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Neutron-skins in coordinate space and proton-skins in momentum space are predicted to coexist in heavy

nuclei and their correlation is governed by Liouville’s theorem and Heisenberg’s uncertainty principle. An

analysis of their correlation within a further extended Thomas-Fermi approximation incorporating effects of

nucleon short-range correlations reveals generally that protons move faster than neutrons in neutron-skins of

heavy nuclei.

PACS numbers: 21.65.Ef, 24.10.Ht, 21.65.Cd

1. Introduction: Understanding the neutron-proton

(isospin) asymmetry dependence of nuclear equation of state

(EOS) and the underlying isovector strong interactions is

a longstanding and common goal of contemporary nuclear

physics and astrophysics. Various radioactive beam facil-

ities being built around the world, electron, hadron, light-

and heavy-ion beams available from low to high energies,

advanced x-ray satellites and gravitational wave detectors in

operation together provide multiple tools for realizing ulti-

mately the stated goal. In fact, many observables and phe-

nomena in both terrestrial nuclear experiments and astrophys-

ical observations have been used to probe the poorly known

nature of neutron-rich nucleonic matter especially the sym-

metry energy term of its EOS [1]. In particular, recogniz-

ing that neutron-skins of heavy nuclei provide a great test-

ing ground of isovector interactions, much efforts have been

devoted to measuring the sizes of neutron-skins using many

methods ranging from photopion production, pionic and an-

tiprontic atoms, hadron-nucleus scatterings to parity-violating

electron scatterings, see, e.g., refs. [2–4] for recent reviews.

While the community has yet to reach a consensus on the

precise values of neutron-skins of heavy nuclei, the studies

have been extremely fruitful. On the other hand, it is well

known both theoretically [5–10] and experimentally [11–13]

that short-range nucleon-nucleon correlations (SRC) due to

the tensor components and/or the repulsive core of nuclear

forces lead to the formation of a high-momentum tail (HMT)

in the single-nucleon momentum distribution, see, e.g., refs.

[14, 15] for recent reviews. Analyses of a few recent experi-

ments have revealed some possible indications of the isospin-

dependence of the SRC. For example, nucleon spectroscopic

factors extracted from knock-out reactions induced by ra-

dioactive beams [16], proton occupations from dispersive op-

tical model analyses of proton scattering on Ca isotopes [17]

and systematic studies of triple coincidence measurements of

(e, e′pn) and (p, p′pn) reactions [12, 13] all indicate consis-
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tently that the minority particle in isospin-asymmetric nuclei

is relatively more correlated. Moreover, calculations based

on the Variational Monte Carlo (VMC) [18] and the neutron-

proton dominance model [13] have shown that the average ki-

netic energy of protons is significantly higher than that of neu-

trons in neutron-rich nuclei from 8He to 208Pb. In this work,

incorporating the SRC effects in an extended Thomas-Fermi

model, we show for the first time that on average protons move

faster than neutrons in neutron-skins of heavy nuclei. Proton-

skins in momentum (k-) space coexist with neutron-skins in

coordinate (r-) space in heavy nuclei and their correlation is

governed by Liouville’s theorem and Heisenberg’s uncertainty

principle.

2. SRC-Modified Single-Nucleon Momentum Distribu-

tion Function nJ
k

in Isospin-Asymmetric Nucleonic Matter:

Guided by earlier findings from analyses of both experimental

results [13, 19, 20] and microscopic many-body calculations,

see, e.g., refs. [21–25], we parameterize the single-nucleon

momentum distribution nJ
k in isospin asymmetric and cold

nucleonic matter [13, 26–28] with

nJ
k (ρ, δ) =







∆J , 0 < |k| < kJF ,

CJ

(

kJF /|k|
)4

, kJF < |k| < φJk
J
F

(1)

where kJF is the Fermi momentum of the nucleon J. The ∆J

measures the depletion of the Fermi sea with respect to the

step function for a free Fermi gas (FFG). The three parame-

ters ∆J , CJ and φJ depend linearly on the isospin asymmetry

δ ≡ (ρn − ρp)/ρ in a general form of YJ = Y0(1 + Y1τ
J
3 δ)

where τ n
3 = +1 and τ

p
3 = −1 [21–25]. We notice that this

parameterization reduces exactly to the one used in ref. [19]

in the limiting case of symmetric nuclear matter (SNM). The

amplitude CJ and the high-momentum cutoff coefficient φJ

determine the fraction of nucleons in the HMT via xHMT
J =

3CJ

(

1− φ−1

J

)

. The latter varies approximately linearly with

δ consistent with earlier predictions [21–24]. The normal-

ization condition [2/(2π)3]
∫∞

0
nJ

k (ρ, δ)dk = (kJF )
3/3π2 re-

quires that only two of the three parameters are independent.

We emphasize that our parameterization is also constrained

by the EOS of pure neutron matter (PNM) from microscopic

many-body theories [29–34]. In particular, the contact CPNM
n



2

for PNM is obtained by applying Tan’s adiabatic sweep theo-

rem [35] to the EOS of PNM, see ref. [26] for more details.

HM
T-exp

 proton
 neutron

HM
T-exp

HM
T-SCG

F

=0.21

np/
n

k
/n

p/
n

k
(k

=0
)

208Pb
= 0

proton skin

HM
T-SCG

F

k/kp/n
F

=0.50

xHMT
SNM=28%

xHMT
PNM=1.5%

x
H

M
T

n
(%

)

xHMT
SNM=12%

xHMT
PNM=4.0%

HM
T-

 e
xp

HMT-SCGF

FIG. 1: (Color Online). Reduced nucleon momentum distribution

(normalized to 1 at zero momentum) of neutron-rich nucleonic mat-

ter with an isospin asymmetry of δ = 0.21 (left) and 0.50 (middle)

reachable respectively in the core and surface of 208Pb, and the frac-

tion of neutrons in the high momentum tail as a function of δ using

the HMT-exp and HMT-SCGF parameter set (right), respectively.

Systematic analyses of many experiments, see e.g., refs.

[13, 19, 20], indicate that the percentage of nucleons in the

HMT is about 25% in SNM. While various many-body theo-

ries have consistently predicted the SRC effects on the HMT

qualitatively consistent with the experimental findings, the

predicted size of the HMT still depends on the model and

interaction used. For example, the Self-Consistent Green’s

Function (SCGF) theory using the Av18 interaction predicts

a 11-13% HMT for SNM at saturation density ρ0 [22, 23].

While the latest Bruckner-Hartree-Fock calculations predict a

HMT ranging from about 10% using the N3LO450 to over

20% using the Av18, Paris or Nij93 interactions [25], the lat-

est VMC calculations for 12C gives a 21% HMT [18]. Lit-

tle information about the isospin dependence of the HMT has

been extracted from experiments so far. While based on the

observation that the SRC strength of a neutron-proton pair is

about 18-20 times that of two protons, the HMT in PNM was

estimated to be about 1-2% [19]. However, some recent cal-

culations indicate a significantly higher HMT in PNM, e.g.,

the SCGF theory predicted a 4-5% HMT in PNM [22, 23].

Recognizing the aforementioned discrepancies and still

model dependent predictions about the size of the HMT, we

carried out extensive calculations by varying the size of HMT

in both SNM and PNM. We present here results using two

sets of model parameters leading to xHMT
J values resembling

those from the experimental analysis [13] and the SCGF pre-

dictions [22, 23], respectively. More quantitatively, with the

HMT-exp parameter set of xHMT
SNM = 28%, xHMT

PNM = 1.5%, we

have C0 = 0.161, C1 = −0.25, φ0 = 2.38 and φ1 = −0.56.

While with the HMT-SCGF parameter set of xHMT
SNM = 12%

and xHMT
PNM = 4% we have φ0 = 1.49, φ1 = −0.25, C0 =

0.121 and C1 = −0.01. The resulting neutron fractions in

the HMT as a function of δ at ρ0 are shown in the right win-

dow of Fig. 1 for both parameter sets. The reduced nucleon

momentum distributions (normalized to 1 at zero momentum)

with δ = 0.21 and 0.5 for both cases are shown on the left.

While the isospin asymmetry δ = 0.21 can be easily real-

ized in the core, δ = 0.5 can be reached in the surface area

of 208Pb. Clearly, relative to the center in k-space, nucleonic

matter has a distinct proton-skin and its thickness grows with

the isospin asymmetry at a rate depending on the sizes of the

HMT parameters used.

The 1/k4 behavior of the HMT and its cut-off parame-

ter φ0 were first introduced by Hen et al in [20] for SNM

based on the VMC predictions for the deuteron momentum

distribution and the finding from many calculations that the

HMT of other nuclei is approximately proportional to that of

deuteron. The fundamental origin for these observations is the

dominating tensor force in the spin-triplet (S=1) and isospin-

singlet (T=0) neutron-proton interaction channel. Our exten-

sion of the high-momentum cut-off parameter φJ to include

an isospin-dependent term φ1τ3δ for asymmetric nuclear mat-

ter is numerically consistent with existing experimental con-

straints on the HMT and necessary to extrapolate meaning-

fully from SNM to PNM where it was predicted to have an

approximately1-5% HMT due to probably the repulsive core

instead of the tensor force. Numerically, the magnitude of the

φ1τ3δ is only about 5% and 12% of the leading constant term

in φJ for 208Pb with the HMT-SCGF and HMT-exp parame-

ters, respectively. First of all, the currently estimated uncer-

tainty range of φ0 [19, 20] can tolate such a weakly isospin-

dependent term. Secondly, the weak isospin-dependence of

the cut-off parameter is consistent with model predictions for

single-nucleon momentum distributions in asymmetric mat-

ter [23, 24]. Moreover, as emphasized very recently in ref.

[36], the dominance of the (S=1,T=0) neutron-proton paris

over other nucleon pairs in the HMT can now be more ac-

curately quantified in advanced and realistic calculations. In

particular, it was pointed out that “states different from the

deuteron one, namely the states (01) and (11), do contribute

to the high momentum part of the momentum distributions,

demonstrating, in the case of the state (11), that a consider-

able number of two-nucleon states with odd value of the rela-

tive orbital momentum is present in the realistic ground-state

wave function of nuclei”. Experimentally, it was shown that

there is an approximately 5-15% constant contribution to the

HMT from pp (nn) pairs probably due to the isoscalar repul-

sive core of nuclear interactions [11]. Thus, if one considers

contributions of all nucleon pairs, one expects that the param-

eters characterizing the HMT to be isospin dependent. In this

work, we have assumed that the 1/k4 behavior of the HMT

also works in isospin asymmetric nuclear matter. The small

HMT in PNM is then accounted for consistently within our

framework by using the weakly isospin dependent cut-off pa-

rameter φJ .

3. Further Extended Thomas-Fermi (ETF+) Approximation

Incorporating SRC Effects: In the original ETF framework

which is a semi-classical approximation to the Hartree-Fock

theory, the nucleon kinetic energy density profile in finite nu-

clei

εkin
J (r) =

1

2M

[

α∞
J · ρ

5/3
J (r) +

ηJ
36

(∇ρJ (r))
2

ρJ(r)
+

1

3
∆ρJ(r)

]

(2)
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was obtained by truncating the Wigner-Kirkwood expansion

of the Block density matrix at the order of ~2 [37–40]. The

first term originally with α∞
J = (3/5)(3π2)2/3 is the bulk

part as if nucleons are in infinite nuclear matter and have a step

function for their momentum distributions. The second term

originally proposed by Weizsäcker [37, 41] is very sensitive

to surface properties of finite nuclei. Its strength factor ηJ has

been under debate [37] and was found to affect significantly

the halo and/or skin nature of the surfaces of heavy nuclei

[42]. The last term involving a Laplacian operator is normally

very small as the nuclear surfaces are generally very smooth.

We emphasize that the above relationship is general regardless

how the density profile is obtained. In the following, we refer

our calculations considering the SRC effects as the ETF+ to

distinguish it from the original ETF.

First, we discuss how the HMT affects the bulk part of the

kinetic energy. With the SRC-modified single-nucleon mo-

mentum distribution function of Eq. (1), the kinetic energy

density in infinite matter is given by

2

(2π)3

∫ φJk
J

F

0

k2

2M
nJ

k dk =
1

2M

3

5
(3π2)2/3ρ

5/3
J ΦJ (3)

where ΦJ = 1 + CJ (5φJ + 3/φJ − 8) > 1 is determined

by properties of the HMT. Thus, the original α∞
J in Eq. (2) is

enhanced by the SRC factor ΦJ to α∞
J = (3/5)(3π2)2/3ΦJ .

In neutron-rich systems, since relatively more protons are de-

pleted from the Fermi sea to form a proton-skin in the HMT,

the bulk part of the kinetic energy density is enhanced more

for protons than neutrons. For the HMT-exp parameter set, we

find Φp = 2.09 and Φn = 1.60 for isospin asymmetric matter

with δ = 0.21. While for the HMT-SCGF, we have Φp = 1.21
and Φn = 1.14.

Similar to the measure of the neutron-skin in r-space,

∆rnp ≡ 〈r2n 〉
1/2 − 〈r2p 〉

1/2 with 〈r2n/p〉
1/2 the RMS radius

of neutrons/protons, one may quantify the proton-skin in k-

space for finite nuclei using the difference between the aver-

age kinetic energies of protons and neutrons, i.e., ∆Ekin
pn ≡

〈Ekin
p 〉 − 〈Ekin

n 〉, with

〈Ekin
J 〉 =

∫ ∞

0

εkin
J (r)dr

/
∫ ∞

0

ρJ (r)dr ≡ 〈k2J〉/2M (4)

where M is the average mass of nucleons and 〈k2J 〉 is the

RMS radius squared in k-space for the nucleon J. To evalu-

ate surface properties, one has to specify the nucleon’s den-

sity profiles ρJ (r). We adopt here the 2-parameters Fermi

(2pF) distribution widely used in the literature, i.e., ρJ (r) =
ρJ0 [1 + exp((r − cJ )/aJ)]

−1, where cJ and aJ are the half-

density radius and diffuseness parameter, respectively. While

our formalism and conclusions are general, in the follow-

ing we use 208Pb as an example for numerical calculations.

While the ap and cp of 208Pb are constrained by experiments

to ap ≈ 0.447 fm and cp ≈ 6.680 fm [43], the correspond-

ing values for neutrons are still poorly known. We explore

the correlation between the two kinds of skins in the range of

0.01 ≤ ∆rnp ≤ 0.43 fm by taking an = 0.55 ± 0.05 fm and

cn = 6.8 ± 0.2 fm [2], while the fiducial value of ∆rnp ≈
0.159 fm [44] is used for some illustrations.

Next we explain how the surface strength factor ηJ is con-

strained using as much as possible experimental information.

Since the proton density profile is experimentally known, the

ηp is uniquely determined for a given 〈Ekin
p 〉. For neutrons,

however, there are three unknowns an, cn and ηn as the neu-

tron density profile is not precisely known. Thus, given an av-

erage kinetic energy 〈Ekin
n 〉 of neutrons, for any specific value

of neutron-skin ∆rnp only a correlation among the an, cn and

ηn is constrained. For the HMT-exp parameter set, we use

〈Ekin
p 〉 ≈ 41.9MeV and 〈Ekin

n 〉 ≈ 34.0MeV extracted by Hen

et al. for 208Pb in ref. [13] using the neutron-proton domi-

nance model with its parameters constrained by their experi-

mental data. With about a factor of two smaller (larger) frac-

tions of HMT nucleons in SNM (PNM) in the HMT-SCGF

parameter set, the nucleon average kinetic energies are ex-

pected to be smaller at moderate δ values. While the SCGF

theory has predicted the average nucleon kinetic energies for

infinite matter, to our best knowledge, no prediction for 208Pb

is currently available. To compare calculations using differ-

ent HMT parameters, we set 〈Ekin
p 〉 = 〈Ekin

n 〉 in the HMT-

SCGF calculations and vary their values within a band of

2 MeV around 34.0MeV. The latter is the value of 〈Ekin
n 〉

used in the HMT-exp calulcations. As an example, using

∆rnp ≈ 0.159 fm, for the HMT-exp parameter set we found

ηp ≈ 26.7 and ηn = 7.2 ∼ 9.2, respectively. While for the

HMT-SCGF, we have ηp ≈ 45.9 and ηn = 41.5 ∼ 46.5, re-

spectively. It is interesting to note that the HMT-SCGF case

requires a much large surface contribution to reproduce the

same nucleon kinetic energies used in the HMT-exp calcula-

tions. This is understandable as the bulk part of the kinetic

energy in the HMT-SCGF calculations is not enhanced by the

HMT as much as in the HMT-exp calculations.
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FIG. 2: (Color Online). Input local density (upper) and calculated

momentum profiles (lower 3 windows) in 208Pb.

4. Coexistence of Neutron-Skins in r-Space and Proton-

Skins in k-Space in Heavy Nuclei: A key quantity for our dis-

cussions here is nucleons’ average local momentum kloc
J (r)
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defined through the local kinetic energy per nucleon

〈Eloc
J (r)〉 = εkin

J (r)/ρJ (r) ≡
(

kloc
J (r)

)2
/2M. (5)

In Fig. 2, we examine the correlation between the neutron-

skin in r-space and proton-skin in k-space in heavy nuclei by

comparing nucleons’ average local density and momentum as

a function of radius r. First of all, as a reference, nucleon

local momenta in the original EFT calculations without con-

sidering the SRC effects are shown in the bottom window.

The width of the band reflects the uncertainties of the input

quantities. In the interior, neutrons have higher local mo-

menta due to their higher densities than protons. In the surface

area, very interestingly, because protons have larger values of

the Weizsäcker surface term (∇ρJ/ρJ)
2 they have higher lo-

cal momenta than neutrons, indicating the coexistence of a

proton-skin in k-space and a neutron-skin in r-space. An-

alytically, we have approximately in the outer surface area

kp/n(r) ≈ 1/(72M)(∇ρp/n/ρp/n)
2 ≈ 1/(72Ma2p/n), leading

to kloc
p (r) > kloc

n (r) since the protons’ surface diffuseness ap

is normally much less than the an for neutrons in heavy nu-

clei. Turning on the SRC effects with either the HMT-exp

or HMT-SCGF parameters, most interestingly, protons have

much larger local momenta than neutrons in the surface area.

Moreover, because of the stronger surface contributions in cal-

culations with the HMT-SCGF parameter set, the local mo-

menta of both neutrons and protons in the surface area are

higher than those in the HMT-exp calculations. We also found

that calculations with the HMT-SCGF parameters by varying

the 〈Ekin
p 〉 = 34MeV within a 2 MeV range, or the size of

neutron-skin around ∆rnp = 0.159 fm within a large range

of about 0.15 fm do not change the qualitative features of our

results. As we shall discuss next, the observed coexistence of

proton-skins in k-space and neutron-skins in r-space in heavy

nuclei is a requirement of quantum mechanics.
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FIG. 3: (Color Online). HJ obtained from the ETF+ calculations

using the HMT-exp parameter set and the SHF prediction.

5. Inverse Correlation between the RMS Radii in r- and

k-Spaces: Defining HJ ≡ 〈r2J 〉〈k
2
J 〉, we first present gen-

eral arguments then numerical results illustrating that HJ is

a constant in a given model. First of all, Heisenberg’s un-

certainty principle sets a limit on the δrJδkJ & 1 with δrJ
and δkJ the standard deviations in the r- and k-space, re-

spectively. Moreover, Liouville’s theorem requires that the

phase space density fJ(r, k) is a constant of motion. Thus,

one expects that 2 × 4π〈rJ 〉
3/3 × 4π〈kJ〉

3/3/(2π)3 = NJ

with Nn = N and Np = Z , where 〈rJ 〉 and 〈kJ 〉 are the

effective radii of the r- and k-space, respectively. Conse-

quently, 〈rJ 〉〈kJ 〉 = (9πNJ/4)
1/3 is a constant only depend-

ing on the number NJ . Putting these constraints together, we

then expect that 〈r2J 〉〈k
2
J 〉 = 〈rJ 〉

2〈kJ〉
2[1 + (δrJ/〈rJ 〉)

2 +
(δkJ/〈kJ〉)

2] + (δrJ )
2(δkJ )

2 ≈ constant if δrJ . 〈rJ 〉 and

δkJ . 〈kJ 〉. Indeed, the latter conditions are well satis-

fied in heavy nuclei. For instance, applying the nJ
k (ρ, δ) of

Eq. 1 for nucleons in SNM with the HMT-exp parameters,

(δk/〈k〉)2 ≈ 0.03, and using the 2pF distribution for neutrons

in 208Pb with ∆rnp = 0.159 fm, (δrn/〈rn〉)
2 ≈ 0.09, which

are both negligibly small. In the extreme case of a uniform

phase space density, i.e., fJ(r, k) = Θ(RJ−|r|)Θ(KJ−|k|),
where RJ and KJ are the hard-sphere radii in r- and k-

space, respectively, and Θ is the step function, 〈r2J 〉〈k
2
J 〉 =

(4/25π)(9π/4)5/3N
2/3
J ≡ H0

J .

We now turn to numerically testing the constancy of HJ .

As an example, we use the HMT-exp parameter set and

randomly select with equal weights the following quantities

within their respective uncertainty ranges around their central

values, ∆rnp ≈ 0.159± 0.041 fm, 〈Ekin
p 〉 ≈ 41.9± 2.3MeV

and 〈Ekin
n 〉 ≈ 34.0 ± 1.5MeV (corresponding to ∆Ekin

pn ≈
7.9 ± 2.7MeV). The results are shown in the left window of

Fig. 3. The lower two chains of red and blue diamonds de-

noted by “Hn (onlyα∞
n ,Φn = 1)” and “Hp (onlyα∞

p ,Φp =
1)”, respectively, are results of the original ETF model using

neither the surface terms nor the SRC effects, i.e, ηp/n = 0
and no Laplacian term. The upper two chains are from the

full ETF+ model calculations with ηn = 8.2. For a compar-

ison, shown in the right window are results of the Skyrme-

Hartree-Fock (SHF) calculations by varying the slope param-

eter L ≡ L(ρ0) of the symmetry energy at ρ0 from 0 to

120 MeV using the MSL0 parameter set [45]. Since the SHF

does not contain SRC effects, its predictions are closer to

the original ETF calculations [46]. Interestingly, as expected

based on basic principles of quantum mechanics, in all mod-

els considered the Hn andHp are essentially all constants. The

most important consequence is that as nucleons’ RMS radius

in k-space is increased by the HMT, their RMS radius in r-

space has to decrease correspondingly. This leads to the coex-

istence of and a positive correlation between the neutron-skin

in r-space and proton-skin in k-space of heavy nuclei.

6. Combined Proton-Skin and Neutron-Skin Constraints on

Nuclear Models: Shown in Fig. 4 are correlations between the

sizes of neutron-skin ∆rnp in r-space and proton-skin ∆Ekin
pn

in k-space for 208Pb within the ETF+ approach incorporat-

ing the SRC effects (HMT) using the HMT-exp parameter set

or without considering them (FFG). Also shown are predic-

tions by the SHF approach. Several important observations

can be made. Firstly, as one expects, predictions of the SHF

model and the ETF+(FFG) without considering the SRC ef-

fects do not satisfy simultaneously the combined constraints

on the sizes of both the neutron-skin and proton-skin. Sec-

ondly, the sizes of neutron-skin ∆rnp and proton-skin ∆Ekin
pn

are strongly correlated approximately linearly within their ex-

isting constraints. Thus, measuring more accurately the size
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cross point of the constraints on both the ∆rnp and ∆E
kin
pn .

of either the neutron-skin in r-space or proton-skin in k-space

will help improve our knowledge about the same physics un-

derlying both quantities.

7. Conclusion: In conclusion, protons move faster than

neutrons in neutron-skins of heavy nuclei. The neutron-skins

in r-space and proton-skins in k-space coexist and they are

intrinsically correlated as required by Liouville’s theorem and

Heisenberg’s uncertainty principle. A precise measurement of

either one of them will help constrain the other one and im-

prove our knowledge about nuclear surfaces in the complete

phase space.
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