C. Three-Nucleon Short-Range Correlation Model

To calculate the contribution of the 3N SRCs to the light-front spectral function we adopt

the collinear approach discussed in Sec.IV C. In this approach the assumption of the total

momentum of 3N SRCs being negligible imposes several kinematic restrictions on the light-

front momenta of nucleons in the correlation. The vertex operator, V̂3N entering in Eq.(4)

takes into account these kinematic restrictions in the following form:

V̂3N = iā(p1, s1)2α2
1δ(α1 + α2 + α3 − 3)δ2(p1,⊥ + p2,⊥ + p3,⊥)δ(M̃2

N − M̃
(3N),2
N )a(p1, s1), (78)

where in the considered 3N SRC model:

M̃
(3N),2
N = p1+(pA−−p2−−p3−−pA−3,−)−p2

1,⊥ =
α1

3

(
M2

3N −
M2

N + p2
2,⊥

α2/3
−
M2

N + p2
3,⊥

α3/3

)
−p2

1,⊥,

(79)

with the mass of the 3N SRC defined as:

M2
3N =

3

A
M2

A − 3
M2

A−3

αA−3

. (80)

The following derivation is in many ways similar to the one in the previous section. We

first substitute the vertex function V3N into Eq.(4), expressing four-dimensional differentials

through the light-front momenta. Then we estimate the dp2,− and dp3,− integrals at the pole

values of the propagators of “2” and “3” nucleons corresponding to the positive values of

their “+” components, as follows:

d4p2/3

p2
2/3 −M2

N + iε
= −i(2π)

dp2/3,+d
2p2/3,⊥

2p2/3,+

= −iπ
dα2/3

α2/3

d2p2/3,⊥

∣∣∣∣∣p2/3− =
M2

N + p2
2/3,⊥

p2/3+

. (81)
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The above integrations allow us to use the on-mass-shell sum rule relations for the numera-

tors of the propagators of ”2” and ”3” nucleons p/+MN =
∑
s

u(p, s)ū(p, s). Using a similar

approximate relation for the ”2′” propagator which represents the nucleon between consecu-

tive NN interaction vertices, as well as the properties of creation, ā(p1, s1), and annihilation,

a(p1, s1), operators, for the 3N SRC light-front spectral function one obtains from Eq.(4):

PN
A,3N(α1, p1,⊥, M̃

2
N) =

∑
s2,s3,s2′ ,s̃2′

∫
ū(k1)ū(k2)ū(k3)Γ†NN→NN

u(p2′ , s̃2′)ū(p2′ , s̃2′)

p2
2′ −M2

N

× Γ†NN→NN
u(p1, s1)

p2
1 −M2

N

u(p2, s2)
[
2α2

1δ(α1 + α2 + α3 − 3)δ2(p1,⊥ + p2,⊥ + p3,⊥)δ(M̃2
N − M̃

(3N),2
N )

]
× ū(p2, s2)

ū(p1, s1)

p2
1 −M2

N

ΓNN→NN
u(p2′ , s2′)ū(p2′ , s2′)

p2
2′ −M2

N

u(p3, s3)ū(p3, s3)Γ†NN→NNu(k1)u(k2)u(k3)

× dα2

α2

d2p2,⊥

2(2π)3

dα3

α3

d2p3,⊥

2(2π)3
, (82)

where we suppress the spin notations of the initial and final collinear nucleons for simplicity

of expressions.

Next we consider the following combination from the above expression:

ū(p1, s1)ū(p2, s2)ΓNN→NNu(p2′ , s2′)u(k1)

p2
1 −M2

N

. (83)

Here the denominator, similar to the previous section, can be expressed through the relative

light-front momentum variables:

p2
1 −M2

N =
β1

2

[
M2

12 −
4[M2

N + (p1,⊥ − β1
2
p12,⊥)2]

(2− β1)β1

]
, (84)

where we also applied the kinematic conditions following from the collinear approximation:

M2
12 = (k1 + k2 + k3 − p3)2 ≈M2

3N(1− α3

3
)− 3

M2
N + p2

3,⊥

α3

+M2
N ,

p12,⊥ ≈ −p3,⊥ and β1 =
2α1

α12

=
2α1

3− α3

, (85)

with α12 = α1 + α2 = 3 p1++p2+
k1++k2++k3+

.

Using Eq.(84) one introduces the light-front wave function of NN SRC similar to Eq.(60):

ψNN(β1, k̃1,⊥, s1, s2) = − 1√
2(2π)3

ū(p1, s1)ū(p2, s2)ΓNN→NNu(p2′ , s2′)u(k1)

1
2
[M2

12 − 4
M2

N+k̃21,⊥
β1(2−β1)

]
, (86)

where k̃1,⊥ = p1,⊥− β1
2
p12,⊥ and we also define the relative momentum in the NN center of

mass frame as:

k̃2
1 =

M2
N + k̃2

1,⊥

β1(2− β1)
−M2

N . (87)
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With the above definitions for Eq.(83) one obtains:

ū(p1, s1)ū(p2, s2)ΓNN→NNu(p2′ , s2′)u(k1)

p2
1 −M2

N

=
√

2(2π)3
ψNN(β1, k̃1,⊥, s1, s2)

β1

. (88)

For the second NN SRC contribution in Eq.(82) we consider the term:

ū(p2′ , s2′)ū(p3, s3)ΓNN→NNu(k2)u(k3)

p2
2′ −M2

N

, (89)

for which the denominator, similar to Eq.(84), can be represented in the form:

p2
2′ −M2

N =
2− β3

2

[
M2

23 − 4
M2

N + p2
3,⊥

β3(2− β3)

]
, (90)

where the several relations below follow from the collinear approximation:

M2
23 = (k2 + k3)2 ≈ 4M2

N ; p2′,⊥ ≈ −p3,⊥;

α2′3 =
p2′,+ + p3+

k1+ + k2+ + k3+

≈ 2; β2′ = α2′3 − β3 ≈ 2− β3, (91)

and the relative momentum in the NN center of mass frame can be defined as:

k̃2
3 =

M2
N + p2

3,⊥

β3(2− β3)
−M2

N . (92)

Eqs.(90) and (91) allow us to use the definition of the NN SRC wave function of Eq.(86)

with the replacements of M12 →M23, β1 → 2− β3 = β2′ , k̃1,⊥ → −p3,⊥ to describe the wave

function of the second NN correlation. This results in the following expression for Eq.(89)

ū(p2′ , s2′)ū(p3, s3)ΓNN→NNu(k2)u(k3)

p2
2′ −M2

N

=
√

2(2π)3
ψNN(β2′ , p3,⊥, s2′ , s3)

2− β3

. (93)

Using Eqs.(88) and (93) in Eq.(82) for the 3N SRC light-front spectral function one

arrives at:

PN
A,3N(α1, p1,⊥, M̃

2
N) =

∑
s1,s2,s3,s2′

∫
ψ†NN(β2′ , p3,⊥, s2′ , s3)

2− β3

ψ†NN(β1, k̃1,⊥, s1, s2)

β1

×
[
2α2

1δ(α1 + α2 + α3 − 3)δ2(p1,⊥ + p2,⊥ + p3,⊥)δ(M̃2
N − M̃

(3N),2
N )

]
×ψNN(β1, k̃1,⊥, s1, s2)

β1

ψNN(β2′ , p3,⊥, s2′ , s3)

2− β3

dα2

α2

d2p2,⊥
dα3

α3

d2p3,⊥. (94)

In the above expression, the polarizations are summed similar to the one in VN approxi-

mation (Eq.(23)) which allows to express the unpolarized spectral function in the form of the

convolution of two NN light-front density matrices, as those defined in Eq.(71), as follows:

PN
A,3N(α1, p1,⊥, M̃

2
N) =

∫
3− α3

2(2− α3)2
ρNN(β2′ , p3,⊥)ρNN(β1, k̃1,⊥)2δ(α1 + α2 + α3 − 3)

δ2(p1,⊥ + p2,⊥ + p3,⊥)δ(M̃2
N − M̃

(3N),2
N )dα2d

2p2,⊥dα3d
2p3,⊥ (95)
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where within collinear approximation β3 = α3, β1 = 2α1

3−α3
as well as k̃1,⊥ = p1,⊥ + β1

2
p3,⊥.

In the above expression, similar to Eq.(37) for VN approximation, the product of the two

density matrices is expressed through the product of high momentum parts of the deuteron

density matrices in the form:

ρNN(β2′ , p3,⊥)ρNN(β1, k̃1,⊥) = a2
2(A,Z)C(A,Z)ρd(β2′ , p3,⊥)Θ(k̃1−ksrc)ρd(β1, k̃1,⊥)Θ(k̃3−ksrc),

(96)

where k̃1 and k̃3 are defined in Eqs.(87) and (92) respectively. The factors a2(A,Z) and

C(A,Z) are the same as in the case of 3N SRCs within VA approximation.

VII. RANGE ON VALIDITY AND OVERVIEW OF PARAMETERS ENTERING

THE MODEL

Here we discuss briefly the range of validity and set of parameters which will be used for

numerical estimates of the spectral functions to be presented in Ref.[34].

The main assumption on which our models are based is the dominance of NN SRC

in the nuclear dynamics for internal momenta p & ksrc. Next major assumption is the

dominance of the isosinglet pn component in the NN SRC. The empirical evidence of the

dominance of NN SRCs was accumulated during the last several decades (see e.g. [18–

21, 25, 35, 36]) in high energy electro- and hadro- production reactions. Recent triple-

coincident experiments[22, 23, 28] indicated that the pn dominance in the nucleon-nucleon

SRC persists for up to the heavy nuclei such as A=208. With this one expects that our

model should be valid for the wide range of atomic nuclei.

The most important parameter that defines the strength of 2N SRC is a2(A,Z). Within

the short range correlation framework, this parameter can be extracted from the ratios of

the cross sections of high momentum transfer inclusive electro-nuclear scattering off nuclei

A and the deuteron[35, 36]. Recent measurements at Jefferson Lab[18, 19, 25] provided the

magnitudes of a2(A,Z) for a rather wide spectrum of atomic nuclei.

In addition to a2(A,Z), the two other parameters ksrc and γ define the momentum

distribution of NN SRC in Eqs.(27) and (75). The value of ksrc is defined from the condition

that it is sufficiently large for mean-field contribution to be insignificant, as well as close

to the threshold value for which pn dominance is observed empirically[22, 23, 28]. Other

condition in defining ksrc is the onset of the dominance of the d-wave contribution in the
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high momentum part of the deuteron wave function. With these conditions we evaluate

ksrc ∼ 300 − 350 MeV/c. In the current model we neglected the contribution of isotriplet

NN SRCs. To account for the effects due to these correlations we introduce the parameter

γ. Based on the experimental observation[28] that in the 2N SRC regions pn dominates by

almost factor of 20 for wide range of nuclei (up to A = 208) we take γ ≈ 0.8− 0.9.

For the width of the center of mass distribution, β(A) in Eq.(26), we use the estimates

based on the convolution of the mean-field distribution of two independent nucleons accord-

ing to Ref.[10]. The parameter N0 in Eq.(26) is defined from the normalization condition.

For the case of 3N SRCs, the only additional parameter needed to define the spectral

function is the suppression factor C(A,Z) in Eqs.(37) and (96). This factor accounts for

the suppression of the 3N configurations with two identical spectators like pp and nn pairs.

It affects only the distribution of the minority component in the asymmetric nucleus. For

example, according to the considered model, the neutron can not be generated from 3N

SRC in the 3He nucleus, since it will produce two ”parallel” protons in the final state.

For parameterization of these effects we use the expression C(A,Z) = 1 − 3(y/A) for the

minority component, where y = |1− 2Z
A
| is the asymmetry parameter, and C(A,Z) = 1 for

the majority component.

Note that the above discussed parameters are independent on the use of the VN or LF

approximations. Therefore one can achieve further refinement in their values for lightest nu-

clei (A≤ 12), by considering the non-relativistic limit of our approximations and comparing

them with the results from ab-initio calculations like one based on the variational Monte

Carlo methods[41].

With the parameters for 2N and 3N SRCs fixed one can calculate the normalization

factors nN2N and nN3N within VN and LF approximations. Note that these factors will be

model dependent since the 2N and 3N momentum distributions predicted in VN and LF

approximations are different. Once these normalizations are calculated one can estimate

the norm of the mean field distributions from the relation: nNMF = 1 − nN2N − nN3N . Thus

the estimates for the normalization of mean-field distributions will be indirectly VN or LF

model dependent.
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VIII. SUMMARY

Based on the NN short-range correlation picture of high-momentum component of nuclear

wave function we developed a model for the nuclear spectral functions in the domain of

large momentum and removal energy of bound nucleon in the nucleus. Our main focus

is in treating the relativistic effects which are important for the bound nucleon momenta

exceeding characteristic Fermi momentum, kF , in the nucleus. The relativistic effects in

this work are treated based on the effective Feynman diagrammatic approach, in which one

starts with Lorentz covariant amplitudes reducing them to the nuclear spectral functions that

allows to trace the relativistic effects entering in these functions. One of the main ambiguities

related to the treatment of the relativistic effects is the account for the vacuum fluctuations

(Z-graphs) which ultimately alter the definition of the spectral function as a probability of

finding a bound nucleon in the nucleus with the given momentum and removal energy. We

employed two: virtual nucleon and light-front approaches in treating the relativistic effects.

The results for the 2N SRC model within VN (Eq.(24)) and LF (Eq.(73)) approximations

agree with the 2N SRC (with center of mass motion) model of Ref.[10] in the non-relativistic

limit. Our results represent the first attempt to account for the relativistic effects in the

domain of 2N SRCs with center of mass motion of the NN pair.

We extended both approaches to calculate also the contributions from three-nucleon

short-range correlations. Derivations in this case are based on the collinear approach in

which one assumes negligible center of mass momentum for the residual/uncorrelated (A−

3) nuclear system. The derived spectral functions within VN (Eq.(35)) and LF (Eq.(95)

approximations represent the first results for 3N SRC contribution to the nuclear spectral

functions.

The main property of the obtained spectral functions is that to describe them quanti-

tatively in high momentum domain one needs only the knowledge of the high momentum

deuteron wave function either in the Lab frame (for VN approximation) or on the light-front

(for LF approximation). In the follow-up work[34] we will present the quantitative studies

of the properties of nuclear spectral functions based on specific models of the deuteron wave

functions.
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