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Abstract

The dipole excitations for calcium and zirconium isotopes are studied within the fully self-

consistent Hartree-Fock mean field incorporated with the renormalized random-phase approxima-

tion (RRPA) using the Skyrme interaction SLy5. The RRPA takes into account the effect of

ground-state correlations beyond RPA owing to the Pauli principle between the particle-hole pairs

that form the RPA excitations as well as the correlations due to the particle-particle and hole-hole

transitions, whose effects are treated here in an effective way. By comparing the RPA results

with the RRPA ones, which are obtained for isoscalar (IS) and isovector (IV) dipole excitations in

48,52,58Ca and 90,96,110Zr, it is shown that ground-state correlations beyond the RPA reduce the IS

transition strengths. They also shift up the energy of the lowest IV dipole state and slightly push

down the peak energy of the IV giant dipole resonance. As the result, the energy-weighted sums

of strengths of both IS and IV modes decrease, causing the violation of the corresponding energy-

weight sum rules (EWSR). It is shown that this sum rule violation can be eliminated by taking

into account the contribution of the particle-particle and hole-hole excitations together with the

particle-hole ones in a simple and perturbative way. Consequently, the ratio of the energy-weighted

sum of strengths of the pygmy dipole resonance to that of the giant dipole resonance increases.
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I. INTRODUCTION

The random-phase approximation (RPA) is one of the most frequently used methods in

the theoretical study of vibrational collective excitations in low-energy physics. These col-

lective modes include the low-lying vibrations and high-lying giant resonances. Within the

RPA, these vibrational excitations are generated by the coherent superpositions of elemen-

tary excitations. For instance, the electric multipole excitations EJπ (Jπ = 0+, 1−, 2+, 3−,

etc.), including the isoscalar (IS) and isovector (IV) giant resonances, consist of many

particle-hole (ph) components.

The basic assumption of the RPA is the quasi-boson approximation (QBA), which im-

plies that the operators of ph pairs behave like ideal bosons, ignoring the Pauli principle

owing to their fermion structure. Algebraically, the QBA is the replacement of the exact

commutation relation between the ph pair operators [Bph, B
†
p′h′] with its expectation value

〈HF |[Bph, B
†
p′h′]|HF 〉 in the Hartree-Fock (HF) ground state, where B†

ph = a†pah with a†p and

ah being the particle (p) creation and hole (h) annihilation operators, respectively [1]. This

assumption perfectly holds when the RPA vibrations consist of many coherent ph excita-

tions, for instance in the case of high-lying collective excitations such as the giant resonances

or low-lying ones such as the first 2+ or 3− states in medium and heavy nuclei, where the

concept of a nuclear mean field works very well. However, in light nuclei the validity of the

mean-field concept and the QBA itself become questionable. Hence it becomes necessary to

take into account properly the fermion structure of the ph pairs, removing in this way the

violation of the Pauli principle.

There have been several methods to preserve the Pauli principle between the ph pairs

by including the correlations in the ground state, which are neglected within the QBA.

These correlations are referred to as the ground-state correlations (GSC) beyond RPA.

Among the earliest approaches to include GSC beyond RPA, the one proposed by Hara [2]

is rather transparent and simple because it evaluates the expectation value 〈0|[Bph, B
†
p′h′]|0〉

of the commutation relation [Bph, B
†
p′h′] in the correlated RPA ground state |0〉 by using

the diagonal approximation, resulting in the particle and hole occupation numbers, fk ≡

〈0|a†kak|0〉 (k = p, h). The latter are approximately expressed in terms of the RPA backward-

going amplitudes Y ν
ph. This leads to the renormalized RPA (RRPA) equation, nonlinear with

respect to the amplitudes Y ν
ph, which can be solved by iteration. In the RRPA equation the
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residual interactions are renormalized by the so-called GSC factor Dph ≡
√

fh − fp, which

is a function of (Y ν
ph)

2.

In a later development, Catara, Dang and Sambataro derived in Ref. [3] an equation for

the GSC factor Dph, which recovers the expression for DHara
ph , which was obtained by Hara in

the limit of small Y ν
ph. It has been shown by Dukelsky and Schuck that this equation produces

the exact expression for the GSC factor in the equidistant multilevel pairing model [4].

However, the application of the RRPA using this GSC factor Dph has been limited so far

only to the energy and B(E3) value of the lowest 3−1 state in 146Gd and 208Pb [3]. The

RRPA was also studied by using the equations of motion method in Ref. [5] and the Green’s

functions techniques in Ref. [6]. An alternative derivation of the occupation numbers

by using the number-operator method was carried out in Refs. [5, 7]. This method was

employed in Ref. [8] to obtain an expression for the GSC factor Dph within the improved

RPA up to the order of O(Y 4), which was applied to the calculations in metallic clusters.

The results of Ref. [3] show that, due to the GSC beyond the RPA, the energy the 3−1

state in these two nuclei increases upward, leading to the significant decrease of around

40% and 20% in the associate B(E3) values in 146Gd and 208Pb, respectively. These effects

are more pronounced than those predicted for the low-lying 2+ states [2]. No investigation

was carried out for the 1− states, whose first moment m1, known as the energy-weighted

sum rule (EWSR), is the most important. For the E1 transitions, this EWSR is related to

the model-independent Thomas-Reich-Kuhn sum rule TRK = 60 NZ/A (MeV mb) for the

giant dipole resonance (GDR) in a nucleus with A nucleons (N neutrons and Z protons).

When a velocity-dependent effective interaction, such as the Skyrme one, or the meson-

exchange interaction is used, the velocity-dependent and/or exchange terms contribute to

the IV multipole sum rules. The IV E1 EWSR then exceeds the TRK as TRK×(1 + κ)

with 0< κ < 1 [9]. The RPA (with the velocity-independent interaction) fulfills the GDR

sum rule. However, being multiplied by the factor Dph, the RRPA matrix elements of the

ph interactions are reduced. This leads not only to a shift down of the GDR energy but also

to a decrease in the B(E1) values, causing the violation of the GDR sum rule.

The problem of model-independent sum rule violation within the RRPA was first pointed

out in Ref. [10], where the authors attributed the origin of the problem to the adopted

structure of both the Hamiltonian and the transition operators, which neglect the scattering

terms coming from the particle-particle (pp) and hole-hole (hh) transitions. In Ref. [8], it
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has been shown that the improved RPA does not fulfill the EWSR as well. A practical idea

to restore the EWSR within the RRPA was suggested in the same paper in the same spirit

of Ref. [10] by noticing that the transition operator, in general has not only a ph part but

also the particle-particle (pp) and hole-hole (hh) ones. Therefore, in order to restore the

EWSR, the RRPA transition amplitudes should contain also the contributions from the pp

and hh transitions.

As a matter of fact, the importance of the pp and hh transitions were evident already

in the studies of the finite-temperature RPA (FT-RPA) in the 1970s - 1980s, where the

FT-RPA equations were derived and studied in details [11–14]. The FT-RPA equations,

which were derived in these papers for the separable interactions, are formally identical to

the RRPA ones if the ph transitions are considered. The only difference is that the single

occupation numbers fk within the FT-RPA are described by the Fermi-Dirac distributions

for non-interacting fermions at finite temperature T . It has been shown in Ref. [12], that

the GDR energy decreases with increasing T for the ph transitions within the FT-RPA,

because Dph becomes smaller than 1 and decreases with increasing T . However, after the pp

and hh transitions are included together with the ph ones, the GDR energy remains nearly

the same as its value when T = 0 at T varies up to 4 MeV. The E2 and E3 ESWRs also

remain essentially constant up to T = 2 MeV. As for the IV E1 excitations with thin the

FT-RPA, the results of calculations obtained for 40Ca, including ph as well as pp and hh

transitions by using a zero-range force in Ref. [13] have also shown that the EWSR remains

nearly constant up to temperature T = 6 MeV. A similar conclusion was obtained in Ref.

[15], where the Skyrme force SGII was used in calculations.

With increasing the number of neutrons, a phenomenon called pygmy dipole resonance

(PDR) is predicted in neutron-rich nuclei and a number of theoretical and experimental

studies were devoted to its properties in the recent years [16–23]. The PDR has often been

interpreted as a manifestation of the oscillation of the weakly-bound neutron skin against

the isospin-symmetric core of protons and neutrons, although this picture is rather sketchy.

As a matter of fact, the nature of the PDR still remains an issue open to debate. Different

theoretical models still do not agree on its collectivity and coherence. For example, while

the relativistic random-phase approximation predicted a prominent peak below 10 MeV in

120,132Sn and 122Zr [17], which is identified as the collective PDR, the results of calculations

including monopole pairing within the quasiparticle RPA (QRPA) show only a group of
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slightly collective states [18] in 122,130Sn, whereas for 120,132Sn [19] no collective E1 states are

even seen in the low-energy region. As the PDR is located in a low energy region, the effect

of GSC beyond the RPA, which are included in the phRRPA, should be taken into account

in the study of the PDR. This study should be complementary to those, which include

2p-2h excitations such as the second RPA [20], the relativistic RPA plus phonon-coupling

model [21], the quasiparticle-phonon model [22], a version of which includes even couplings

upto 3p3h configurations in terms of three-phonon components [23]. However, the major

drawback, as mentioned above as well as in Ref. [24], is that all extensions of the RPA

to the RRPA so far violate the energy-weighted sum rules (EWSRs) for IS and IV dipole

excitations.

Obviously, in order to restore the E1 sum rule, one should derive and solve the complete

set of RRPA equations that include all the ph, as well as pp and hh configurations. The

transition probabilities, which are calculated based on these solutions, should also include

all ph, pp, and hh transitions. This is undoubtedly a formidable task, which we are now

working on. In the present paper, as a preparatory study, we would like to see if the problem

can be resolved in an approximate and simple way, which can nonetheless be applied in

practical calculations of electric dipole excitations. To this end, we modify the computer

code for self-consistent RPA with Skyrme-type interactions, which has been developed by

Colò and collaborators [25], to include the effect of GSC beyond the RPA following the

method proposed in Ref. [3]. The dipole EWSRs are restored by perturbatively taking into

account also the contribution of pp and hhole configurations, which have been neglected so

far in all practical calculations within the RRPA.

The paper is organized as follows. The formalism of the RRPA is summarized in Secs.

II and III. The analysis of numerical calculations for the pigmy dipole and giant dipole

excitations in 48−58Ca and 90−110Zr are presented in Sec. IV. The paper is summarized in

the last section, where conclusions are drawn.

II. THE RRPA FOR PARTICLE-HOLE VIBRATIONS (phRRPA)

The renormalized RPA for particle-hole vibrations, which is referred to as the phRRPA,

has been discussed in details in Refs. [2–8]. Therefore, we summarize here only its main for-

mulation within the ph representation including all angular momentum couplings in spherical
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basis, which is necessary for its application to the calculations in the present paper.

The RPA operator Q†
JMi is constructed as a superposition of ph-pair operators in the

form [1]

Q†
JMi =

∑

ph

[

XJi
phB

†
ph(JM)− Y Ji

phBph(JM)

]

, (1)

where B†
ph(JM) is the ph-pair creation operator

B†
ph(JM) =

∑

mpmh

〈jpmpjhmh|JM〉a†jpmp
ajhmh

, (2)

which couples the particle creation operator a†jpmp
on the orbital having the angular mo-

mentum jp and projection mp with the hole annihilation operator ajh−mh
having the an-

gular momentum jh and projection −mh, where mk (with k = p, h) takes (2jk + 1) val-

ues, namely mk = −jk,−jk + 1, ..., jk − 1, jk. The notations ajm ≡ (−)j+maj−m and

Bph(JM) ≡ (−)J+MBph(J −M) are used for time-reversal operators. The quantum num-

bers J and M (M = −J,−J + 1, ..., J − 1, J) denote the total angular momentum (the

multipolarity of the phonon excitation) and its projection, respectively.

The RPA excited states are defined as

|JMi〉 = Q†
JMi|0〉 , (3)

where the RPA correlated ground state |0〉 is the vacuum of the phonon operator, that is

QJMi|0〉 = 0 , (4)

and the excited states should be mutually orthonormal, namely

〈JMi|J ′M ′i′〉 = 〈0|[QJMi, Q
†
J ′M ′i′ ]|0〉 = δJJ ′δMM ′δii′ . (5)

The ph-pair operators Bph(JM) and B†
ph(JM) satisfy the exact commutation relation

[Bph(JM), B†
p′h′(J

′M ′)] = δjpj′p

∑

mpmhm
′

h

〈jpmpjhmh|JM〉〈jpmpj
′
hm

′
h|J

′M ′〉a†jhmh
aj′

h
m′

h

−δjhj′h

∑

mpm′

pmh

〈jpmpjhmh|JM〉〈j′pm
′
pjhmh|J

′M ′〉a†j′pm′

p
ajpmp

. (6)

The expectation value of this commutation relation in the RPA correlated ground state,

|0〉 can be approximated as

〈0|[Bph(JM), B†
p′h′(J

′M ′)]|0〉 =
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δjpj′p

∑

mpmhm
′

h

〈jpmpjhmh|JM〉〈jpmpj
′
hm

′
h|J

′M ′〉〈0|a†jhmh
aj′

h
m′

h
|0〉 (7)

−δjhj′h

∑

mpm′

pmh

〈jpmpjhmh|JM〉〈j′pm
′
pjhmh|J

′M ′〉〈0|a†j′pm′

p
ajpmp

|0〉 ≃ δJJ ′δMM ′δjpj′pδjhj′hDph ,

where the GSC factor Dph is defined as

Dph ≡ fh − fp = 〈0|a†jhmh
ajhmh

|0〉 − 〈0|a†jpmp
ajpmp

|0〉 , (8)

with fk ≡ 〈0|a†jk±mk
ajk±mk

|0〉 being the particle and hole occupation numbers in the corre-

lated ground state |0〉 for k = p and k = h, respectively.

A. The quasi-boson approximation (QBA)

Within the QBA, the expectation value (7) is replaced with that estimated in the HF

ground state, |HF 〉. This yields DHF
ph = 1 because fHF

h ≡ 〈HF |a†jhmh
ajhmh

|HF 〉 = 1 and

fHF
p ≡ 〈HF |a†jpmp

ajpmp
|HF 〉 = 0, so that the expectation value of [Bph(JM), B†

p′h′(J ′M ′)]

in the HF ground state becomes

〈HF |[Bph(JM), B†
p′h′(J

′M ′)]|HF 〉 = δJJ ′δMM ′δjpj′pδjhj′h . (9)

This equation shows that, within the QBA, the ph-pair operators Bph(JM) and B†
ph(JM)

behave like ideal boson operators, which mean that the following approximation holds

[Bph(JM), B†
p′h′(J

′M ′)] ≃ δJJ ′δMM ′δjpj′pδjhj′h . (10)

Within the QBA, the orthogonality condition (5) becomes

〈JMi|J ′M ′i′〉 = 〈0|[QJMi, Q
†
J ′M ′i′ ]|0〉 ≃ 〈HF |[QJMi, Q

†
J ′M ′i′]|HF 〉 = δJJ ′δMM ′δii′ . (11)

The QBA (9) and the orthogonormality condition (5) between the RPA excited states

lead to the following normalization condition for the amplitudes XJi
ph and Y Ji

ph of the phonon

operator (1)
∑

ph

(XJi
phX

J ′i′

ph − Y Ji
ph Y

J ′i′

ph ) = δJJ ′δii′ . (12)

The closure relations

∑

i

(XJi
phX

Ji
p′h′ − Y Ji

ph Y
Ji
p′h′) = δpp′δhh′ ,

∑

i

(XJi
phY

Ji
p′h′ − Y Ji

phX
Ji
p′h′) = 0 , (13)
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ensure the following inverse expression of ph-pair creation operator B†
ph(JM) in terms of

phonon operators Q†
J ′M ′i′ and QJMi

B†
ph(JM) =

∑

i

[XJi
phQ

†
JMi + Y Ji

phQJMi] . (14)

Within the RPA the occupation numbers fk are calculated by using the mappings [3, 26]

∑

mp

a†jpmp
ajpmp

→
∑

JM

∑

h

B†
ph(JM)Bph(JM) , (15)

∑

mh

ajhmh
a†jhmh

→
∑

JM

∑

p

B†
ph(JM)Bph(JM) . (16)

These mappings are exact within the QBA, where the operators B†
ph(JM) and Bph(JM)

behave like ideal boson operators according to (10). In this case the commutation relations

between the right-hand sides of (15) and (16), and B†
ph(JM) are

[
∑

J ′M ′h′

B†
p′h′(J

′M ′)Bp′h′(J ′M ′), B†
ph(JM)] = δjpj′pB

†
ph(JM) , (17)

[
∑

J ′M ′p′

B†
p′h′(J

′M ′)Bp′h′(J ′M ′), B†
ph(JM)] = δjhj′hB

†
ph(JM) , (18)

which are exactly equal to [
∑

m′

p
a†j′pm′

p
aj′pm′

p
, B†

ph(JM)] and [
∑

m′

h
aj′

h
m′

h
a†j′

h
m′

h

, B†
ph(JM)], re-

spectively.

By using Eqs. (14) to express the right-hand sides of Eqs. (15) and (16) in terms of

phonon operators in combination with the property of phonon vacuum (4) within the QBA,

that is (11), the occupation numbers fk are found within the QBA as [5]

fp =
1

2jp + 1
〈0|

∑

mp

a†jpmp
ajpmp

|0〉 =
1

2jp + 1

∑

Ji

(2J + 1)
∑

h

(Y Ji
ph )

2 ,

fh = 1−
1

2jh + 1
〈0|

∑

mh

ajhmh
a†jhmh

|0〉 = 1−
1

2jh + 1

∑

Ji

(2J + 1)
∑

p

(Y Ji
ph )

2 . (19)

B. The phRRPA

The phRRPA method proposes to use Eq. (7) rather than Eq. (9), without imposing

the QBA. Because the excited states should be orthonormal, this leads to the renormalized

phonon operators in the form [3]

Q†
JMi =

∑

ph

[
X Ji

ph
√

Dph

B†
ph(JM)−

YJi
ph

√
Dph

Bph(JM)

]

, (20)
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which strictly satisfy the orthonormality condition (5) rather than (11), in which Q†
JMi

and QJMi replace Q†
JMi and QJMi, retaining the same normalization condition (12) for the

amplitudes X Ji
ph and YJi

ph.

The inverse transformation of (20) is

B†
ph(JM) =

√

Dph

∑

i

[X Ji
phQ

†
JMi + YJi

phQJMi] , (21)

instead of Eq. (14).

By using Eqs. (7) and (21), as well as the mappings (15) and (16), and proceeding

similarly as has been done in Sec. IIA, the occupation numbers fk within the phRRPA are

found as

fp =
1

2jp + 1
〈0|

∑

mp

a†jpmp
ajpmp

|0〉 =
1

2jp + 1

∑

Ji

(2J + 1)
∑

h

Dph(Y
Ji
ph)

2 ,

fh =
1

2jh + 1
〈0|

∑

mh

a†jhmh
ajhmh

|0〉 = 1−
1

2jh + 1

∑

Ji

(2J + 1)
∑

p

Dph(Y
Ji
ph)

2 . (22)

It has been discussed in Ref. [5] that, if the number-operator method is used to derive the

occupation numbers fk, the expressions for fp and fh in Eq. 22 acquire a factor of 1/2 in

front of 1/(2jp(h) + 1), which reduces the effect of GSC. However, as has been pointed out in

Ref. [27], the precise correspondence between the two methods is not immediately apparent,

since it is not easy to pinpoint what effects are included in the number operator method.

Moreover, the expressions obtained in Ref. [8] for the same quantities include the term of

even higher orders in X Ji
ph and YJi

ph amplitudes [See Eqs. (2.20) and (2.21) in Ref. [8]], which

makes them different from those given in Eq. (22) as well as in the number- operator method

[Eq. (54) in Ref. [5]]. However, as has been already mentioned in Ref. [5], in practice, such

difference does not appear to be such a serious effect, since only a few low-lying collective

excitations contribute coherently to the GSC. For many non-collective state the backward-

going amplitudes YJi
ph are small and and take place with random sign. Therefore, we decide

to use the expressions in Eq. (22), keeping in mind that the resulting effect of GSC may be

slightly overestimated compared to that predicted by the number-operator method.

Notice that, within the phRRPA, Eqs. (17) and (18) acquire the GSC factor Dph in front

of B†
ph(JM) on the right-hand sides because, with respect to the correlated ground state |0〉,

relation (7) is equivalent to the approximation

[Bph(JM), B†
p′h′(J

′M ′)] ≃ δJJ ′δMM ′δjpj′pδjhj′hDph , (23)
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rather than the approximation (10), which is valid only for the HF ground state |HF 〉.

The central result of the phRRPA method is the equation for GSC factor Dph [3], which

is found by combining Eqs. (8) and (22) as

Dph ≡ fh − fp = 1−
∑

Ji

(2J + 1)

[
1

2jp + 1

∑

h′

Dph′(YJi
ph′)2 +

1

2jh + 1

∑

p′

Dp′h(Y
Ji
p′h)

2

]

. (24)

The QBA is justified only when the sum on the right-hand side of Eq. (24) becomes negligible

compared to 1, so that Dph ≃ 1.

The phRRPA equation is obtained in the standard way [1] by using the renormalized

phonon operator (20) and Eq. (7) and a model Hamiltonian consisting of a mean field of

single-particles with energies ǫk on the spherical orbitals |jk, mk〉 (k = p, h) and two-body

residual interactions 〈kk′|Vres|ll
′〉. The matrix form of the phRRPA equation is given as [3]




A B

−B −A








X Ji

YJi



 = EJi




X Ji

YJi



 . (25)

The matrices A and B have the form

Aph,p′h′ = (ǫp − ǫh)δpp′δhh′ +
√

DphDp′h′〈ph′|Vres|hp
′〉 , Bph,p′h′ =

√

DphDp′h′〈pp′|Vres|hh
′〉 ,

(26)

where the residual interactions are renormalized by the factor
√

DphDp′h′. Within the QBA,

when Dph = 1, one recovers from Eqs. (25) and (26) the conventional RPA equation, and

from Eqs. (22) the expressions for occupation numbers fk (19) within RPA.

The phRRPA equation (25) is solved self-consistently with Eq. (24) and the normaliza-

tion condition (12). First the RPA matrices (Dph = 1) are diagonalized to determine the

eigenvalues EJi(1) (phonon energies), and amplitudes X Ji
ph(1) and YJi

ph(1). The latter are

then used to calculate Dph(1) following Eq. (24). In the second step, the residual interac-

tion, which is renormalized by
√

Dph(1)Dp′h′(1) are used in diagonalizing Eq. (25) (with
√

Dph(1)Dp′h′(1) in the submatrices A and B) to obtain EJi(2), X
Ji
ph(2), Y

Ji
ph(2). The process

is repeated until the convergency is reached, that is |EJi(n)−EJi(n− 1)| < 10−6 MeV.

C. Transition probability and energy-weighted sum rules

The nuclear vibrational excitations are generated by the electromagnetic field with one-

body excitation operators F̂JM and reduced matrix elements 〈p||F̂J ||h〉, whose details are
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given in Refs. [25, 28]. The reduced transition probabilities B(EJ, 0 → ν) between the

ground state |0〉 and one-phonon state |ν〉 ≡ |JMi〉 is calculated within the RRPA as

B(EJ, 0 → ν) = |〈ν|F̂J |0〉|
2 =

∣
∣
∣
∣

∑

ph

√

Dph(X
Ji
ph + YJi

ph)〈p||F̂J ||h〉

∣
∣
∣
∣

2

. (27)

The factor
√

Dph in Eq. (27) comes from the matrix elements of the transition densities

ρ
(1)ν
ph and ρ

(1)ν
hp [1] within the RRPA

ρ
(1)Ji
ph = 〈0|Bph(JM)|JMi〉 = 〈0|Bph(JM)Q†

JMi|0〉 =
√

DphX
Ji
ph ,

ρ
(1)Ji
hp = 〈0|B†

ph(JM)|JMi〉 = 〈0|B†
ph(JM)Q†

JMi|0〉 =
√

DphY
Ji
ph , (28)

following the inverse transformation (21) and orthonormal condition (5), which hold for

Q†
JMi and QJMi with respect to the correlated ground state |0〉.

In practice, the distribution of B(EJ,EJi) values of B(EJ, 0 → ν) (27) at discrete phonon

energies EJi is also presented as a continuous strength function SJ(E) by using the δ-function

representation δ(x) = ε/[π(x2 + ε2)], that is

SJ(E) =
ε

π

∑

i

B(EJ,EJi)

(E − EJi)2 + ε2
. (29)

This kind of presentation not only improves the visual comparison of results obtained within

the RPA and RRPA, but also mimics the so-called escape width Γ↑ ≡ 2ε, which arises from

the direct decay to the continuum, consisting of a free nucleon and a hole state. This escape

width Γ↑ is around few hundred keV, compared to the total GDR width of around 4 - 5

MeV in medium and heavy nuclei.

The energy-weighted sum of rule (EWSR) of the strength distribution generated by the

operator F̂J is defined in terms of its the first moment as

m1 =

∫ Emax

0

ESJ(E)dE =
∑

i

EJiB(EJ,EJi) , (30)

This first moment is equal to the half of the expectation value of the double commuta-

tor 〈0|[F̂J , [H, F̂J ]]|0〉 if H is the exact two-body Hamiltonian and |0〉 is the exact ground

state [1]. Therefore the EWSR 〈0|[F̂J , [H, F̂J ]]|0〉/2 is also referred to as the double com-

mutator sum rule, which is employed to test the validity of any approach to see if the

model-predicted first moment at the left-hand side of Eq. (30) fulfills the EWSR.
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For the dipole excitations the IS and IV EWSR, mIS
1 and mIV

1 , are

mIS
1 =

~
2

2m∗

A

4π
(33〈r4〉 − 25〈r2〉2) , mIV

1 = (1 + κ)TRK , (31)

respectively, where

TRK =
9

4π

~
2

2m∗

NZ

A
(32)

is the model independent Thomas-Reiche-Kuhn (TRK) sum rule, and κ is the enhancement

factor owing to the velocity dependence and exchange mixtures (Wigner force) in the residual

interaction. This enhancement factor κ is calculated according to Eq. (35) of Ref. [25]. In

Eqs. (31) and (32) the corrected mass m∗ ≡ mA/(A−1) is used instead of the bare nucleon

mass m in all Skyrme-HF calculations to take care of the center-of-mass effect on the total

energy.

III. THE RRPA INCLUDING THE EFFECT OF PARTICLE-PARTICLE AND

HOLE-HOLE CORRELATIONS

As has been mentioned in the Introduction, all extensions of the RPA in the spirit of

phRRPA so far violate the sum rules. The reason comes from the presence of the GSC

factors Dph in the transition strengths (27), which are reduced because Dph < 1. This major

drawback of the phRRPA was noticed for the first time in Ref. [10], where it has been

pointed out that the renormalized quasiparticle RPA (RQRPA) violates the Ikeda sum rule

for the charge exchange excitations such as the Gamow-Teller resonance or for the Fermi

transitions between the ground state of the initial even-even nuclei and the ground as well as

excited states of the odd-odd nuclei. For the dipole excitations, the GSC factor Dph causes

the decrease of the EWSRs. To resolve this problem, one needs to take into account the

contribution owing to the expectation value of the commutation relation

〈0|[Bss′, B
†

s′
1
s1
]|0〉 ≃ δss1δs′s′1Dss′ , (33)

which is neglected within the phRRPA. In Eq. (33), Dss′ = fs′ − fs (ss′ = pp′ or hh′)

are the correlation factors coming from the pp and hh channels. As the result, the total

transition probabilities B(EJ) are the sum of the those associated with the ph, pp, and hh

excitations. These transition probabilities are denoted asBph(EJ), Bpp′(EJ), andBhh′

(EJ),

13



respectively.

B(EJ, 0 → ν) = Bph(EJ, 0 → ν) +Bpp′(EJ, 0 → ν) +Bhh′

(EJ, 0 → ν) , (34)

where

Bph(EJ, 0 → ν) =

∣
∣
∣
∣

∑

ph

√

Dph(X
Ji
ph + YJi

ph)〈p||F̂J ||h〉

∣
∣
∣
∣

2

, (35)

Bpp′(EJ, 0 → ν) =

∣
∣
∣
∣

∑

pp′

√

Dpp′(X
Ji
pp′ + YJi

pp′)〈p||F̂J ||p
′〉

∣
∣
∣
∣

2

, (36)

Bhh′

(EJ, 0 → ν) =

∣
∣
∣
∣

∑

hh′

√

Dhh′(X Ji
hh′ + YJi

hh′)〈h||F̂J ||h
′〉

∣
∣
∣
∣

2

, (37)

with X Ji
ss′ and YJi

ss′ being the vibration amplitudes that correspond to the pp and hh excita-

tions, whereas the GSC factors Dpp′ and Dhh′ are expressed explicitly in terms of the GSC

Dph and the amplitudes YJi
ph by using Eqs. (22) and (33) [29] as

Dpp′ ≡ fp′ − fp =
∑

Ji

(2J + 1)
∑

h

[
1

2jp′ + 1
Dp′h(Y

Ji
p′h)

2 −
1

2jp + 1
Dph(Y

Ji
ph)

2

]

, (38)

Dhh′ ≡ fh′ − fh =
∑

Ji

(2J + 1)
∑

p

[
1

2jh′ + 1
Dph′(YJi

ph′)2 −
1

2jh + 1
Dph(Y

Ji
ph)

2

]

. (39)

In principle, the phonon amplitudes X Ji
ss′ and YJi

ss′ should be obtained by diagonalizing the

full RRPA matrix, including all the ph, pp, and hh configurations, similar that obtained in

Ref. [12] for the FT-RPA. However, doing so will significantly enlarge the size of the RRPA

matrix, leading to a sharp increase of computational time. This project is now underway.

In the present study, for the feasibility in practical calculations as a preparatory step to test

the effect of GSC in the restoration of the GDR sum rule, we employ the extended RRPA

(ERRPA), proposed in Ref. [29], which considers a model Hamiltonian with a separable

residual interaction in the form of Eq. (7) in Ref. [29]. The full RRPA matrix equations

with the separable interaction can be easily transformed to obtain the phonon amplitudes

in an explicit form, including the X Ji
ss′ and YJi

ss′ of the pp and hh excitations (Eqs. (18) –

(20) in Ref. [29]). All the eigenvalues of the full RRPA equations are obtained by solving

the secular equation (21) therein, instead of diagonalizing the full RRPA matrix.

As the formalism proposed on Ref. [29] is derived only for separable interactions, to use

it in our study, we adopt the approximate factorization of the interaction [1]

〈

J
︷ ︸︸ ︷

k l|Vres|lk
︸ ︷︷ ︸

J

〉 ≃ λ(J)f 2
kl , (kl = ph, pp′, hh′) , (40)

14



with λ(J) =1. Because the contribution of pp and hh excitations is expected to be small, we

treat it in a perturbative way. To this end, instead of solving Eq. (21) of Ref. [29] to obtain

all the eigenvalues Eph
Ji , E

pp′

Ji , and Ehh′

Ji as well as the amplitudes X Ji
ph , Y

Ji
ph, X

Ji
ss′ and YJi

ss′,

we approximate the energies EJi
ph and the amplitudes X Ji

ph and YJi
ph with the corresponding

values obtained within the phRRPA described in Sec. II. Regarding the energies of the

new phonon states, which appears between the poles ǫs − ǫs′ of pp and hh excitations, their

energies Ess′

Ji are considered to be close to the corresponding poles ǫs − ǫs′, namely

Ess′

Ji = ǫs − ǫs′ − δE . (41)

The energy shift δE is adjusted to restore the EWSR, which is violated within the phRRPA.

In this way, although δE plays the role of a parameter of the model, it has a physical justifi-

cation as the difference between the new RRPA solutions due to the pp (hh) configurations

and the corresponding pp (hh) poles. The amplitudes X Ji
ss′ and YJi

ss′ are calculated by us-

ing the expression obtained with the separable interaction given by Eqs. (19) and (20) of

Ref. [29] with k = 1, whereas fph and fss′ are approximated with
√

|〈|ph|Vres|hp〉| and
√

|〈ss′|Vres|s′s〉|, respectively, according to Eq. (40). This version of phRRPA, which takes

into account the contribution of pp and hh excitations, is referred to as the RRPA hereafter.

The advantage of this approximation is its simplicity, based on the solutions of the

phRRPA, avoiding the diagonalization of a large-size matrix. Its shortcoming is the lost

of self-consistency, which may not be serious so long as the GSC is not large to justify the

validity of the perturbative approximation employed here.

IV. ANALYSIS OF THE NUMERICAL RESULTS

The computer code for the self-consistent HF-RPA with Skyrme-type interactions, de-

veloped by Colò and collaborators [25], is modified to include the effect of GSC beyond

RPA. This code is restricted to the calculations of natural-parity states having π = (−)J in

spherical nuclei with filled subshells, that is without partial occupancies. The single-particle

energy spectra for neutrons and protons are discretized and superfluid pairing is not in-

cluded. Regarding the effective nucleon-nucleon interaction, the density-dependent Skyrme

interactions are employed in the calculations. The code first carries out the HF calculations

for a specified nucleus using a given Skyrme-type interaction. The HF single particle ener-
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TABLE I. The fulfillment of the EWSR for the IS and IV within the RPA, phRRPA, and RRPA for

the nuclei under consideration in the paper. The results are obtained by using the SLy5 interaction

with the summation taken from 0 to Emax = 60 MeV.

IS IV

m1 mRPA
1 /m1 mRRPA

1 /m1 mphRRPA
1 /m1 TRK mRPA

1 /TRK mRRPA
1 /TRK mphRRPA

1 /TRK

×105 (%) (%) (%)

48Ca 2.52 99.80 100.08 91.16 196.6 1.17 1.09 1.02

52Ca 3.47 99.80 100.40 86.98 179.3 1.17 1.07 0.97

58Ca 4.57 99.85 99.44 88.79 191.2 1.17 1.12 0.97

90Zr 9.05 100.03 100.98 92.00 326.3 1.18 1.04 1.03

96Zr 11.2 100.04 100.68 90.82 342.9 1.18 1.11 1.04

110Zr 16.4 99.95 100.95 88.89 374.6 1.18 1.05 1.01

gies, wave functions and densities, which are obtained in a radial mesh extending to R (fm)

and cut-off energy Ec of unoccupied states, are then used in solving the RPA equation. As

for the phRRPA and RRPA equations, they are solved by iteration as has been specified

respectively in Secs. II and III above. For the details of the HF-RPA code see Ref. [25].

In the present paper we restrict ourselves to studying the IS and IV dipole states in

48,52,58Ca and 90,96,110Zr isotopes. For the Skyrme interactions, we employ the SLy5 force,

whose parameters have been specified and used in the HF-RPA code in a spherical box with

radius R = 15 fm and the cut-off energy Ec = 60 MeV of unoccupied states. This value has

been chosen because, for the IV E1 excitations in the nuclei under consideration, the energy

of the lowest RPA state decreases very slowly with increasing Ec higher than 60 MeV. A

value ε = 0.4 MeV for the smoothing parameter is used in calculating the strength function

(29).

Shown in Figs. 1 and 2 are the IS and IV dipole distributions in calcium and zirconium

isotopes obtained within the RPA, phRRPA, and RRPA. The values of the energy shift δE

in Eq. (41) are chosen equal to 1 MeV for calcium isotopes, 1.5 MeV for both 90Zr and 96Zr,

and 1.4 MeV for 110Zr. It is seen from these figures that, as compared to the RPA results, the

overall IS strengths obtained within the phRRPA are always smaller, whereas the phRRPA

IV strength distribution is slightly shifted to the lower excitation energy with an increase in
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FIG. 1. (Color online) Distributions of the IS (left panels) and IV (right panels) reduced transition

probabilities B(E1, 0 → 1−) and the corresponding strength functions S(E) for 48Ca [(a) and (d)],

52Ca [(b) and (e)], and 58Ca [(c) and (f)] obtained within the RPA, phRRPA, and RRPA. The

solid and dashed vertical bars denote the B(E1) values obtained within the RPA and phRRPA,

respectively. The dotted vertical bars stand for the Bpp′(E1) calculated based on Eq. (36). The

continuous solid and dashed lines depict the total strength functions S(E) obtained within the RPA

and RRPA [Eq. (34)], respectively. The units on the y-axis stand for the B(E1, 0 → 1−) values,

whereas the units of the strength function S(E) are equal to those of B(E1, 0 → 1−) divided by

MeV.
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FIG. 2. (Color online) The same as in Fig. 1 but for 90,96,110Zr isotopes.

the total strength at the low-energy side of the GDR main peak and a depletion strength

at its high-energy side. As the result of these shifts in the distributions of the IS and IV

strengths, the EWSRs calculated within the phRRPA are significantly reduced, as shown in

the 5th and 9th columns of Table I. For the IS excitations, the largest value of mphRRPA
1 /m1
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TABLE II. Centroid energies calculated from the IS and IV B(E1, 0 → 1−) strength distributions

obtained within the RPA, phRRPA, and RRPA for the nuclei under consideration in the paper.

The last column presents the results calculated from the empirical fitting of the experimental

centroid energy, namely Em = 31.2A−1/3 + 20.6A−1/6 [30].

IS IV

RPA phRRPA RRPA RPA phRRPA RRPA Em

48Ca 26.60 26.87 29.74 18.22 17.67 18.24 19.39

52Ca 18.95 20.10 23.20 17.17 16.67 18.40 19.02

58Ca 17.56 18.39 20.59 16.18 15.70 18.02 18.53

90Zr 25.40 26.08 28.63 16.28 15.83 15.99 17.16

96Zr 21.49 22.31 24.73 15.54 15.18 16.24 16.44

110Zr 18.07 19.08 21.67 14.40 14.04 14.60 15.92

TABLE III. Ratio r = SPDR/SGDR(%) obtained within the RPA, phRRPA, and RRPA for calcium

and zirconium isotopes.

RPA phRRPA RRPA

48Ca 0.02 0.02 0.33

52Ca 2.82 2.67 3.24

58Ca 3.99 4.20 4.20

90Zr 0.01 0.01 0.06

96Zr 2.37 2.44 3.02

110Zr 4.06 4.13 4.24

amounts to only 92.0% for 90Zr, whereas the smallest value is 86.98% for 52Ca. For the IV

excitations, the value of mphRRPA
1 /TRK ranges from 0.97 to 1.04.

The first excited IS state, which is the spurious mode caused by the center-of-mass motion,

is shifted up within the phRRPA. However, in all the cases under consideration, this increase

in the energy of the spurious mode is not large and the associated B(E1) values are negligible.

Similar to the RPA case, the phRRPA spurious mode is still well separated from all physical

states located at higher energies, and therefore does not affect these states. Within the

RRPA, there are several IS and IV transition strengths caused by the pp excitations (green

19



dotted vertical bars), but only few enhanced strengths are seen in the IS distributions,

especially in 48Ca and 90,96Zr, whereas those seen in the IV distribution are quite small.

The transitions associated with hh excitations are found to be negligible in the present

calculations and, therefore, not shown in the figures. The largest IV transition strengths

associated with the pp excitations are seen in the low energy (PDR) region, which slightly

redistributes the PDR strengths, especially for calcium isotopes. Adding the transition

strengths associated with the pp excitations, the EWSRs obtained within the RRPA are

fully recovered for both the IS and IV excitations as seen in the 4th and 8th columns of Table

I, respectively. This result is particularly interesting because it reveals the reason why all

extensions of RPA so far violate the EWSRs: They have neglected the transitions associated

with the pp and hh excitations.

To have a deeper look inside the effects of GSC beyond the RPA, we report in Table

II the centroid energies Ē, which are defined as Ē = m1/m0, where m1 is calculated from

Eq. (30) and m0 =
∑

i B(EJ,EJi), obtained within the RPA, phRRPA, and RRPA for the

IS and IV strength distributions. For the IS mode, as compared to the RPA, Ē obtained

within the phRRPA increases slightly, whereas a significant increase in Ē obtained within

the RRPA is observed, implying the significant contribution of the pp and hh strengths. For

the IV mode, Ē obtained within the phRRPA is always lower than that obtained within the

RPA, whereas the RRPA centroid energy increases to be closer to the data obtained from

the empirical fitting of the experimental centroid energy [30] as compared to the RPA one,

except for 90Zr nucleus. Once again, this increase in the centroid energy obtained within

the RRPA for the IV mode shows the important contribution of the pp and hh transitions.

To see the contribution of the PDR to the total B(E1) strength, we present in Table III

the ratio r = SPDR/SGDR(%) of the energy weighted sum of strength (EWSS) of the PDR to

that of the GDR, where S =
∑

ν EνB(EJ,Eν). The summation is taken within 0≤ Eν ≤ 10

MeV for the PDR and 0≤ Eν ≤ 60 MeV for the GDR. The values of r increase from almost

0% in the stable nuclei, such as 48Ca and 90Zr, to about 4% in very neutron-rich nuclei,

such as 58Ca and 110Zr. As compared to the RPA, the phRRPA increases the ratio r in

most nuclei under consideration, except in 52Ca, whereas this ratio is significantly enhanced

within the RRPA due to the contributions of the pp transition strengths in the PDR region.
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V. CONCLUSIONS

The present work studies the effects of GSC beyond RPA on IS and IV strength dis-

tributions in calcium and zirconium isotopes. The self-consistent RPA code using Skyrme

interactions [25] has been modified and applied in the numerical calculations to include the

effects of GSC beyond RPA within the phRRPA [3]. To restore the EWSR, which is violated

within the phRRPA, we propose a simple RRPA calculations taking into account, in addi-

tion to the ph excitations, the contribution of the pp and hh excitations in a perturbative

way, which increases the total energy-weighted sum of strengths, including those from the

ph ones.

The analysis of numerical calculations obtained by using the SLy5 interactions allows us

to draw the following conclusions.

1 - Although GSC beyond RPA shift up the energy of the spurious mode obtained within

the phRRPA and increases the corresponding B(E1) value for the IS spurious transition,

this increase however is not large and the phRRPA spurious mode is still well separated

from all physical states.

2 - GSC beyond RPA reduces the transition strengths associated with the IS mode,

whereas it slightly increases the total strength on the low-energy region (the PDR region)

and decreases the strength on the other side (the GDR region) leading to a significant

decrease of the EWSRs for both the IS and IV modes obtained within the phRRPA. This

violation of the sum rule is then fully recovered by taking into account the contribution of

pp and hh excitations within the RRPA. This result reveals the reason why all the RPA

extensions that do not take into account the pp and hh excitations violate the EWSRs.

3 - The ratio of the PDR EWSS to the GDR one, which is almost zero in stable nuclei,

increases with the neutron number. As compared to the RPA case, this ratio is in general

significantly larger within the RRPA.

In the present RRPA calculations, for feasibility and simplicity of numerical calculations,

the contribution of the pp and hh excitations is considered approximately in an perturbative

way. To perform the complete RRPA calculations, we need to employ the method proposed

in Ref. [12] or [29] in a fully self-consistent way, as has been mentioned previously. Moreover,

the exact superfluid pairing, which has been shown to have a non-negligible effect on the

PDR [31], is neglected in the present study. The extension of the HF mean-field approach
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incorporated with the RRPA into the renormalized quasiparticle RPA, taking into account

the pp and hh excitations together with exact pairing, remains one of the goals in our future

study.
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